Wymagania edukacyjne z matematyki w roku szkolnym 2018/2019
|
|
- Damian Lewicki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wymagania edukacyjne z matematyki w roku szkolnym 2018/2019 Klasa Nauczyciele uczący Poziom 3i Maria Roman rozszerzony 1. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne. Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Uczeo: zna pojęcie ułamka Uczeo opanował wymagania na ocenę dopuszczającą oraz: Uczeo opanował wymagania na ocenę dostateczną oraz: Uczeo opanował wymagania na ocenę dobrą oraz: Uczeo opanował wymagania na ocenę algebraicznego jednej zmiennej; zna definicję równania potrafi sprawnie wykonywad potrafi rozwiązywad bardzo dobrą oraz: potrafi wyznaczyd dziedzinę wymiernego; działania łączne na ułamkach zadania na dowodzenie z potrafi rozwiązywad ułamka algebraicznego; zna definicje nierówności algebraicznych; zastosowaniem ułamków zadania o potrafi podad przykład ułamka wymiernej; potrafi rozwiązywad algebraicznych( w tym podwyższonym algebraicznego o zadanej potrafi rozwiązywad równania i równania i nierówności zadania dotyczące stopniu trudności dziedzinie; nierówności wymierne o wymierne; związków pomiędzy dotyczące funkcji średnim stopniu trudności; potrafi rozwiązywad średnimi: arytmetyczną, wymiernych potrafi wykonad działania na potrafi rozwiązywad zadania równania i nierówności geometryczną; średnią wymagające ułamkach algebraicznych, takie tekstowe prowadzące do wymierne z wartością kwadratową); zastosowania jak: skracanie ułamków, prostych równao wymiernych; bezwzględną; potrafi dowodzid własności niekonwencjonalnych rozszerzanie ułamków, potrafi rozwiązywad proste potrafi rozwiązywad funkcji wymiernej; metod. dodawanie, odejmowanie, zadania na dowodzenie z równania i nierówności potrafi przeprowadzid mnożenie i dzielenie ułamków zastosowaniem ułamków wymierne z parametrem; dyskusję liczby rozwiązao algebraicznych, określając algebraicznych; potrafi rozwiązywad układy równania wymiernego z warunki wykonalności tych zna definicję funkcji wymiernej; równao i nierówności wartością bezwzględną i działao; rozwiązuje proste zadania z wymiernych; parametrem, na podstawie potrafi wykonad działania łączne na ułamkach algebraicznych; parametrem dotyczące funkcji wymiernych; potrafi rozwiązywad zadania z parametrem dotyczące wykresu funkcji homograficznej, we wzorze 1
2 potrafi rozpoznad równanie wymierne; potrafi rozwiązad proste równanie wymierne; potrafi rozpoznad nierównośd wymierną; potrafi rozwiązad proste nierówności wymierne; wie, jaką zależnośd między dwiema wielkościami zmiennymi, nazywamy proporcjonalnością odwrotną; potrafi wskazad współczynnik proporcjonalności; rozwiązuje zadania z zastosowaniem proporcjonalności odwrotnej; potrafi rozpoznad funkcję wymierną; potrafi określid dziedzinę funkcji wymiernej; zna definicję funkcji homograficznej; potrafi naszkicowad wykres funkcji homograficznej typu f x = a, a 0; x potrafi na podstawie wzoru funkcji homograficznej określid jej dziedzinę i zbiór wartości; potrafi obliczyd miejsce zerowe funkcji homograficznej oraz współrzędne punktu wspólnego wykresu funkcji i osi OY; potrafi przekształcad wykres potrafi naszkicowad wykres funkcji homograficznej; potrafi wyznaczyd przedziały monotoniczności funkcji homograficznej; potrafi napisad wzór funkcji homograficznej na podstawie informacji o jej wykresie; potrafi naszkicowad wykres funkcji homograficznej z wartością bezwzględną i na podstawie wykresu funkcji opisad własności funkcji; potrafi rozwiązad proste zadania z parametrem dotyczące funkcji homograficznej; własności funkcji homograficznej; potrafi rozwiązywad zadania tekstowe prowadzące do równao i nierówności wymiernych; potrafi rozwiązywad układy równao i nierówności wymiernych(także z wartością bezwzględną); potrafi rozwiązywad zadania dotyczące własności funkcji wymiernej( w tym z parametrem). której występuje wartośd bezwzględna. potrafi przeprowadzid dyskusję liczby rozwiązao równania wymiernego z parametrem. 2
3 funkcji homograficznej w S OX, S OY, S (0,0),przesunięciu równoległym o dany wektor. 2. Ciągi Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Uczeo: Uczeo opanował wymagania na Uczeo opanował wymagania na Uczeo opanował wymagania Uczeo opanował wymagania na zna i stosuje definicję ciągu (ciągu ocenę dopuszczającą oraz: ocenę dostateczną oraz: na ocenę dobrą oraz: ocenę bardzo dobrą oraz: liczbowego); potrafi wyznaczyd dowolny wyraz zna i stosuje definicję ciągu arytmetycznego; potrafi określid ciąg wzorem rekurencyjnym; zna, rozumie i potrafi zastosowad twierdzenie o potrafi rozwiązywad zadania o podwyższonym stopniu ciągu liczbowego określonego zna i stosuje definicję ciągu potrafi rozwiązad proste trzech ciągach do trudności dotyczące ciągów wzorem ogólnym; geometrycznego; zadania na dowodzenie, w obliczenia granicy danego oraz granic ciągów, rozumie pojęcie ciągu potrafi rozwiązad zadania których jest mowa o ciągach; ciągu; wymagające zastosowania określonego wzorem,,mieszane dotyczące ciągów rozumie pojęcie granicy potrafi rozwiązad zadania niekonwencjonalnych rekurencyjnym; arytmetycznych i ciągu liczbowego zbieżnego; na dowodzenie, w których metod. potrafi narysowad wykres ciągu geometrycznych; zna i potrafi stosowad jest mowa o ciągach. liczbowego określonego wzorem twierdzenia dotyczące potrafi wyznaczyd wyrazy ciągu własności ciągów zbieżnych; ogólnym; określonego wzorem potrafi obliczad granice potrafi zbadad na podstawie rekurencyjnym; różnych ciągów zbieżnych; definicji monotonicznośd ciągu zna i potrafi stosowad w potrafi obliczad granice liczbowego określonego wzorem rozwiązywaniu zadao wzór na niewłaściwe różnych ciągów ogólnym; sumę n kolejnych początkowych rozbieżnych do potrafi podać przykłady ciągów wyrazów ciągu arytmetycznego; nieskooczoności; liczbowych monotonicznych; zna i potrafi stosowad wzór na potrafi rozwiązywad różne potrafi sprawdzid, które wyrazy sumę n kolejnych początkowych zadania z zastosowaniem ciągu należą do danego wyrazów ciągu geometrycznego; wiadomości o szeregu przedziału; zna warunek na zbieżnośd geometrycznym zbieżny. potrafi wyznaczyd wyrazy ciągu o szeregu geometrycznego i wzór podanej wartości; na sumę szeregu; rozumie pojecie ciągu potrafi zbadad warunek na arytmetycznego; istnienie sumy szeregu geometrycznego(proste potrafi zbadad na podstawie przykłady); 3
4 definicji, czy dany ciąg określony wzorem ogólnym jest arytmetyczny; potrafi podad przykłady ciągów arytmetycznych; zna i potrafi stosowad w rozwiązywaniu zadao wzór na n- ty wyraz c.arytmetycznego; potrafi stosowad w rozwiązywaniu zadao wzór na sumę n kolejnych początkowych wyrazów ciągu arytmetycznego; potrafi wykorzystad średnią arytmetyczną do obliczania wyrazu środkowego ciągu arytmetycznego; rozumie pojęcie ciągu geometrycznego; potrafi zbadad na podstawie definicji, czy dany ciąg określony wzorem ogólnym jest geometryczny; zna i potrafi stosowad w rozwiązywaniu zadao wzór na n- ty wyraz ciągu geometrycznego; potrafi stosowad wzór na sumę n kolejnych początkowych wyrazów ciągu geometrycznego; potrafi wykorzystad średnią geometryczną do obliczania wyrazu środkowego ciągu geometrycznego; potrafi wyznaczyd ciąg arytmetyczny(geometryczny) na potrafi obliczad sumę szeregu geometrycznego(zamiana ułamka okresowego na ułamek zwykły, proste równania i nierówności wymierne, proste zadania geometryczne); zna twierdzenia o działaniach arytmetycznych na granicach ciągów zbieżnych. potrafi obliczad granice niewłaściwe ciągów rozbieżnych do nieskooczoności(proste przykłady); 4
5 podstawie wskazanych danych; potrafi stosowad procent prosty i składany w zadaniach dotyczących oprocentowania lokat i kredytów; rozumie pojęcie szeregu geometrycznego; potrafi odróżnid ciąg geometryczny od szeregu geometrycznego; rozumie intuicyjnie pojęcie granicy ciągu liczbowego zbieżnego; potrafi stosowad twierdzenie o działaniach arytmetycznych na granicach ciągów zbieżnych; potrafi obliczyd granicę ciągu liczbowego(proste przykłady). 3. Trygonometria Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Uczeo: Uczeo opanował wymagania na Uczeo opanował wymagania na Uczeo opanował wymagania Uczeo opanował wymagania na wie, co to jest miara łukowa kąta; ocenę dopuszczającą oraz: ocenę dostateczną oraz: na ocenę dobrą oraz: ocenę bardzo dobrą oraz: potrafi stosowad miarę łukową i potrafi zbadad, czy funkcja potrafi przekształcad wykresy potrafi rozwiązywad potrafi rozwiązywad zadania stopniową kąta(zamieniad trygonometryczna jest funkcji trygonometrycznych, równania i nierówności o podwyższonym stopniu stopnie na radiany i radiany na parzysta(nieparzysta); stosując takie trygonometryczne z trudności lub wymagające stopnie); potrafi określid zbiór wartości przekształcenia, jak: y = s wartością bezwzględną z niekonwencjonalnych zna definicje funkcji funkcji trygonometrycznej; f(x), y = f(s x) gdzie zastosowaniem poznanych pomysłów i metod trygonometrycznych dowolnego zna i potrafi stosowad wzory s 0; wzorów; rozwiązania. kąta i potrafi się nimi posługiwad redukcyjne dla kątów o miarach potrafi rozwiązywad potrafi rozwiązywad wyrażonych w stopniach oraz równania i nierówności równania 5
6 w rozwiązywaniu zadao; zna i stosuje związki pomiędzy funkcjami trygonometrycznymi tego samego kąta; potrafi wyznaczyd wartości pozostałych funkcji trygonometrycznych kąta, gdy dana jest jedna z nich; potrafi stosowad wzory redukcyjne dla kątów o miarach wyrażonych w stopniach oraz radianach; potrafi naszkicowad wykres funkcji y = sinx i omówid jej własności; potrafi naszkicowad wykres funkcji y = cosx i omówid jej własności; potrafi naszkicowad wykres funkcji y = tgx i omówid jej własności; potrafi przekształcad wykresy funkcji trygonometrycznych, stosując takie przekształcenia, jak: symetria osiowa względem osi OX, symetria osiowa względem osi OY, symetria środkowa względem punktu (0,0), przesunięcie równoległe o dany wektor; potrafi wyznaczyd zbiór wartości funkcji trygonometrycznej(w prostych przypadkach); wykorzystuje okresowośd funkcji radianach; potrafi wyznaczyd okres podstawowy funkcji trygonometrycznej; potrafi przekształcad wykresy funkcji trygonometrycznych, stosując takie przekształcenia, jak: y = f x, y = f( x ); zna wzory na sumę i różnicę sinusów i cosinusów i potrafi je stosowad do rozwiązywania prostych zadao; zna wzory na sinus i cosinus kąta podwojonego i potrafi je stosowad do rozwiązywania zadao; potrafi rozwiązywad proste równania i nierówności trygonometryczne z zastosowaniem poznanych wzorów; potrafi stosowad wzory na funkcje trygonometryczne sumy i różnicy katów, wzory na sumy i różnice funkcji trygonometrycznych, wzory na funkcje trygonometryczne wielokrotności kąta do przekształcania wyrażeo trygonometrycznych; potrafi stosowad wzory na funkcje trygonometryczne sumy i różnicy katów, wzory na sumy i różnice funkcji trygonometrycznych, wzory na funkcje trygonometryczne trygonometryczne z zastosowaniem wzorów na funkcje trygonometryczne sumy i różnicy kątów, wzorów na sumy i różnice funkcji trygonometrycznych, wzorów na funkcje trygonometryczne wielokrotności kąta. trygonometryczne z parametrem; potrafi rozwiązywad różne zadania z innych działów matematyki, w których wykorzystuje się wiadomości i umiejętności z trygonometrii. 6
7 trygonometrycznych; potrafi rozwiązywad proste równania i nierówności trygonometryczne, korzystając z wykresów odpowiednich funkcji trygonometrycznych; stosuje wzory na sinus i cosinus sumy i różnicy kątów do rozwiązywania prostych zadao; stosuje wzory na sinus i cosinus kata podwojonego do rozwiązywania prostych zadao. wielokrotności kąta do dowodzenia tożsamości trygonometrycznych. 4. Funkcja wykładnicza i logarytmiczna ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń: Uczeń: Uczeń: potrafi sprawnie spełnia wymagania spełnia wymagania wykonywać określone określone dla oceny działania na potęgach o dla oceny dostatecznej, dobrej, a ponadto: wykładniku a ponadto: potrafi interpretować rzeczywistym; potrafi szkicować graficznie równania wykresy wykładnicze z funkcji wykładniczych z parametrem; wartością bezwzględną; potrafi odróżnić funkcję wykładniczą od innych funkcji, szkicuje wykresy funkcji wykładniczych dla różnych podstaw, potrafi opisać własności Uczeń: spełnia wymagania określone dla oceny dopuszczającej, a ponadto: stosuje własności działań na potęgach w rozwiązywaniu zadań, zna definicję funkcji wykładniczej; potrafi rozwiązywać graficznie równania, nierówności oraz układy równań z zastosowaniem potrafi szkicować wykresy funkcji logarytmicznych z wartością bezwzględną; równania i nierówności 7 potrafi interpretować graficznie równania logarytmiczne z parametrem; potrafi dowodzić własności logarytmów; Uczeń: spełnia wymagania określone dla oceny bardzo dobrej, a ponadto: równania i nierówności wykładnicze z parametrem; równania i nierówności logarytmiczne z parametrem; zadania na dowodzenie
8 funkcji wykładniczej na podstawie jej wykresu, potrafi przekształcać wykresy funkcji wykładniczych (S OX, S OY, S (0,0), przesunięcie równoległe o dany wektor), algebraicznie i graficznie proste równania oraz nierówności wykładnicze; potrafi obliczyć logarytm liczby dodatniej; potrafi odróżnić funkcję logarytmiczną od innej funkcji; potrafi szkicować wykresy funkcji logarytmicznych dla różnych podstaw; potrafi określić dziedzinę funkcji logarytmicznej; potrafi opisać własności funkcji logarytmicznej na podstawie jej wykresu; potrafi wykresy przekształcać funkcji wykresów funkcji wykładniczych; zna i potrafi stosować własności logarytmów do obliczania wartości wyrażeń; zna definicję funkcji logarytmicznej, potrafi graficznie rozwiązywać równania, nierówności oraz układy równań z zastosowaniem wykresów funkcji logarytmicznych; rozwiązuje zadania tekstowe osadzone w kontekście praktycznym, w których wykorzystuje umiejętność rozwiązywania prostych równań i nierówności wykładniczych oraz logarytmicznych (lokaty bankowe, rozpad substancji promieniotwórczych itp.); posługuje się funkcjami wykładniczymi oraz funkcjami logarytmicznymi do opisu zjawisk fizycznych, chemicznych itp. wykładnicze i logarytmiczne; równania i nierówności wykładnicze oraz logarytmiczne z wartością bezwzględną; układy równań i nierówności wykładniczych oraz logarytmicznych; równania wykładniczo-potęgowologarytmiczne; potrafi badać, na podstawie definicji, własności funkcji wykładniczych i logarytmicznych (np. parzystość, nieparzystość, monotoniczność); potrafi rozwiązywać zadania na dowodzenie (o średnim stopniu trudności), w których wykorzystuje wiadomości dotyczące funkcji wykładniczej i potrafi naszkicować zbiór punktów płaszczyzny spełniających dane równanie lub nierówność z dwiema niewiadomymi, w których występują logarytmy; potrafi stosować wiadomości o funkcji wykładniczej i logarytmicznej w różnych zadaniach (np. dotyczących ciągów, szeregów, trygonometrii, itp.). (o podwyższonym stopniu trudności), w których wykorzystuje własności funkcji wykładniczych i logarytmicznych. 8
9 logarytmicznych (S OX, S OY, S (0,0), przesunięcie równoległe o dany wektor); logarytmicznej. potrafi algebraicznie rozwiązywać proste równania oraz nierówności logarytmiczne. 5. Geometria analityczna ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń: Uczeń Uczeń stosuje informacje spełnia wymagania spełnia wymagania zdobyte w klasie określone określone pierwszej, dotyczące dla oceny dopuszczającej, dla oceny dostatecznej, a ponadto: wektora a ponadto: zna definicję równania w układzie rozwiązuje zadania, kierunkowego oraz współrzędnych, w dotyczące wektorów, ogólnego prostej; rozwiązywaniu zadań; w których występują parametry; potrafi wyznaczyć współrzędne środka odcinka; potrafi obliczyć długość odcinka, znając współrzędne jego końców; - zna warunek na równoległość oraz prostopadłość prostych danych równaniami kierunkowymi (ogólnymi); zna warunki na prostopadłość i równoległość wektorów i potrafi je zastosować rozwiązuje zadania z geometrii analitycznej (o średnim stopniu trudności), w rozwiązaniach których sprawnie korzysta z poznanych wzorów. 9 Uczeń spełniawymagania określone dla oceny dobrej, a ponadto: różne zadania dotyczące okręgów i kół w układzie współrzędnych, w których konieczne jest zastosowanie wiadomości z różnych działów matematyki; zadania z parametrem dotyczące okręgów i kół w układzie współrzędnych; Uczeń spełnia wymagania określone dla oceny bardzo dobrej, a ponadto: potrafi wyprowadzić wzór na odległość punktu od prostej; zadania z geometrii analitycznej o podwyższonym stopniu trudności.
10 rozumie znaczenie współczynników występujących w równaniu kierunkowym prostej; potrafi napisać równanie kierunkowe prostej przechodzącej przez dwa dane punkty oraz równanie kierunkowe prostej, znając jej kąt nachylenia do osi OX i współrzędne punktu, który należy do tej prostej; potrafi napisać równanie ogólne prostej przechodzącej przez dwa punkty; potrafi stosować w zadaniach warunek na równoległość oraz prostopadłość prostych danych równaniami kierunkowymi (ogólnymi); potrafi obliczyć pole trójkąta oraz dowolnego wielokąta, gdy dane są współrzędne jego wierzchołków; rozpoznaje równanie w zadaniach; potrafi obliczyć (korzystając z poznanych wzorów) miarę kąta, jaki tworzą dwie proste przecinające się; zna i potrafi stosować w zadaniach, wzór na odległość punktu od prostej; potrafi obliczyć odległość między dwiema prostymi równoległymi; potrafi określić wzajemne położenie prostej o danym równaniu względem okręgu o danym równaniu (po wykonaniu stosownych obliczeń); potrafi określić wzajemne położenie dwóch okręgów danych równaniami (na podstawie stosownych obliczeń); potrafi obliczyć współrzędne punktów wspólnych prostej i okręgu lub stwierdzić, że prosta i okrąg nie mają stosuje rachunek pochodnych w rozwiązaniach zadań z geometrii analitycznej. 10
11 okręgu w postaci zredukowanej oraz w postaci kanonicznej; rozpoznaje nierówność opisującą koło; potrafi sprowadzić równanie okręgu z postaci zredukowanej do postaci kanonicznej (i odwrotnie); potrafi odczytać z równania okręgu współrzędne środka i promień okręgu; potrafi napisać równanie okręgu, gdy zna współrzędne środka i promień tego okręgu; potrafi odczytać z nierówności opisującej koło współrzędne środka i promień tego koła; potrafi napisać nierówność opisującą koło w sytuacji, gdy zna współrzędne środka i promień koła; potrafi narysować punktów wspólnych; potrafi obliczyć współrzędne punktów wspólnych dwóch okręgów (lub stwierdzić, że okręgi nie przecinają się), gdy znane są równania tych okręgów; potrafi wyznaczyć równanie stycznej do okręgu; potrafi napisać równanie okręgu opisanego na trójkącie, gdy dane ma współrzędne wierzchołków trójkąta; potrafi rozwiązywać proste zadania z wykorzystaniem wiadomości o prostych, trójkątach, parabolach i okręgach; zna pojęcie jednokładności o środku S i skali k 0 (także w ujęciu analitycznym). zna własności figur jednokładnych; potrafi rozwiązywać proste 11
12 w układzie współrzędnych okrąg na podstawie danego równania opisującego okrąg; zadania z zastosowaniem jednokładności. potrafi narysować w układzie współrzędnych koło na podstawie danej nierówności opisującej koło; Nauczyciel przedmiotu uwzględnia zalecenia zawarte w opinii z Poradni Psychologiczno-Pedagogicznej. Możliwe sposoby sprawdzania wiedzy i umiejętności to: sprawdziany, kartkówki, odpowiedzi ustne, zadania domowe, aktywnośd na lekcji, praca w grupach. 12
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.
1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/ Trygonometria
Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/2016 1. Trygonometria 1. wie, co to jest miara łukowa kąta; 2. zamienia stopnie na radiany i radiany na stopnie; 3.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Szczegółowe wymagania edukacyjne klasa 3 C, poziom rozszerzony
1. Funkcja wykładnicza i funkcja logarytmiczna Szczegółowe wymagania edukacyjne klasa 3 C, poziom rozszerzony potrafi sprawnie wykonywad działania na potęgach o wykładniku rzeczywistym; stosuje własności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
1. Funkcja wykładnicza i logarytmiczna
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
1. Funkcja wykładnicza i logarytmiczna
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO
Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
PLAN WYNIKOWY (zakres rozszerzony) klasa 3.
PLAN WYNIKOWY (zakres rozszerzony) klasa 3. Spis treści 1. Funkcja wykładnicza i funkcja logarytmiczna 4 2. Elementy analizy matematycznej.... 8 3. Geometria analityczna.... 13 4. Kombinatoryka i rachunek
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony Trygonometria. wie, co to jest miara łukowa kąta; potrafi stosować miarę łukową i stopniową kąta
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2018/2019 - klasa 3a, 3b, 3c 1, Ciągi
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.
ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
Zakres materiału obowiązujący do próbnej matury z matematyki
ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
MATeMAtyka zakres rozszerzony
MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 3TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 3TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w sprawie
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.
MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska
PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):
IV etap edukacyjny. Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,
PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ
OOZYCJA LANU WYNIKOWEGOEALIZACJI OGAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DUGIEJ KLASIE SZKOŁY ONADGIMNAZJALNEJ ZAKES OZSZEZONY DZIAŁ I: CIĄGI Tematyka jednostki lekcyjnej lub Liczba oziomy
MATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane
Matematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie rozszerzonym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Rozkład materiału: matematyka na poziomie rozszerzonym
Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe
Plan wynikowy klasa 2
Plan wynikowy klasa 2 Przedmiot: matematyka Klasa 2 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 36 tyg. 3 h = 108 h (94 h + 14 h do dyspozycji
Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)
IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie
PSO matematyka 2LO rozszerzenie. Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
PSO matematyka 2LO rozszerzenie Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 Poniżej podajemy umiejętności, jakie
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje