Elektrony, kwanty, fotony

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrony, kwanty, fotony"

Transkrypt

1 Wstęp. Elktrony, kwanty, fotony dr Janusz B. Kępka Sir Isaa Nwton (angilski fizyk i filozof, ) w swym znakomitym dzil Optiks (170 r.) rozważał zarówno korpuskularny jak i falowy araktr światła, z wskazanim natury korpuskularnj. W 1801 r. Tomas Young (lkarz i fizyk angilski, ) odkrył zjawisko intrfrnji światła, o jdnoznazni okrśla falową naturę światła. Z koli, w 1808 r. Étinn Louis Malus (fizyk franuski, ) opisał zjawisko polaryzaji światła, o z koli wskazuj, ż światło ma araktr fali poprzznj, podobni jak fala na wodzi. W roku 1887, Hinri Rudolf Hrtz (fizyk nimiki, ) wykazał doświadzalni, ż prominiowani lktromagntyzn (ultrafiolt) ułatwia przskok iskry lktryznj. I odwrotni, w rok późnij wykazał, ż przskok iskry lktryznj powoduj misję prominiowania lktromagntyzngo. Obni, znan to jst jako fkt fotolktryzny. W ksprymnta Hrtza można było bzpośrdnio wykazać stan polaryzaji prominiowania. W r Willm Ludwig Franz Hallwas (fizyk nimiki, ), uzń H.R. Hrtza, zauważył, ż świżo wypolrowana płytka ynkowa, oświtlana światłm ultrafioltowym, trai ładunk, jśli była naładowana ujmni. Natomiast stan nalktryzowania płytki ni zminia się, gdy płytka była naładowana dodatnio. Takż odkrył on, ż ni naładowana płytka ładuj się dodatnio w wyniku naświtlania prominiowanim lktromagntyznym. Najwidoznij światło powodowało wypirani z płytki ładunku ujmngo. Alksandr Grigoriwiz Stoltow (fizyk rosyjski, ) wykazał w 1890 r., ż między płytką i siatką (rys. obok) następuj iągły przpływ prądu lktryzngo Prąd fotolktryzny płynął nawt w najlpszj możliwj do osiągnięia próżni. Wywnioskowano stąd, ż przpływ prądu był spowodowany przz ru nośników ładunku ujmngo. Odkryi przz Röntgna (Willm onrad, fizyk nimiki, ) prominiowania X (1895 r.), prawi bzpośrdnio wskazywało możliwość gnraji fal lktromagntyzny przz poruszają się ząstki matrialn. Dopiro w 193 r. udowodnił to doświadzalni fizyk rosyjski Pawił Alksjjwiz zrnkow ( ), o znan jst jako prominiowani zrnkowa. W 1891 r. Gorg Jonston Stony (fizyk irlandzki, ) wprowadzil nazwę lktron dla lmntarnj jdnostki lktryznośi ujmnj w prosi lktrolizy. Poniważ światło moż wybijać lktrony z powirzni katody (fkt fotolktryzny), i odwrotni, lktrony mogą powodować misję światła, to w 1895 r. Sir Josp Jon Tomson ( , fizyk angilski) doszdł do wniosku, ż prominiowani katodow jst struminim ząstk o ujmnym ładunku, podobni jak w prosi lktrolizy.

2 Janusz B. Kępka Elktrony, kwanty, fotony I. Kwanty nrgii. 1 grudnia 1900 r. Max Karl Ludwig Plank (fizyk nimiki, ) przdstawił wyprowadzni prawa prominiowania iała doskonal zarngo (tortyzni: iało ałkowii połaniają padają na ni prominiowani lktromagntyzn, nizalżni od tmpratury tgo iała, kąta padania i widma padajągo prominiowania), i podał słynn równani [1]: ν 1 1 E( ν ) = = (1) 3 ν xp 1 xp 1 kt kt obni zwan prawm Planka dla iała doskonal zarngo, gdzi: E(ν) ilość nrgii proministj przypadająj na daną powirznię (radianja spktralna zęstotliwośiowa w kirunku prostopadłym do powirzni); stała Planka; ν zęstotliwość fal lktromagntyzny; = ν prędkość światła in vauo; k stała Boltzmanna; T tmpratura iała doskonal zarngo. W powyższym, wartość nrgii E = ν Max Plank nazwał kwantm (ła. quantum ilość). Zwykl jst wskazywan, ż prawo Planka wynika z założnia, ż osylator (obikt gnrująy ru falowy w danym ośrodku) o zęstotliwośi ν moż połaniać lub traić nrgię E tylko porjami równymi: E = ν = () W tzw. litraturz przdmiotu wprost przdstawia się, ż ytujmy: Wdług Planka nrgia osylatora o zęstośi ν mogła być równa jdyni ałkowitym wilokrotnośiom ν. Wilkość ν, stanowiąą podstawową jdnostkę nrgii, nazwał Plank kwantm. Nowa stała fizyzna ma wymiar nrgia zas, albo inazj, wymiar pęd droga. (A.P. Frn Zasady fizyki współzsnj, Państwow Wydawnitwo Naukow, str. 10). Al zaraz dalj, zytamy tam (str. 107): Ni wynika stąd bynajmnij, ż prominiowani w wnętrzu osłony składa się z oddzilny pakitów, i sam Plank takigo wniosku ni wyiągnął., koni ytatu. Pytani: to jak to było wdług Planka? ałkowit wilokrotnośi, al ni oddziln pakity? Poniważ powyższ jst podstawą tzw. maniki kwantowj i z koli fizyki kwantowj, i z koli podstawą słynnj torii Albrta Einstina, ż światło to latają fotony o masa m, to rozpatrzmy powyższ bardzij szzgółowo. Jżli stała ma araktr stałj fizyznj, to równani () wprost wskazuj, ż nrgia E jst prostą funkją zęstotliwośi ν : E ~ ν. I ni ma tu oddzilny pakitów, jak to słuszni zauważył Max Plank, a potwirdził doświadzalni Robrt Andrws Millikan [] (fizyk amrykański, ). Ponadto, R.A. Millikan ksprymntalni wyznazył wartość stałj /. Jst to bzpośrdni wskazani związku między lmntarnym ładunkim lktryznośi oraz nrgią prominiowania lktromagntyzngo (światła) wdług zalżnośi (1), w prosi oddziaływania wzajmngo lktronów i prominiowania lktromagntyzngo. Tak wię, z zalżnośi () ni wynika, ż nrgia E jst ałkowitą wilokrotnośią ν.

3 Janusz B. Kępka Elktrony, kwanty, fotony 3 Ozywiśi, okrślonj wartośi zęstotliwośi ν odpowiada okrślona wartość (quantum ilość) nrgii E. W przypadku oddziaływania wzajmngo prominiowania lktromagntyzngo (światła) z lktronami, różnia długośi fali padająj oraz fali odbitj jst taka, ż: o znan jst jako zjawisko (fkt) omptona [3]. W powyższym: zwan jst omptonowską długośią fali. Z powyższgo, mamy tż: i r i = ( 1 osψ ) = ( 1 osψ ) (3) m = = m m = m = onstant = p = onstant () Wskazuj się, ż poniważ w zalżnośi (3) występuj stała Planka (), to światło (prominiowani lktromagntyzn) ma araktr korpuskularny (np. E.H. Wiman, Fizyka kwantowa, PWN 1976, str. 17). Al uzni w piśmi ni zauważają, ż p = m jst pędm lktronu o masi m, poruszajągo się z prędkośią światła in vauo. Z tgo właśni względu, stała Planka () okrśla momnt pędu lktronu względm prominiowania lktromagntyzngo o długośi fali. Poniważ: ν = onstant, to mamy równiż: = r ν = = m A z powyższgo: E = m = = ν = onstant (5) o okrśla kwant nrgii wdług równania () Maxa Planka. Nalży tu zaznazyć, ż w zalżnośia () oraz (5) prędkość ma podwójn znazni: jst to prędkość światła in vauo, i jdnozśni jst to prędkość lktronu o masi inrjalnj m. Ni nalży z tgo wyiągać naukawgo wniosku, ż lktron to jst to samo o prominiowani lktromagntyzn (światło). Z wilu doświadzń, w tym z ksprymntu R.A. Millikana, wprost wynika, ż oddziaływani wzajmn lktronów z prominiowanim lktromagntyznym zaodzi dla dowolnj zęstotliwośi ν, zyli dla dowolnj długośi tgo prominiowania. Dlatgo zalżność () możmy przpisać w postai: = m = m v = p = onstant (6) gdzi: v prędkość lktronu w oddziaływaniu wzajmnym z prominiowanim lktromagntyznym o długośi fali. Zalżnośi (5) oraz (6) podan są tutaj po raz pirwszy w litraturz przdmiotu.

4 Janusz B. Kępka Elktrony, kwanty, fotony Na poniższym rysunku przdstawiony jst rozkład spktralny nrgii prominiowania E iała doskonal zarngo, w funkji długośi fali, wg zalżnośi (1) i dla tmpratury T = 310 K, zyli tmpratury iała ludzkigo. Maksimum nrgii prominiowania iała doskonal zarngo wynosi ok. E( ) = 10 nm. Poniżj podajmy orintayjn zakrsy prominiowania lktromagntyzngo: gamma: rntgnowski: ultrafiolt: zakrs widzialny: zakrs prominiowania podzrwongo: fal radiow (Hrtza): od ok nm do ok nm; od 10 5 nm do 80 nm; od 10 nm do 00 nm; od 00 nm (fiolt) do 700 nm (zrwiń); od ok. 700 nm do mm = 10 6 nm; od ok. kilku mm do kilkunastu km. Ozywiśi, np. iało ludzki (tmp. 310 K) ni jst iałm doskonal zarnym. Badania wykazują, ż maksimum nrgii prominiowania iała ludzkigo występuj dla długośi fali 3 = 9,36µ m = 9,36 10 nm 10 nm, zyli w zakrsi prominiowania podzrwongo. Zwykl używan kamry trmowizyjn mają zakrs ok. 0,3 10 nm 0,5 10 nm ( 3 5 µ m ). Tak wię, zakrs spktralny ty kamr w bardzo niwilkim stopniu objmuj zakrs misji iała ludzkigo, i lży dalko poza maksimum widma iała ludzkigo. To wyjaśnia, dlazgo strażay Państwowj Straży Pożarnj ni mogli znalźć, za pomoą używanj przz ni kamry trmowizyjnj (donisinia prasow), np. zaginiongo dzika. Otóż, zakrs spktralny używany kamr (TALISMAN IRG) był niwłaśiwy II. Fotony Albrta Einstina. W 1905 r. Albrt Einstin ( ) przdstawiał [], ż światło składa się z oddzilny kwantów świtlny. Jst to skrzyżowani kwantów Maxa Planka z wzśnijszym wskazanim Isaaa Nwtona, ż światło moż mić araktr korpuskularny. Louis Vitor Pirr Raymond d Brogli (fizyk franuski, ) wyobrażał sobi istnini w fali świtlnj punktów, w który skupiona jst nrgia, bardzo mały korpuskuł, który ru jst śiśl związany z przmiszzanim się fali [5].

5 Janusz B. Kępka Elktrony, kwanty, fotony 5 Jst to odnisini do ruu falowgo w matrii, np. w powitrzu (fal akustyzn). Otóż, wyobrażano sobi, ż światło jst zaburznim szzgólngo rodzaju ośrodka zwango trm. A tr, podobni jak powitrz, (ponoć) powinin składać się z oddzilny korpuskuł. Al ni udało się zidntyfikować korpuskuł tru. Nazwę foton wprowadził w 196 r. Gilbrt Nwton Lwis (fizykomik amrykański, ) dla ipottyzngo nowgo lmntu atomu [6]. Wdług Lwisa foton ni jst światłm, lz odgrywa zasadnizą rolę w każdym prosi prominiowania. Powyższ ipottyzn wyobrażnia Louis d Brogli a oraz Gilbrta N. Lwisa twórzo rozwinął Albrt Einstin wskazują, ż właśni foton jst światłm, i jst to korpuskuła o masi m o, która tym samym oddziaływuj grawitayjni z innymi iałami matrialnymi, np. z Słońm. A takż z Albrtm Einstinm, ozywiśi. Poniważ prędkość światła wynosi, to nrgia instinowskigo fotonu o masi m o jst dokładni równa: E = m o, i jst równa nrgii kwantu światła wg zalżnośi (5). Możmy wię, a nawt powinniśmy, napisać: I mamy: m = m. o o ( m ) m m = ν = ν = Powyższ wprost oznaza, ż instinowski foton o masi m o i poruszająy się (zawsz!) z prędkośią światła in vauo, to jst to dokładni lktron o masi m. I rzzywiśi. Z równania (5) wprost wynika, ż E = m jst nrgią lktronu poruszajągo się z prędkośią światła. Jst to nrgia dokładni równa nrgii E = ν prominiowania lktromagntyzngo o zęstotliwośi ν i omptonowskij długośi fali. W tzw. litraturz przdmiotu jst to nizwykl staranni ukrywan, poniważ Albrt Einstin nakazał, ż żadna ząstka matrialna, próz fotonu, ni moż poruszać się z prędkośią światła. I w tn oto prosty sposób, a wskazany wyżj, lktron stał się fotonm! A światłość wikuistą dał mu Pan Einstin. I stał się światłm! Foton, ozywiśi. Amn. Litratura. 1. M. Plank, Vr. Duts. Pys. Gs.,, 37 (1900), a takż: Übr das Gstz dr Enrgivrtilung in Normalspktrum, Annaln dr Pysik,, 553 (1901).. R.A. Millikan, A dirt Potoltri Dtrmination of Plank s, Pys. Rw., 7, 355 (1916). 3. A.H. ompton, T Sptrum of Sattrd X-rays, Pys. Rv., 09 (193).. A. Einstin, Übr inn di Erzugung und Vrwandlung ds Lits btrffndn uristisn Gsitspunkt, Annaln dr Pysik, 17, 13 (1905) 5. Louis d Brogli, Sur l parallélism ntr la dynamiqu du point matéril t l optiqu géomtri, J. Pys. Rad. 7, 1 (196). 6. G. N. Lwis, Natur, 118, 87 (196).

11. Zjawiska korpuskularno-falowe

11. Zjawiska korpuskularno-falowe . Zjawiska korpuskularno-falow.. Prominiowani trmizn Podstawow źródła światła: - ogrzan iała stał lub gazy, w który zaodzi wyładowani lktryzn. misja absorpja R - widmowa zdolność misyjna prominiowania

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

Ćwiczenia z mikroskopii optycznej

Ćwiczenia z mikroskopii optycznej Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Wykład 7 Kwantowe własności promieniowania

Wykład 7 Kwantowe własności promieniowania Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

19. Kwantowa natura promieniowania elektromagnetycznego. Zjawisko fotoelektryczne. Efekt Comptona.

19. Kwantowa natura promieniowania elektromagnetycznego. Zjawisko fotoelektryczne. Efekt Comptona. 9 Kwantowa natura roiniowania lktroagntyzngo Zjawisko otolktryzn kt Cotona Wybór i oraowani zadań Jadwiga Mlińska-Drwko Więj zadań na tn tat znajdzisz w II zęśi skrytu 9 Jaką rędkość osiada otolktron wytworzony

Bardziej szczegółowo

13. Optyka Polaryzacja przez odbicie.

13. Optyka Polaryzacja przez odbicie. 13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

Początki fizyki współczesnej

Początki fizyki współczesnej Pozątki fizyki współzesnej 1 Plan 1.1. Promieniowanie iała doskonale zarnego 1.. Foton 1.3. Efekt fotoelektryzny 1.4. Efekt Comptona 1 Trohę historii Gustav Kirhhoff (184-1887) W 1859 rozpozyna się droga

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

Na kilku przykładach pokazano, że stosowanie matematyki do zjawisk, których istota nie jest znana, może zaprowadzić fizykę w ślepy zaułek.

Na kilku przykładach pokazano, że stosowanie matematyki do zjawisk, których istota nie jest znana, może zaprowadzić fizykę w ślepy zaułek. JAK MATEMATYKA PROWADZI FIZYKĘ NA MANOWCE. STRESZCZENIE Na kilku przykładach pokazano, że stosowanie matematyki do zjawisk, których istota nie jest znana, może zaprowadzić fizykę w ślepy zaułek. Arystoteles

Bardziej szczegółowo

Fizyka współczesna. Pracownia dydaktyki fizyki. Instrukcja dla studentów. Tematy ćwiczeń

Fizyka współczesna. Pracownia dydaktyki fizyki. Instrukcja dla studentów. Tematy ćwiczeń Pracownia dydaktyki fizyki Fizyka współczesna Instrukcja dla studentów Tematy ćwiczeń I. Wyznaczanie stałej Plancka z wykorzystaniem zjawiska fotoelektrycznego II. Wyznaczanie stosunku e/m I. Wyznaczanie

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Własności falowe cząstek. Zasada nieoznaczoności Heisenberga.

Własności falowe cząstek. Zasada nieoznaczoności Heisenberga. Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

Oddziaływanie elektronu z materią

Oddziaływanie elektronu z materią Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne:

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

Mechanika relatywistyczna

Mechanika relatywistyczna Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Początki fizyki współczesnej

Początki fizyki współczesnej Pozątki fizyki współzesnej Plan.. Promieniowanie iała doskonale zarnego.. Foton.. Efekt fotoelektryzny.4. Efekt Comptona Trohę historii Gustav Kirhhoff (84-887) W 859 rozpozyna się droga do mehaniki kwantowej

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalej również: Polityka )

POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalej również: Polityka ) POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalj równiż: Polityka ) wrsja: 20150201.1 Wyrazy pisan wilką litrą, a nizdfiniowan w Polityc mają znacznia nadan im odpowidnio w Rgulamini świadcznia usług Oktawav dla

Bardziej szczegółowo

ANEMOMETRIA LASEROWA

ANEMOMETRIA LASEROWA 1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Materia skondensowana

Materia skondensowana Matria skondnsowana Jack.Szczytko@fuw.du.pl http://www.fuw.du.pl/~szczytko/nt Podziękowania za pomoc w przygotowaniu zajęć: Prof. dr hab. Pawł Kowalczyk Prof. dr hab. Dariusz Wasik Uniwrsytt Warszawski

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Podstawy fizyki sezon Dualizm światła i materii

Podstawy fizyki sezon Dualizm światła i materii Podstawy fizyki sezon 2 10. Dualizm światła i materii Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha W poprzednim

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

ν=c/λ E=hν Repeta z wykładu nr 1 Detekcja światła Radiometria Promieniowanie termiczne

ν=c/λ E=hν Repeta z wykładu nr 1 Detekcja światła Radiometria Promieniowanie termiczne Repeta z wykładu nr Detekja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres pozty elektroniznej: makowski@fizyka.umk.pl Biuro: 365, telefon: 6-350 - zakres wykładu, warunki

Bardziej szczegółowo

I.2 Promieniowanie Ciała Doskonale Czarnego

I.2 Promieniowanie Ciała Doskonale Czarnego I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Fizyka w doświadczeniach

Fizyka w doświadczeniach Matriały do wykładu 12. Elktrony wwnątrz matrii 12.1 Wstęp Fizyka w doświadczniac Krzysztof Korona Arcolodzy mają zwyczaj dzilić poki wdług matriałów, któr były najważnijsz w danyc czasac dla człowika.

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Wielcy rewolucjoniści nauki

Wielcy rewolucjoniści nauki Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Droga do obliczenia stałej struktury subtelnej.

Droga do obliczenia stałej struktury subtelnej. Artykuł pobrano ze strony eioba.pl Droga do obliczenia stałej struktury subtelnej. Stała struktury subtelnej, jest równa w przybliżeniu 1/137,03599976. α jest bezwymiarową kombinacją ładunku, stałej Plancka,

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Techniczne podstawy promienników

Techniczne podstawy promienników Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

Promieniowanie termiczne ciał. Prawo Kirchoffa.

Promieniowanie termiczne ciał. Prawo Kirchoffa. Prominiowani trmizn iał. Prawo Kirhoffa. Prominiowani trmizn iał w myśl klasyznj lktrodynamiki powstaj w wyniku przyspiszń, jakih doznają ładunki lktryzn w ząstzkah w następstwi ruhu iplngo. Zgodni z prawami

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc.

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc. Stosowani znaków wakuacji i ochron przciwpożarowj crtfikowanch pr zz C N B O P www.znaki-tdc.com wdani 3 / listopad 2015 AA 001 Wjści wakuacjn AA 010 Drzwi wakuacjn AA 009 Drzwi wakuacjn AA E001 E001 AA

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

II. KWANTY A ELEKTRONY

II. KWANTY A ELEKTRONY II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Identyfikacja osób na podstawie zdjęć twarzy

Identyfikacja osób na podstawie zdjęć twarzy Idntyfikacja osób na podstawi zdjęć twarzy d r i n ż. Ja c k Na r u n i c m gr i n ż. Ma r k Kowa l s k i C i k a w p r o j k t y W y d z i a ł E l k t r o n i k i i T c h n i k I n f o r m a c y j n y

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Ćwiczenie 3. Strona 1 z 10

Ćwiczenie 3. Strona 1 z 10 Ćwiczni 3 Baani oka. Pomiary fotomtryczn. Baani prztworników optolktronicznych (szum, rozzilczość) - różn natężni oświtlnia. Porównani wyników. Część tortyczna Baani narząu wzroku. Ocna narząu wzroku.

Bardziej szczegółowo

Zjawisko Zeemana (1896)

Zjawisko Zeemana (1896) iczby kwantow Zjawisko Zana (1896) Badani inii widowych w siny pou agntyczny, prowadzi do rozszczpini pozioów nrgtycznych. W odu Bohra, kwantowani orbitango ontu pędu n - główna iczba kwantowa n = 1,,

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Prawo odbicia światła. dr inż. Romuald Kędzierski

Prawo odbicia światła. dr inż. Romuald Kędzierski Prawo odbicia światła dr inż. Romuald Kędzierski Odbicie fal - przypomnienie Kąt padania: Jest to kąt pomiędzy tzw. promieniem fali padającej (wskazującym kierunek i zwrot jej propagacji), a prostą prostopadłą

Bardziej szczegółowo

Teoria grawitacji. Grzegorz Hoppe (PhD)

Teoria grawitacji. Grzegorz Hoppe (PhD) Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

ZJAWISKO FOTOELEKTRYCZNE. Edyta Karpicka WPPT/FT/Optometria

ZJAWISKO FOTOELEKTRYCZNE. Edyta Karpicka WPPT/FT/Optometria ZJAWISKO FOTOELEKTRYCZNE Edyta Karpicka 150866 WPPT/FT/Optometria Plan prezentacji 1. Historia odkrycia zjawiska fotoelektrycznego 2. Badanie zjawiska fotoelektrycznego 3. Maksymalna energia kinetyczna

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

IV.5. Promieniowanie Czerenkowa.

IV.5. Promieniowanie Czerenkowa. Jansz B. Kępka Rh absoltny i względny IV.5. Promieniowanie Czerenkowa. Fizyk rosyjski Pawieł A. Czerenkow podjął badania (1934 r.) nad znanym słabym świeeniem niebiesko-białym wydzielanym przez silne preparaty

Bardziej szczegółowo