LXIII Olimpiada Matematyczna



Podobne dokumenty
LX Olimpiada Matematyczna

LXI Olimpiada Matematyczna

LVIII Olimpiada Matematyczna

LVII Olimpiada Matematyczna

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)

VII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów

LXV Olimpiada Matematyczna

LXII Olimpiada Matematyczna

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LXI Olimpiada Matematyczna

XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)

X Olimpiada Matematyczna Gimnazjalistów

Treści zadań Obozu Naukowego OMJ

IX Olimpiada Matematyczna Gimnazjalistów

G i m n a z j a l i s t ó w

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1

LVIII Olimpiada Matematyczna

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

XI Olimpiada Matematyczna Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

LVII Olimpiada Matematyczna

XIII Olimpiada Matematyczna Juniorów

XIV Olimpiada Matematyczna Juniorów

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

XI Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

V Konkurs Matematyczny Politechniki Białostockiej

Internetowe Ko³o M a t e m a t yc z n e

VII Olimpiada Matematyczna Gimnazjalistów

V Konkurs Matematyczny Politechniki Białostockiej

Czworościany ortocentryczne zadania

LIX Olimpiada Matematyczna

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

LVIII Olimpiada Matematyczna

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017

LXV Olimpiada Matematyczna

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H

V Międzyszkolny Konkurs Matematyczny

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

XII Olimpiada Matematyczna Juniorów

LV Olimpiada Matematyczna

Przykładowe rozwiązania

XIII Olimpiada Matematyczna Juniorów

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Treści zadań Obozu Naukowego OMG

XV Olimpiada Matematyczna Juniorów

Internetowe Ko³o M a t e m a t yc z n e

Bukiety matematyczne dla gimnazjum

LXIII Olimpiada Matematyczna

Definicja i własności wartości bezwzględnej.

PRÓBNY EGZAMIN MATURALNY

Treści zadań Obozu Naukowego OMG

Matematyka rozszerzona matura 2017

Inwersja w przestrzeni i rzut stereograficzny zadania

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Internetowe Kółko Matematyczne 2003/2004

LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 24 lutego 2017 r. (pierwszy dzień zawodów)

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

OLIMPIADA MATEMATYCZNA

Test kwalifikacyjny na I Warsztaty Matematyczne

II Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich

Indukcja matematyczna

XXXVIII Regionalny Konkurs Rozkosze łamania Głowy

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

PRÓBNY EGZAMIN MATURALNY

LIV Olimpiada Matematyczna

Internetowe Kółko Matematyczne 2003/2004

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY

Przykładowe zadania z teorii liczb

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Regionalne Koło Matematyczne

WIELOMIANY SUPER TRUDNE

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Metoda siatek zadania

W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

Treści zadań Obozu Naukowego OMG

Transkrypt:

1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a 3 +b = c, b 3 +c = d, c 3 +d = a, d 3 +a = b. Odejmijmy stronami trzecie równanie danego układu od pierwszego równania. Otrzymujemy a 3 +b c 3 d = c a, czyli b d = c 3 a 3 +c a. Zauważmy teraz, że liczby c 3 a 3 i c a mają jednakowy znak: dla c > a obie te liczby są dodatnie, dla c<a obie są ujemne, a dla c=a obie są równe zeru. Zatem także liczby b d i c a mają jednakowy znak. Odejmując zaś stronami czwarte równanie układu od drugiego dostajemy c a = d 3 b 3 +d b, skąd analogicznie wnioskujemy, że liczby c a i d b mają jednakowy znak. To wraz z równością znaków liczb c a i b d dowodzi, że c a = d b = 0, a więc a = c oraz b = d. Wobec tego dany w treści zadania układ sprowadza się do następującego układu dwóch równań: a 3 +b = a oraz b 3 +a = b. Dodając stronami powyższe dwa równania widzimy, że a 3 +b 3 =0, czyli a= b. Wykazaliśmy w ten sposób, że (a,b,c,d) = (t, t,t, t) dla pewnej liczby rzeczywistej t. Ponadto wszystkie równania rozważanego układu przyjmują postać t 3 t = t, czyli 0 = t 3 2t = t(t 2 2). W efekcie warunki zadania są spełnione dla następujących trzech wartości parametru t: 0, 2 oraz 2. Odpowiedź: Wszystkimi rozwiązaniami (a, b, c, d) danego układu są: (0,0,0,0), ( 2, 2, 2, 2), ( 2, 2, 2, 2). Zadanie 2. Udowodnić, że w czworościanie ABCD wierzchołek D, środek sfery wpisanej oraz środek ciężkości czworościanu leżą na jednej prostej wtedy i tylko wtedy, gdy pola trójkątów ABD, BCD i CAD są równe.

Oznaczmy przez I oraz S odpowiednio środek sfery wpisanej w dany czworościan oraz jego środek ciężkości. Niech ponadto proste DI i DS przecinają ścianę ABC odpowiednio w punktach I i S. Wówczas punkty D, I oraz S leżą na jednej prostej wtedy i tylko wtedy, gdy I = S. Punkt I a więc także punkt I jest jednakowo odległy od ścian ABD, BCD i CAD. Co więcej, I jest jedynym takim punktem trójkąta ABC. To oznacza, że punkty D, I oraz S leżą na jednej prostej wtedy i tylko wtedy, gdy punkt S jest jednakowo odległy od rozważanych trzech ścian. Z drugiej strony, punkt S jest środkiem ciężkości ściany ABC, zatem pola trójkątów ABS, BCS i CAS są równe. Wobec tego objętości czworościanów ABS D, BCS D i CAS D, mających wspólną wysokość poprowadzoną z wierzchołka D, są równe. W takim razie iloczyn pola dowolnego spośród trójkątów ABD, BCD, CAD i odległości punktu S od płaszczyzny tego trójkąta jest taki sam dla wszystkich trzech trójkątów. To zaś prowadzi do wniosku, że trójkąty te mają jednakowe pola wtedy i tylko wtedy, gdy odległości punktu S od tych ścian są równe, skąd uzyskujemy tezę. 2 Zadanie 3. Niech m, n będą takimi dodatnimi liczbami całkowitymi, że w zbiorze {1,2,...,n} znajduje się dokładnie m liczb pierwszych. Dowieść, że wśród dowolnych m+1 różnych liczb z tego zbioru można znaleźć liczbę, która jest dzielnikiem iloczynu pozostałych m liczb. Przypuśćmy, że teza zadania jest nieprawdziwa. Wobec tego istnieje taki (m + 1)-elementowy zbiór A zawarty w zbiorze {1,2,...,n}, że żadna liczba x A nie jest dzielnikiem iloczynu pozostałych m elementów zbioru A. Każda liczba x A ma więc dzielnik pierwszy p, który wchodzi do rozkładu na czynniki pierwsze liczby x z wykładnikiem wyższym niż do rozkładu na czynniki pierwsze iloczynu pozostałych m liczb ze zbioru A. Dla ustalonego elementu x A liczba pierwsza p o własności opisanej w poprzednim zdaniu nie musi być jedyna jeżeli jest ich więcej, wybieramy dowolną z nich. W ten sposób każdemu elementowi x A przypisaliśmy liczbę pierwszą ze zbioru {1,2,...,n}. Jednak zbiór A składa się z m+1 elementów, a do dyspozycji mamy tylko m liczb pierwszych. W rezultacie pewna liczba pierwsza p została przyporządkowana dwóm różnym elementom x, y A. Niech w oznacza iloczyn m 1 elementów zbioru A różnych od x i y. Na mocy określenia liczby p istnieją takie nieujemne całkowite wykładniki k i l, że potęga p k jest dzielnikiem liczby x, ale nie iloczynu wy, a potęga p l jest dzielnikiem liczby y, ale nie iloczynu wx. Zatem w rozkładzie iloczynu wy wx liczba pierwsza p występuje z wykładnikiem niższym niż k+l, mimo że iloczyn ten jest podzielny przez liczbę xy, która z kolei jest podzielna przez p k+l. Uzyskana sprzeczność kończy rozwiązanie zadania.

LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 18 lutego 2012 r. (drugi dzień zawodów) Zadanie 4. Znaleźć wszystkie takie pary funkcji f, g określonych na zbiorze wszystkich liczb rzeczywistych i przyjmujących wartości rzeczywiste, że dla dowolnych liczb rzeczywistych x, y spełniona jest równość (1) g(f(x) y) = f(g(y))+x. Oznaczmy a = f(g(0)). Podstawiając y = 0 w warunku (1) otrzymujemy (2) g(f(x)) = f(g(0))+x = a+x. Biorąc zaś y = f(x) w zależności (1) i wykorzystując związek (2) dostajemy (3) g(0) = f(g(f(x)))+x = f(a+x)+x dla każdego x. Niech teraz z będzie dowolną liczbą rzeczywistą. Przyjmując x = z a w równości (3) stwierdzamy, że (4) f(z) = f(a+x) = g(0) x = g(0) z +a = c z dla dowolnego z, gdzie oznaczyliśmy c = g(0)+a. Wobec tego związek (2) przybiera postać (5) g(c x) = a+x. Podstawiając x = c t w zależności (5) uzyskujemy (6) g(t) = g(c (c t)) = a+(c t) dla dowolnego t. Na mocy równości (6) zastosowanej dla t = 0 oraz równości (4) otrzymujemy a = f(g(0)) = f(a+c) = c (a+c) = a, czyli a = 0. Zatem zależności (4) i (6) prowadzą do wniosku, że (7) f(x) = g(x) = c x dla każdego x. Nietrudno sprawdzić, że dla dowolnej wartości c funkcje f i g zadane wzorami (7) spełniają równość (1) obie jej strony są wówczas równe x+y. Odpowiedź: Wszystkie pary funkcji f, g o żądanej własności są opisane zależnością f(x) = g(x) = c x, gdzie c jest dowolną liczbą rzeczywistą. Zadanie 5. Dany jest trójkąt ABC, w którym <)CAB = 60 oraz AB AC. Punkt O jest środkiem okręgu opisanego na tym trójkącie, a punkt I środkiem okręgu wpisanego w ten trójkąt. Wykazać, że symetralna odcinka AI, prosta OI oraz prosta BC przecinają się w jednym punkcie. 3

4 A D I O B E C rys. 1 Zauważmy najpierw, że na mocy zależności <)CAB = 60 mamy (1) <)BIC = 180 1 2 (<)ABC +<)BCA) = 180 1 2 (180 <)CAB) = 120. Oznaczmy przez D i E rzuty prostokątne punktu I odpowiednio na boki AB i BC. Niech ponadto F będzie punktem symetrycznym do punktu I względem prostej BC (rys. 1 przedstawia sytuację, gdy AB < AC, jednakże rozwiązanie zachowuje moc dla AB >AC). Punkty F i A leżą po przeciwnych stronach prostej BC, a przy tym na podstawie związku (1) otrzymujemy <)BF C +<)CAB = <)BIC +<)CAB = 180. Wobec tego punkt F leży na okręgu opisanym na trójkącie ABC, skąd (2) OA = OF. Z drugiej strony, w trójkącie prostokątnym ADI kąt ostry ma miarę <)IAD = 1 2 <)CAB = 30 i w takim razie (3) IA = 2ID = 2IE = IF. Równości (2) i (3) dowodzą, że punkty O oraz I leżą na symetralnej odcinka AF. Zatem symetralna odcinka AI, prosta OI oraz prosta BC są symetralnymi boków trójkąta IAF, a więc przecinają się w jednym punkcie będącym środkiem okręgu opisanego na tym trójkącie. Zadanie 6. Niech S(k) oznacza sumę cyfr liczby całkowitej k w zapisie dziesiętnym. Dowieść, że istnieje nieskończenie wiele takich dodatnich liczb całkowitych n, że S(2 n +n) < S(2 n ). Wykażemy, że wymaganą własność ma każda liczba postaci n = 10 m +3, gdzie m 2 jest liczbą całkowitą. Zauważmy w tym celu, że dla każdego całkowitego k 1 liczba 2 20k+3 daje resztę 8 z dzielenia przez 100. Rzeczywiście, z równości 2 20 = 1048576 F

5 wynika, że liczba 2 20k = (2 20 ) k jest iloczynem k liczb dających resztę 76 z dzielenia przez 100. Ponadto dla dowolnych liczb całkowitych a i b mamy (100a+76)(100b+76) = 100(100ab+76a+76b+57)+76, skąd wnioskujemy, że iloczyn liczb dających resztę 76 z dzielenia przez 100 również jest taką liczbą. Wobec tego 2 20k = 100l + 76 dla pewnej liczby całkowitej l, a więc 2 20k+3 = 8(100l+76) = 100(8l+6)+8. Liczba n daje resztę 3 z dzielenia przez 20. Zatem 2 n = 100x + 8 dla pewnej liczby całkowitej x, skąd uzyskujemy S(2 n ) = S(x)+8 oraz (1) S(2 n +3) = S(100x+11) = S(x)+2 = S(2 n ) 6. Z drugiej strony, dla dowolnej dodatniej liczby całkowitej y prawdziwa jest nierówność S(y + 10 m ) S(y) + 1. Istotnie, pisemne dodawanie y + 10 m polega na dodaniu jedynki do pewnej pozycji w zapisie dziesiętnym liczby y. Jeżeli na tej pozycji stoi cyfra różna od 9, to zwiększamy ją o 1, a pozostałe cyfry nie zmieniają się, czyli S(y+10 m )=S(y)+1. Z kolei gdy na rozważanej pozycji stoi cyfra 9, to w wyniku dodawania y+10 m zamieniamy blok pewnej liczby kolejnych dziewiątek na zera oraz zwiększamy o 1 cyfrę stojącą przed tym blokiem. Oznaczając przez d liczbę zamienionych dziewiątek widzimy, że S(y +10 m ) = S(y) 9d+1 < S(y). W rezultacie S(2 n +n) = S(2 n +3+10 m ) S(2 n +3)+1, co w połączeniu z zależnością (1) pozwala stwierdzić, że S(2 n +n) S(2 n ) 5. jest więc zakończone.