ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Rozpoznawanie stanu w obsługiwaniu maszyn

Podobne dokumenty
Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych

Podstawy diagnostyki środków transportu

DIAGNOSTYKA. 1. Diagnozowanie podzespołów i zespołów pojazdów samochodowych. Uczeń:

NAPRAWA. 1) lokalizuje uszkodzenia zespołów i podzespołów pojazdów samochodowych na podstawie pomiarów i wyników badań diagnostycznych;

Wykaz ważniejszych oznaczeń i skrótów Wprowadzenie... 13

Katedra Transportu Szynowego Politechnika Śląska Diagnostyka Pojazdów Szynowych

Koncepcja wykorzystania indywidualnych charakterystyk wibroakustycznych zespołów i podzespołów w wytwarzaniu i eksploatacji pojazdów samochodowych

Spis treści. Przedmowa 11

Spis treści Przedmowa

Mechanika i Budowa Maszyn Studia pierwszego stopnia

3.1. Budowa pojazdu samochodowego Uszczegółowione efekty kształcenia Uczeń po zrealizowaniu zajęć potrafi: Poziom wymagań programowych

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

PROTOKÓŁ NR 10. Techniki wirtualne w badaniach stanu, zagrożeń bezpieczeństwa i środowiska eksploatowanych maszyn

Od autora 10 Bezpieczeństwo i higiena pracy podczas napraw pojazdów samochodowych Zasady bhp w zakładach naprawy pojazdów 11 1.

5. SYSTEM GENEZOWANIA STANU MASZYN

Diagnostyka procesów i jej zadania

ĆWICZENIE 4 WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników

MT 2 N _0 Rok: 1 Semestr: 1 Forma studiów:

1. Wprowadzenie 1.1. Krótka historia rozwoju silników spalinowych

Niezawodność eksploatacyjna środków transportu

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

PODSTAWOWY ZAKRES NAPRAWY CZĘŚCI AUTOBUSOWYCH

Temat: Wpływ właściwości paliwa na trwałość wtryskiwaczy silników jachtów motorowych

Wydział Mechaniczny Politechnika Koszalińska EGZAMIN DYPLOMOWY Poniżej zamieszczono zestaw pytań obowiązujący od czerwca 2013r.

OBLICZANIE KÓŁK ZĘBATYCH

Diagnoza uszkodzeń sprzęgła [TEMAT MIESIĄCA]

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH

PL B1. POLITECHNIKA POZNAŃSKA, Poznań, PL BUP 05/18. WOJCIECH SAWCZUK, Bogucin, PL MAŁGORZATA ORCZYK, Poznań, PL

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Wyznaczanie granicznej intensywności przedmuchów w czasie rozruchu

Optymalizacja konstrukcji

Naprawa samochodów Fiat 126P / Zbigniew Klimecki, Józef Zembowicz. Wyd. 28 (dodr.). Warszawa, Spis treści

ĆWICZENIE 18 ANALIZA UKŁADU NAPĘDOWEGO CIĄGNIKA

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych

Pytania na egzamin dyplomowy specjalność SiC

PODSTAWOWY ZAKRES NAPRAWY CZĘŚCI AUTOBUSOWYCH

Spis treści. I. Wprowadzenie do naprawy zespołów i podzespołów pojazdów samochodowych

Technik mechanik

Dalsze informacje na temat przyporządkowania i obowiązywnania planu konserwacji: patrz Okólnik techniczny (TR) 2167

Bogdan ŻÓŁTOWSKI Marcin ŁUKASIEWICZ

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Karta (sylabus) przedmiotu

Katalog szkoleń technicznych

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.

Zespoły pojazdu objęte ochroną w poszczególnych wariantach

1. BADANIA DIAGNOSTYCZNE POJAZDU NA HAMOWNI PODWOZIOWEJ

PODSTAWOWY ZAKRES NAPRAWY CZĘŚCI AUTOBUSOWYCH

SPIS TREŚCI. Przedmowa... 8

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

2. DEGRADACJA STANU MASZYN

WYNIKI BADAŃ USZKODZEŃ AWARYJNYCH WYBRANEJ GRUPY CIĄGNIKÓW ROLNICZYCH

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski

CENNIK USŁUG SERWISOWYCH 2018

Diagnostyka maszyn Machine diagnostics. Mechanika i Budowa Maszyn I stopień ogólnoakademicki. studia stacjonarne

Podręcznik eksploatacji pomp w górnictwie

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22

Spis treści. 1. Badanie układu samodiagnostyki w silniku benzynowym typu Struktura systemu sterowania silnikiem benzynowym typu

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11

Zagadnienia kierunkowe Kierunek mechanika i budowa maszyn, studia pierwszego stopnia

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne

MOMENTY DOKRĘCANIA: ZAWIESZENIE ZESPOŁU SILNIK SKRZYNIA BIEGÓW

OPTYMALIZACJA PROCESU ROZPOZNAWANIA STANU TECHNICZNEGO POJAZDÓW

BADANIE WPŁYWU DODATKU PANTHER 2 NA TOKSYCZNOŚĆ SPALIN SILNIKA ZI

Diagnostyka Wibroakustyczna Maszyn

PRAKTYKA ZAWODOWA TECHNIK POJAZDÓW SAMOCHODOWYCH. Praktyka zawodowa

Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2

PRZEWODNIK PO PRZEDMIOCIE

Rok produkcji Rejestracja. Tel. - służbowy Data 29/04/2015. Grande Punto 1,3 MultiJet 90. Moc silnika. Rok produkcji

specjalność samochody i ciągniki

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C

SMAROWANIE PRZEKŁADNI

SPECYFIKACJA TŚM DO STAR poz. 43

Charakterystyki prędkościowe silników spalinowych

Przedmiotowy System Oceniania

NYSA, ŻUK, UAZ, LUBLIN

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski

PRZEWODNIK PO PRZEDMIOCIE

WYNIKI BADAŃ WARTOŚCIOWANIA PROCESU OBSŁUGI TECHNICZNEJ CIĄGNIKÓW ROLNICZYCH O RÓŻNYM POZIOMIE WYKORZYSTANIA

POMIARY OPORÓW WEWNĘ TRZNYCH SILNIKA SPALINOWEGO

technik mechanik kwalifikacji M.18. Numer ewidencyjny w wykazie podręczników MEN: 56/2015 Od autorów 9 1. Wiadomości wstępne

Sterowanie Napędów Maszyn i Robotów

Statystyka w pracy badawczej nauczyciela

EKSPLOATACYJNE METODY ZWIĘKSZENIA TRWAŁOŚCI ROZJAZDÓW KOLEJOWYCH

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1

PROTOKÓŁ NR 4. Miejsce: Uniwersytet Technologiczno-Przyrodniczy, ul. Kaliskiego 7, budynek 2.3, sala 217.

Identyfikacja samochodu

POPRAWA EFEKTYWNOŚCI EKSPLOATACJI MASZYN

Zespoły pojazdu Wariant I Wariant II Wariant III Wariant IV. Silnik V V V V. Skrzynia biegów - mechaniczna V V V. Skrzynia biegów - automatyczna V V V

Wymagania konieczne ( na ocenę: dopuszczający)

Podstawy Konstrukcji Maszyn. Wykład nr. 1_01

Rok akademicki: 2014/2015 Kod: STC TP-s Punkty ECTS: 3. Kierunek: Technologia Chemiczna Specjalność: Technologia paliw

PROTOKÓŁ NR 5. Miejsce: Uniwersytet Technologiczno-Przyrodniczy, ul. Kaliskiego 7, budynek bud. 2.3, sala 217.

Metody Prognozowania

Transkrypt:

ISSN 1733-8670 Henryk Tylicki ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE OBSŁUGIWANIE MASZYN I URZĄDZEŃ OKRĘTOWYCH OMiUO 2005 Rozpoznawanie stanu w obsługiwaniu maszyn Słowa kluczowe: obsługiwanie maszyn; diagnozowanie, prognozowanie i genezowanie stanu maszyn W artykule przedstawiono możliwość wykorzystania procedur rozpoznawania stanu w obsługiwaniu maszyn. Rozpatrzono także algorytm optymalizacji procedur dla przyjętych kryteriów jakości rozwiązania zadania optymalizacyjnego. Identification of a Condition in Machinery Maintenance Key words: machinery maintenance, diagnosis, forecasting and genesis of machine state The article deals with possible applications of procedures for the identification. The algorithm of procedures optimization for assumed quality criteria of optimization task solution. is considered. 465

Henryk Tylicki Wprowadzenie Badanie zmian stanu w trakcie obsługiwania maszyny może udzielić odpowiedzi na pytania: jaki jest aktualny stan badanej maszyny, jak należy ocenić przeszłość maszyny na podstawie jej aktualnego stanu, jak przewidzieć przyszłą ewolucję stanu maszyny, ewentualnie jak oszacować stan maszyny w czasie przeszłym. Odpowiedzi na powyższe pytania stanowią podstawę do wyznaczania procedur oceny stanu maszyny w czasie jej badania, w czasie przeszłym (genezowanie stanu) lub w czasie przyszłym (prognozowanie stanu maszyny). Próby opracowania takich procedur, związane z opisem zmiany stanu maszyny w wyróżnionych przedziałach czasu jej życia, są przedmiotem zainteresowania autora. Stąd problemy z tym związane oraz propozycje ich rozwiązania przedstawia się w niniejszym opracowaniu. 1. Charakterystyka zagadnienia Podczas eksploatacji w zespołach maszyn zachodzą różnorodne procesy zużyciowe i starzeniowe. Przebieg zużycia zespołów maszyn w czasie eksploatacji zależy od tego, który z procesów zużycia jest dominujący. I tak, dla wszystkich zespołów maszyn, w których występuje tarcie ślizgowe, wyróżnia się zazwyczaj trzy okresy przebiegu zużycia (okres zużycia wstępnego, normalnego, przyśpieszonego). Z powodu różnorodnych przyczyn uszkodzeń zespołów maszyn, intensywność występowania tych uszkodzeń w toku eksploatacji jest różna i można ją związać z etapami eksploatacji. W okresie starzenia wstępnego występuje znaczna intensywność uszkodzeń, powodowana ukrytymi wadami materiałowymi, błędami wytwarzania (szczególnie montażu) oraz błędami w czasie transportu i podczas przechowywania. Okres normalnej eksploatacji charakteryzuje się obniżonym i w przybliżeniu ustabilizowanym poziomem intensywności uszkodzeń. W okresie zużyć przyśpieszonych stopniowo narasta intensywność uszkodzeń, spowodowana sumowaniem się różnych przyczyn uszkodzeń oraz gwałtownym zużyciem zespołów maszyn. Ponadto na wszystkich etapach istnienia maszyn występuje różnego rodzaju przypadkowość, dotyczy to szczególnie ich wytwarzania i eksploatacji. W ramach danej klasy maszyn (marki i typu), pomimo wymagań systemu jakości (normy ISO 9001-9003), rozrzut wymiarów i własności fizycznych (sprężystości, plastyczności, twardości, zdolności tłumienia drgań, składu fizykochemicznego, własności warstw wierzchnich) jest przypadkowy. Podobną przypadkowość można zaobserwować podczas montażu współpracujących elementów w jedną funkcjonalną całość. Pomimo starannego 466

Rozpoznawanie stanu w obsługiwaniu maszyn doboru i kojarzenia par obrotowych, suwliwych i połączeń stałych, nieuniknione są przypadkowe odstępstwa od idealnego procesu montażu. Występujące w czasie eksploatacji maszyn uszkodzenia zespołów są ściśle związane z charakterem zmian wartości wymuszeń. W odpowiadającej temu podejściu klasyfikacji wyróżnia się: uszkodzenia zużyciowe, będące wynikiem nieodwracalnych zmian właściwości początkowych maszyn, zachodzących podczas eksploatacji wskutek procesów starzenia i zużywania się (starzenie się w czasie użytkowania i przechowywania, zużywanie się w czasie użytkowania); uszkodzenia przypadkowe (nagłe), które powstają w wyniku działania bodźców skokowych powodujących przekroczenie ustalonych wartości dopuszczalnych. Uszkodzenia zużyciowe występują najczęściej w okresie zużycia normalnego i zależą przede wszystkim od czynników eksploatacyjnych, takich jak warunki klimatyczne oraz warunki terenowe (zmienne obciążenie maszyn i duże zapylenie powietrza). Uszkodzenia zużyciowe zespołów maszyn, wywołane najczęściej zużyciem oraz zmianą nastaw regulacyjnych skojarzeń roboczych części, prowadzą do czasowych lub stałych uszkodzeń zespołów maszyn powodując w konsekwencji ich niezdatność do pracy. Uszkodzenia nagłe są związane z wadami konstrukcyjnymi i technologicznymi oraz przekroczeniem wartości dopuszczalnych przez czynniki wymuszające. Występują w okresie starzenia wstępnego, w okresie zużycia normalnego i w okresie zużycia przyśpieszonego. Wywołane są działaniem wymuszeń o skokowej wartości widma i powodują całkowitą utratę zdatności maszyny do pracy. Usunięcie ich polega na wymianie bądź regeneracji zespołów. Uszkodzenia nagłe zespołów maszyn mają postać: złamania, rozerwania, deformacji kształtu, zatarcia, przepalenia, zwarcia, przerwy i inne. Uszkodzenia maszyn w toku eksploatacji mogą więc zachodzić: wskutek powolnych, nieodwracalnych procesów starzeniowych i zużyciowych zachodzących w ich zespołach; w wyniku pojawienia się procesów odwracalnych o różnej intensywności przebiegu, wywołanej przez czasowe przekroczenia dopuszczalnych wartości jednego lub więcej czynników wymuszających; w sposób skokowy, objawiający się nieciągłym przejściem jednej lub więcej cech poza granice przyjęte za dopuszczalne dla danego zespołu. Główne przyczyny powstawania uszkodzeń klasyfikuje się jako: konstrukcyjne: są to uszkodzenia powstałe wskutek błędów projektowania i konstruowania zespołów maszyn (np. nie uwzględniają obciążeń ekstremalnych); 467

Henryk Tylicki produkcyjne (technologiczne): są to uszkodzenia powstałe wskutek błędów i niedokładności procesów technologicznych (braku tolerancji wymiarów, gładkości powierzchni, obróbki termicznej) lub wad materiałów elementów zespołów; eksploatacyjne: są to uszkodzenia powstałe w wyniku nieprzestrzegania obowiązujących zasad eksploatacji lub wskutek oddziaływania czynników zewnętrznych nie przewidzianych dla warunków użytkowania zespołów pojazdów; starzeniowe: są to uszkodzenia będące rezultatem nieodwracalnych zmian, prowadzących do pogorszenia wytrzymałości. Dominowanie jednej z postaci uszkodzeń, a tym samym sposób określenia charakteru zmian stanu technicznego maszyn w czasie eksploatacji, związane są z następującymi czynnikami: rodzajem funkcji realizowanych przez maszynę; rodzajem wymuszeń w postaci oddziaływania (czynników konstrukcyjnych poziomu konstrukcji i jej unifikacji), czynników wytwórczych (poziomu produkcji, jakości i niezawodności zespołów maszyn), czynników eksploatacyjnych (warunków klimatycznych i drogowych, intensywności użytkowania, sposobu przechowywania i konserwacji, jakości napraw, jakości materiałów eksploatacyjnych, jakości realizacji zasad eksploatacji i kwalifikacji użytkowników); rodzajem procesu zużycia, który jest wywołany w zespołach maszyn przez tarcie suche (opony, klocki i tarcze hamulców, tarcze sprzęgłowe), tarcie graniczne i mieszane (połączenia ślizgowe układu tłokowo-korbowego i układu rozrządu, przekładnie, łożyska, przeguby), korozję (nadwozie, elementy podwozia, układ wydechowy), kawitację (tuleje cylindrów, łożyska ślizgowe, układ chłodzenia). Długość poszczególnych okresów i intensywności zużycia zależeć będą więc od cech konstrukcyjnych skojarzonych części, ich cech technologicznych oraz warunków eksploatacji. Z punktu widzenia użytkownika maszyny najbardziej interesujące są czynniki eksploatacyjne, można bowiem na nie wpływać i kształtować je zarówno w okresie starzenia wstępnego (np. wartości obciążenia, stosowane płyny eksploatacyjne), w okresie zużycia normalnego (zasady użytkowania oraz obsługiwania) i w okresie zużycia przyśpieszonego (np. odpowiednia strategia obsługiwania zmniejsza prawdopodobieństwo zużycia nagłego). Procesy wyjściowe można opisać wielkościami mierzalnymi, mierzonymi bez demontażu maszyn, które nazywa się parametrami wyjściowymi Y wy. Można postawić tezę, że istnieje wzajemny związek cech stanu i parametrów wyjściowych. Tezę tę potwierdzają różne prace [1, 2, 3] oraz badania autora [4], na podstawie których przykładowo podano dla niektórych układów pojazdów 468

Rozpoznawanie stanu w obsługiwaniu maszyn cechy stanu (ilościowe i jakościowe) i odpowiadające im parametry wyjściowe. Są to: 1. Dla układu tłokowo-korbowego silnika spalinowego: cechy stanu: zużycie (cylindra, tłoka, pierścieni tłoka, czopów głównych i korbowodowych, wkładów łożysk), luzy (tulei cylindra, tłoka pierścieni tłokowych, łożysk głównych i korbowodowych, piasty tłoka sworznia główki korbowodu); parametry wyjściowe: moc silnika, zużycie paliwa, ciśnienie sprężania, ubytek sprężonego czynnika, ilość spalin w skrzyni korbowej, ciśnienie oleju, zanieczyszczenia w oleju, parametry sygnału wibroakustycznego, temperatura spalin, zużycie oleju. 2. Dla układu zasilania w paliwo w silniku o zapłonie samoczynnym: cechy stanu: szczelność połączeń, zanieczyszczenie filtra, skorodowanie zbiornika, zużycie pary tłoczek cylinderek pompy paliwowej, zużycie tłoczków i cylinderków w pompie wtryskowej, zanieczyszczenie otworków wtryskiwacza; parametry wyjściowe: opory przepływu, ciśnienie tłoczenia, kąt wyprzedzenia wtrysku, wartość dawki paliwa, jakość rozpylenia, moc silnika, zużycie paliwa, stan cieplny silnika, dymienie. 3. Dla układu napędowego pojazdu: cechy stanu: zużycie (tarczy sprzęgłowej, łożyska wyciskowego, wielowypustów wałków, zębów kół zębatych skrzyni biegów, synchronizatorów, kół zębatych przekładni głównej i mechanizmu różnicowego, łożysk, uszczelniaczy), zanieczyszczenie tarczy sprzęgłowej; parametry wyjściowe: skok jałowy pedału sprzęgła, współczynnik poślizgu sprzęgła, hałas i drgania, sumaryczny luz obwodowy, bicie wału, luz osiowy, temperatura obudowy przekładni, moc strat w układzie napędowym, droga i czas wybiegu, zużycie paliwa. Przedstawione parametry wyjściowe stanowią podstawę do określenia symptomów diagnostycznych (parametrów diagnostycznych) y j Y, które także zależą od stanu technicznego maszyny, przy czym w celu wyznaczenia zbioru symptomów diagnostycznych formułuje się kryteria (jednoznaczność, dostateczna szerokość pola zmian, dostępność), które pozwalają uznać parametry wyjściowe za symptomy diagnostyczne. Stany techniczne, w których może znaleźć się maszyna, tworzą zbiór W = {w k, k = 1,2,...,K}, zaś konkretny stan w k maszyny jest wyznaczony przez N niezależnych cech stanu u n jako wektor w k = (u n ); n = 1,2,...,N. Liczba stanów maszyny w k zależy od wymagań, jakie w praktyce eksploatacyjnej stawia się 469

Henryk Tylicki procesowi oceny ich stanu technicznego. W najprostszym przypadku zbiór możliwych stanów W = {w k } dzieli się na klasy: klasę stanów zdatności W 0 i klasę stanów niezdatności W 1. Przy założeniu szeregowej struktury niezawodnościowej maszyny wyróżnia się dwa skrajne przypadki: 1) jeżeli w maszynie o p zespołach występuje pojedyncze uszkodzenie, wówczas jest jeden stan zdatności W 0 i W p 1 = p stanów niezdatności; 2) jeżeli dopuszcza się dowolną kombinację jednoczesnego uszkodzenia zespołów, to liczba stanów wynosi: jeden stan zdatności W 0 i W k 1 stanów niezdatności. Przy założeniu k-wartościowej oceny stanów, liczbę stanów niezdatności określa zależność: 1 = p W p k 1 (1) co powoduje znaczny wzrost liczby stanów i w konsekwencji komplikuje algorytmy oceny stanu technicznego maszyny. Dlatego też przy ustalaniu liczby stanów maszyny dąży się do minimalizacji zbioru stanów stosując przy tym różne kryteria np. prawdopodobieństwo występowania stanów, bezpieczeństwo użytkowania maszyny i struktury użytkowej. Stan w k będzie znany, jeśli będą znane wartości u n. Zadanie to można rozwiązać zastępując cechy stanu {u n }, w myśl przedstawionej powyżej tezy, odpowiednimi parametrami wyjściowymi {y j wy }: ({ y }), j 1,2 I wk = f1 j wy =,.., (2) Pośrednie określanie stanu technicznego w k jest możliwe, ponieważ prawdziwa jest zależność: ({ y }), j 1,2 I un = f2 j =,.., (3) Postać funkcji (3) ustala się podczas określania zależności pomiędzy cechami stanu i parametrami diagnostycznymi, gdzie uzyskuje się układ N równań typu (3), będący odwzorowaniem przestrzeni stanów opisanej współrzędnymi u 1, u 2,..., u N w przestrzeń parametrów diagnostycznych y 1, y 2,..., y J. Ze względu na to, że posługiwanie się układami równań może być skomplikowane oraz kłopotliwe jest wyznaczenie wartości cech stanu, stan techniczny w k maszyny (przy założeniu prawdziwości) określany jest na podstawie wartości parametrów diagnostycznych {y j, j = 1,2,..,J} według zależności: 470

Rozpoznawanie stanu w obsługiwaniu maszyn ({ y }), j 1,2 J wk = f1 j =,.., (4) Wobec faktu, że zarówno cechy stanu maszyny, jak i cechy symptomów diagnostycznych zmieniają się w sposób ciągły w czasie (w przypadku wymiany lub regulacji zespołów zmiana może być skokowa), występuje konieczność dyskretnej reprezentacji takiego sygnału. Najczęściej stosuje się sposób reprezentowania losowych sygnałów diagnostycznych w dziedzinie czasu poprzez ciągi estymowanych wartości symptomu diagnostycznego. Czasowa historia zmienności symptomów diagnostycznych jest wówczas dana w postaci dyskretnych, uporządkowanych w czasie, ciągów wartości liczbowych. Ciągi tego typu są określone terminem szeregu czasowego [3]. Podstawą ustalenia kolejności elementów w szeregu czasowym, np. w przypadku pojazdów mechanicznych, jest liczba kilometrów przejechanych przez pojazd od początku eksploatacji (przebieg pojazdu) lub liczba godzin działania (liczba motogodzin). 2. Procedury badania stanu maszyny Z perspektywy tendencji, jakie występują w badaniach stanu maszyny, można ocenić, że coraz częściej sygnalizuje się potrzebę formułowania ocen stanu technicznego maszyn. Jednak w rzeczywistości ogranicza się badania do zakresu pozwalającego formułować bieżące diagnozy. Wynika to z faktu, że uzyskanie takich ocen wymaga mniejszego nakładu pracy i jest dużo łatwiejsze od czynności koniecznych do oszacowania przewidywanych zmian stanu maszyn. Pominięcie tego typu ocen związane jest z przyjęciem milczącego założenia, że skoro maszyna aktualnie wykazuje pewne właściwości, to będzie je posiadała również przez pewien czas. Jest oczywiste, że tak formułowanych przewidywań nie można uznać za zadowalające, określenie bowiem stanu technicznego maszyny w wybranej chwili zawiera tylko informację o jej aktualnym stanie technicznym. Stan maszyny W(θ n ) w chwili θ n można scharakteryzować za pomocą zbioru wartości symptomów {s j (θ); j = 1,...,m} [1, 3]. Maszyna w chwili θ n znajduje się w stanie zdatności S 0, gdy spełniony jest warunek (zadanie badania stanu maszyny): 0 ( ) = W ( j = 1,..., m) [{ s } { s ( θ )} { s }] W n j, d j n j, g θ (5) gdzie: {s j,d }, {s j,g } zbiory dolnych i górnych wartości granicznych symptomów diagnostycznych. 471

Henryk Tylicki Analogicznie można sformułować warunek zdatności w chwili θ n+τ (zadanie badania zmian stanu w przyszłości) [4]: 0 ( ) W ( j = 1 m) [{ s } { s ( θ )} { s }] W n+ τ1 =,..., j, d j n+ τ1 j, g θ (6) przy czym elementy zbioru {s j (θ n+τ 1 )} są nieznane i stąd konieczność ich przewidywania w założonym przedziale czasu τ 1. Wielkość τ 1 oznacza przedział czasu, dla którego realizowany jest proces prognozowania (wielkość τ 1 nazywa się horyzontem czasowym prognozy ). W ujęciu tym ocenę czasu przejścia maszyny w stan niezdatności wyznaczają wyniki prognoz symptomów diagnostycznych {s j (θ n+τ 1 )}, sygnalizujące przekroczenie wartości granicznych. Podobnie można sformułować warunek zdatności w chwili θ n τ 2 (zadanie badania zmian stanu maszyny w przeszłości): 0 ( ) W ( j = 1 m) [{ s } { s ( θ )} { s }] W n τ 2 =,..., j, d j n τ 2 j, g θ (7) przy czym niektóre elementy zbioru {s j (θ n τ 2 )} mogą być nieznane i stąd konieczność ich przewidywania w założonym przedziale czasu τ 2. Wielkość τ 2 oznacza przedział czasu, dla którego realizowany jest proces genezowania (wielkość τ nazywa się horyzontem czasowym genezy ). W ujęciu tym ocenę czasu przejścia maszyny w stan niezdatności wyznaczają wyniki genez symptomów {s j (θ n τ 2 )} wraz z błędem genezy, sygnalizujące przekroczenie wartości granicznych. Głównymi elementami algorytmu rozwiązującego tak ujęte zadanie badań stanu maszyny jest: wybór najlepszych symptomów diagnostycznych opisujących aktualny stan maszyny i jego zmianę w czasie eksploatacji maszyny; wyznaczenie testu lub programu diagnostycznego oceny stanu maszyny w chwili jej badania; wyznaczenie wartości prognozowanej symptomu s jp (θ b +τ 1 ) dla horyzontu prognozy τ, za pomocą najlepszej metody prognozowania i wyznaczenie terminu kolejnego obsługiwania θ o. wyznaczenie wartości genezowanej symptomu s jp (θ b τ 2 ) dla horyzontu genezy τ 2, za pomocą najlepszej metody genezowania i oszacowanie stanu maszyny lub wartości wykonanej przez nią w przeszłości pracy, szczególnie w sytuacji badania przyczyny zlokalizowanego uszkodzenia w chwili badania stanu maszyny. 472

Rozpoznawanie stanu w obsługiwaniu maszyn Użyte powyżej pojęcie najlepsze wiąże się z przyjęciem odpowiednich kryteriów i rozpatrzenie tych problemów w kategoriach poszukiwania rozwiązania optymalnego, co zostało przedstawione w opracowaniu [3]. Podsumowanie Rozpatrując problematykę budowy procedur badania stanu maszyn dla sformułowanego powyżej algorytmu rozpoznawania stanu jako części ogólnej teorii procesu niezawodności i eksploatacji maszyn, należy zwrócić uwagę na czynniki warunkujące jego zastosowanie. Będą to warunki istnienia: zainteresowania służb logistycznych badaniem stanu w czasie obsługiwania maszyn, odpowiedniej bazy merytorycznej dla podejmowania takich zadań, odpowiednich środków technicznych zabezpieczających ich realizację, odpowiedniej przygotowanej kadry specjalistów mogących w sposób właściwy podejmować takie zadania. Przedstawiona w opracowaniu metodyka formułowania procedur badania stanu maszyn w aspekcie wyznaczania: programów lub testów oceny stanu maszyn, wartości prognozowanej symptomów opisujących zmianę stanu maszyn w czasie eksploatacji i terminu obsługiwania, oraz szacowanie stanu maszyn w przeszłości może być wykorzystywana do budowy pokładowych i stacjonarnych systemów diagnostycznych monitorujących pracę maszyn. Należy także zwrócić uwagę na fakt, że proces budowy procedur badania stanu maszyn wiąże się z przetwarzaniem dużej ilości danych pomiarowych, jak również ze złożonymi operacjami numerycznymi związanymi z aproksymacją, modelowaniem, czy też predykcją szeregów czasowych w przypadku prognozowania. Nieodzowne jest więc komputerowe wspomaganie tego procesu w oparciu o odpowiednie oprogramowanie, umożliwiające interaktywny dostęp do procedur bibliotecznych za pośrednictwem języka poleceń zbliżonego do konwencjonalnej notacji matematycznej. Wymaga to oczywiście odpowiednich badań i budowy algorytmów niezbędnych do opracowania oprogramowania i wymagań sprzętowych systemów badania stanu maszyn. Literatura 1. Batko W., Metody syntezy diagnoz predykcyjnych w diagnostyce technicznej, Mechanika, z. 4. Zeszyty Naukowe AGH, Kraków 1984. 473

Henryk Tylicki 2. Tylicki H., Optymalizacja procesu prognozowania stanu technicznego pojazdów mechanicznych, Wydawnictwa Uczelniane ATR, Bydgoszcz 1998. 3. Tylicki H., Problemy rozpoznawania stanu maszyn, 3 rd International Congress of Technical Diagnostics, Diagnostics'2004, Poznań 2004. 4. Tylicki H., Żółtowski B., Niezawodnościowo-diagnostyczne aspekty wyznaczania terminu kolejnego obsługiwania, Materiały XXVII Zimowej Szkoły Niezawodności, Szczyrk 1999, t. 2, s. 155 161. 5. Żółtowski B., Podstawy diagnostyki maszyn, Wydawnictwa Uczelniane ATR, Bydgoszcz 1997. Artykuł powstał w wyniku realizacji projektu badawczego nr 4 T07B 033 26. Recenzenci dr hab. inż. Oleh Klyus, prof. AM dr hab. inż. Piotr Bielawski, prof. AM Adres Autora dr hab. inż. Henryk Tylicki, prof. ATR Akademia Techniczno-Rolnicza Wydział Mechaniczny ul. Kaliskiego 7, 85-796 Bydgoszcz e-mail: tylicki@atr.bydgoszcz.pl Wpłynęło do redakcji w lutym 2005 r. 474