ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Podobne dokumenty
ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

Badanie widma fali akustycznej

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Badanie efektu Dopplera metodą fali ultradźwiękowej

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Imię i nazwisko ucznia Data... Klasa...

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Ćwiczenie nr 28. Badanie oscyloskopu analogowego

KARTA KURSU. Bioinformatyka, I stopień, stacjonarne, 2018/2019, semestr 1. Opis kursu (cele kształcenia)

Politechnika Warszawska

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Dźwięk. Cechy dźwięku, natura światła

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Fizyka - opis przedmiotu

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III

SPIS TREŚCI ««*» ( # * *»»

Plan Zajęć. Ćwiczenia rachunkowe

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM. 1. Drgania i fale R treści nadprogramowe

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

4.2 Analiza fourierowska(f1)

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018

Przedmiotowy system oceniania z fizyki w klasie 3

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era

Bierne układy różniczkujące i całkujące typu RC

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE 3 GIMNAZJUM

Badanie widma fali akustycznej

Projekt W ś wiecie dź więko w

Państwowa Wyższa Szkoła Zawodowa

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Wymagania edukacyjne fizyka kl. 3

AKUSTYKA. Matura 2007

niepewności pomiarowej zapisuje dane w formie tabeli posługuje się pojęciami: amplituda drgań, okres, częstotliwość do opisu drgań, wskazuje

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

FIZYKA WYMAGANIA EDUKACYJNE klasa III gimnazjum

Fal podłużna. Polaryzacja fali podłużnej

Człowiek najlepsza inwestycja FENIKS

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

Ćwiczenie nr 43: HALOTRON

Dźwięk podstawowe wiadomości technik informatyk

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

Pomiar podstawowych parametrów liniowych układów scalonych

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

Podstawy obsługi oscyloskopu

Wyznaczanie prędkości dźwięku w powietrzu

WYMAGANIA Z FIZYKI. Klasa III DRGANIA I FALE

Państwowa Wyższa Szkoła Zawodowa

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe.

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Własności dynamiczne przetworników pierwszego rzędu

E107. Bezpromieniste sprzężenie obwodów RLC

Ćwiczenie nr 82: Efekt fotoelektryczny

BADANIE CHARAKTERYSTYK FOTOELEMENTU

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

SCENARIUSZ LEKCJI. Fale akustyczne oraz obróbka dźwięku (Fizyka poziom rozszerzony, Informatyka poziom rozszerzony)

I= = E <0 /R <0 = (E/R)

Widmo fal elektromagnetycznych

Drgania wymuszone - wahadło Pohla

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.

Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

Przedmiotowy system oceniania z Fizyki w klasie 3 gimnazjum Rok szkolny 2017/2018

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

SYLABUS/KARTA PRZEDMIOTU

Politechnika Białostocka

POMIARY OSCYLOSKOPOWE

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

Sposoby opisu i modelowania zakłóceń kanałowych

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

Opis modułu kształcenia / przedmiotu (sylabus)

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.

Ćwiczenie nr 65. Badanie wzmacniacza mocy

1. Drgania i fale Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Uczeń: Uczeń:

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

Transkrypt:

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Regulamin zajęć dydaktycznych z biofizyki znajduje się na stronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydaktyka/kierunki/logopedia_z_fonoaudiologia/regulamin_zajec 1

SPIS TREŚCI Ćwiczenie nr 1.6. Osłabienie wiązki światła laserowego przy przejściu przez ciała stałe. Wyznaczanie współczynnika ekstynkcji.....4 Ćwiczenie nr 2.1. Oscyloskop... 7 Ćwiczenie nr 2.2. Biofizyka głosu ludzkiego..12 2

ZAGADNIENIA DO ĆWICZEŃ Ćwiczenie nr 1.6. Osłabienie wiązki światła laserowego przy przejściu przez ciała stałe. Wyznaczanie współczynnika ekstynkcji. 1. Zasada działania lasera. 2. Właściwości światła laserowego. 3. Rodzaje laserów. 4. Zastosowanie laserów w medycynie. 5. Zjawisko dyfrakcji. 6. Siatka dyfrakcyjna. 7. Zjawisko interferencji. 8. Oddziaływanie promieniowania elektromagnetycznego z materią. 9. Funkcja logarytmiczna i wykładnicza. Ćwiczenie nr 2.1 Oscyloskop. 1. Elementy elektrostatyki: ładunek elektryczny, dipol elektryczny, pole elektryczne, ruch ładunku w polu elektrycznym, potencjał elektryczny, prąd (znać i rozumieć pojęcia), prawo Ohma, przewodniki I i II rodzaju, dielektryki i ich polaryzacja. 2. Luminescencja i jej rodzaje. 3. Budowa i zasada działania oscyloskopu. 4. Zjawiska wykorzystywane w oscyloskopie. Ćwiczenie nr 2.2 Biofizyka głosu ludzkiego. 1. Dźwięk jako fala mechaniczna: fale w ośrodkach sprężystych (rodzaje fal, mechanizm rozchodzenia się, własności, interferencja fal, fala stojąca, dudnienia, rezonans) fale dźwiękowe, ultradźwięki, infradźwięki metody wytwarzania i własności tych fal (odwrócone zjawisko piezoelektryczne, magnetostrykcja); prędkość fali (prędkość fazowa i grupowa); drgania harmoniczne, składanie drgań harmonicznych równanie fali harmonicznej 2. Cechy dźwięku - fizyczne i psychologiczne oraz związki między nimi amplituda drgań źródła dźwięku, natężenie, częstotliwość, widmo głośność, wysokość, barwa, jednostki pomiaru fizycznych cech dźwięk 3. Narząd mowy i mechanizm fonacji. LITERATURA: Wybrane zagadnienia z biofizyki pod red. prof. S. Miękisza Biofizyka pod red. prof. F. Jaroszyka Elementy fizyki, biofizyki i agrofizyki pod red. prof. S. Przestalskiego Podstawy biofizyki" pod red. prof. A. Pilawskiego 3

ĆWICZENIE NR 1.6 Osłabienie wiązki światła laserowego przy przejściu przez ciała stałe. Wyznaczanie współczynnika ekstynkcji. 1. W pierwszej części ćwiczenia badamy wartość współczynnika α dla różnych substancji. W tym celu należy: a. zmierzyć natężenie światła laserowego bez substancji pochłaniającej, b. zmierzyć natężenie światła laserowego po włożeniu płytki pochłaniającej do statywu, c. zmierzyć grubość płytki i znając wartości I i Io wyznaczyć wartość α. Tabela 1. Wartość współczynnika α dla różnych substancji. materiał d 10-3 [m] I0 I lni/i0 [m -1 ] 2. W drugiej części ćwiczenia badamy zależność natężenia światła przechodzącego przez układ od grubości warstwy pochłaniającej. W tym celu należy: a. wybrać zestaw płytek sporządzonych z tego samego materiału, grubość zmierzyć za pomocą mikromierza, b. zmierzyć natężenie światła laserowego bez substancji pochłaniającej, c. umieszczając w statywie coraz większą liczbę płytek (1, 2, 3, 4 itd.) odczytywać za każdym razem wartość natężenia światła docierającego do detektora i wpisać do tabelki, d. uzyskane wyniki zilustrować graficznie na dwóch wykresach: na pierwszym umieszczamy wartości I i d, na drugim lni i d (równanie (1) po logarytmowaniu przyjmuje postać lni = lnio - α d) Z wykresu drugiego odczytać wartość α dla badanego materiału (w jaki sposób?), porównać otrzymaną wartość z wartością otrzymaną w pierwszej części ćwiczenia Tabela 2. Zależność natężenia światła przechodzącego przez układ od grubości warstwy pochłaniającej. Grubość warstwy absorbenta [10-3 m] Bez absorbenta - 1 płytka 2 płytki 3 płytki 4 płytki 5 płytek 6 płytek 7 płytek 8 płytek 9 płytek Wartość natężenia światła I ln I 4

Wykres 1. Zależność natężenia promieniowania I od grubości absorbenta. 1100 I 1000 900 800 700 600 500 400 300 200 100 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 d [mm] Wykres 2. Zależność logarytmu naturalnego natężenia światła laserowego po przejściu przez absorbent od grubości warstwy absorbenta 1100 lni 1000 900 800 700 600 500 400 300 200 100 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 d [mm] 5

Dla otrzymanych wartości natężenia światła laserowego (I) po przejściu przez absorbent od grubości warstwy absorbenta (d), wykorzystując program komputerowy Excel, znajdź zależność (równanie krzywej logarytmicznej i współczynnik korelacji). Tutaj wpisz wyniki obliczeń z programu Excel: otrzymane równanie: y =... wartość współczynnika korelacji R 2 =... Na podstawie wykresu 2 i równania krzywej wzorcowej wyznacz wartość współczynnika. =...[m -1 ] Data Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punkty 6

ĆWICZENIE NR 2.1 Oscyloskop Cele tematu badawczego: Celem ćwiczenia jest zapoznanie się z oscyloskopem analogowym i cyfrowym oraz ich praktycznymi zastosowaniami. Rozwój wiedzy Samodzielne powtórzenie wiadomości podstawowych z zakresu elektrostatyki: ładunek elektryczny, zasada zachowania ładunku, prawo Coulomba i warunki jego stosowalności, dipol elektryczny, pole elektryczne i jego własności, ruch ładunku w polu elektrycznym, potencjał elektryczny, prąd, prawo Ohma, przewodniki I i II rodzaju, dielektryki i ich polaryzacja, pojemność, kondensator, budowa atomu. Samodzielne przygotowanie wiadomości na temat: luminescencja i jej rodzaje, budowa i zasada działania oscyloskopu, zjawiska wykorzystywane w oscyloskopie. Odczytywanie i interpretowanie wykresów, schematów, rysunków. Przypomnienie wzorów matematycznych opisujących zjawiska fizyczne. Przeliczanie jednostek, operowanie ułamkami, szacowanie niepewności pomiarowych i ich analiza. Wykorzystanie poznanej wiedzy. Rozwój umiejętności Stosowanie ze zrozumieniem pojęć fizycznych. Umiejętność fachowego wysławiania się i wyrażania swoich opinii. Przeliczanie jednostek, rozwiązywanie równań, wyznaczanie niepewności pomiarowych. Przetwarzanie danych pomiarowych, tworzenie wykresów oraz interpretowanie wyników. Rozwój umiejętności manualnych związanych z obsługa urządzeń elektrycznych. Planowanie i przeprowadzanie eksperymentów i doświadczeń. Gromadzenie i analizowanie, wraz z szacowaniem niepewności pomiarowych, danych pomiarowych. Prezentacja i przetwarzanie danych pomiarowych przedstawionych w formie tabeli lub i wykresów. Analiza i omówienie wyników pomiaru, formułowanie wniosków. Poprawny opis i wyjaśnianie zjawisk fizycznych. Rozwój postaw Umiejętność przekonywania innych do swoich racji, prowadzenia rzeczowej dyskusji. Współpracy w grupie. Weryfikacji zdobytej wiedzy i umiejętności. Kultura techniczna. Przestrzeganie przepisów BHP. Rozwiązywania problemów. Szacunku dla pracy własnej i innych Podejmowania decyzji i kompromisu 7

Część doświadczalna Niezbędne przyrządy i materiały: oscyloskop, generator badanych napięć Wykonanie ćwiczenia 1. Zapoznać się z obsługą oscyloskopu a. Wskaż pokrętło zmiany podstawy czasu. Odczytaj ustawienie pokrętła podstawy czasu, podaj odczytaną wartość...jednostki.. Wskaż pokrętło wzmocnienia badanego sygnału. Za pomocą pokrętła dostosuj wartość wzmocnionego sygnału tak, aby cały obraz zmieścił się na ekranie oscyloskopu. Odczytaj ustawienie pokrętła wzmocnienia, podaj odczytaną wartość...jednostki.. b. Wskaż pokrętło regulacji położenia w kierunku poziomym (na oscyloskopie: HORIZONTAL position lub symbol lub < >). Wyreguluj położenie wyświetlanego przebiegu wzdłuż osi poziomej, żeby obraz zajmował cały ekran. c. Wskaż pokrętło potencjometru przesuwania poziomu zera - pozycjonowania w pionie (na oscyloskopie: VERTICAL position lub symbol ). Umożliwia on przesuwanie obrazu w pionie, tak, aby wybrane punkty sygnału odpowiadały położeniom działek osi rzędnych na ekranie. Wyreguluj położenie wyświetlanego przebiegu wzdłuż osi pionowej symetrycznie względem osi X. d. Wykonaj następujące przykładowe obliczenie (nie dotyczy aktualnie obserwowanego obrazu na ekranie): Należy przyjąć, że przy odczytanym ustawieniu podstawy czasu okres badanego przebiegu zajmuje 3 kratki, a przy odczytanym ustawieniu pokrętła wzmocnienia amplituda sygnału wynosi 2,4 kratki. Oblicz okres (wynik podaj w sekundach), częstotliwość (wynik podaj w khz) i amplitudę (wynik podaj w milivoltach) badanego napięcia tego sygnału. Napisz obliczenia (wraz z jednostkami): 8

2. Zapoznać się z obsługą generatora funkcyjnego. Ustawienie sygnału wyjściowego. a. Wskaż przycisk wyboru rodzaju fali (na generatorze: WAVE SELECT lub FUNCTION ). Sprawdź rodzaje generowanych przebiegów elektrycznych. Narysuj na ekranach poniżej różne kształty generowanego sygnału i podpisz je.... b. Znajdź przyciski lub pokrętło ustawiania częstotliwości. Znajdź przełącznik zakresu częstotliwości generatora (na generatorze: Frequency Range ). Zmiana częstotliwości wraz z przełącznikiem zakresu częstotliwości umożliwia ustawienie żądanej częstotliwości. Ustaw częstotliwość 700 Hz, a następnie 17,2 khz. Narysuj na ekranach poniżej uzyskane obrazy. c. Znajdź pokrętło i przełącznik umożliwiające ustawienie żądanej wartości napięcia wyjściowego (amplituda). Zmień ustawienia napięcia wyjściowego tak, żeby amplituda obserwowanego sygnału zmniejszyła się 2x. 2b... 2b.. 2c. 9

3. Wybierz kształt sygnału wyjściowego (do pkt. 4a kształt sinusoidalny; do pkt. 4b kształt piłokształtny) oraz zakres częstotliwości, aby uzyskać na ekranie oscyloskopu żądany przebieg sygnału wyjściowego. Dostosuj ilość obserwowanych na ekranie przebiegów (1-2 pełne okresy) oraz ich amplitudę (2-4 kratek). W tym celu wykorzystaj regulację pokręteł podstawy czasu i wzmocnienia na oscyloskopie oraz regulację częstotliwości i amplitudy na generatorze funkcyjnym. Narysuj obserwowane przebiegi. 3a. napięcie sinusoidalne 3b.napięcie piłokształtne lub prostokątne c. Odczytaj i wpisz wskazania (wraz z prawidłowymi jednostkami) Napięcie pokrętło zmiany podstawy czasu c pokrętło wzmocnienia sygnału k odczytana z ekranu długość okresu L odczytaną z ekranu wysokość amplitudy d sinusoidalne piłokształtne d. Oblicz wielkości charakterystyczne obserwowanych i rysowanych przebiegów: częstotliwość f, okres drgań T, wartość maksymalna Umax,. Wykonaj prawidłowe obliczenia (oraz działania na jednostkach) Napisz obliczenia (wraz z jednostkami): 10

Uzupełnij tabelę, w nawiasy wpisz odpowiednie jednostki: Napięcie T [ ] f [ ] Umax [ ] sinusoidalne piłokształtne Data Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punkty 11

ĆWICZENIE NR 2.2 Biofizyka głosu ludzkiego Cele tematu badawczego: Celem ćwiczenia jest porównanie własności subiektywnych i obiektywnych dźwięku oraz przetwarzanie drgań akustycznych na przebiegi elektryczne. Rozwój wiedzy Powtórzenie wiadomości podstawowych z zakresu zjawisk falowych: Dźwięk jako fala mechaniczna: rodzaje fal, mechanizm rozchodzenia się, własności, interferencja fal, fala stojąca, dudnienia, rezonans; fale dźwiękowe, ultradźwięki, infradźwięki, prędkość fali; drgania harmoniczne, składanie drgań harmonicznych równanie fali harmonicznej. Samodzielne przygotowanie wiadomości na temat: Cechy dźwięku fizyczne i psychologiczne oraz związki między nimi: amplituda drgań, źródła dźwięku, natężenie, częstotliwość, widmo, głośność, wysokość, barwa, przetwarzanie drgań akustycznych na elektryczne. Rozwój umiejętności Stosowanie pojęć i terminów fizycznych. Umiejętność fachowego wysławiania się. Planowanie i przeprowadzanie eksperymentów i doświadczeń. Gromadzenie i analizowanie, wraz z szacowaniem niepewności pomiarowych, danych pomiarowych. Przeliczanie jednostek. Opis fali mechanicznej wykorzystując takie pojęcia jak długość i prędkość fali, częstość i okres, amplituda drgań. Rozwój postaw Umiejętność przekonywania innych do swoich racji, prowadzenia rzeczowej dyskusji. Współpraca w grupie. Weryfikacja zdobytej wiedzy i umiejętności. Szacunek do pracy innych. Kultura technicznej. Przestrzeganie przepisów BHP. 12

Część doświadczalna Niezbędne przyrządy: mikrofon, wzmacniacz sygnałów, oscyloskop, kamertony, młoteczek do wzbudzania kamertonów. 1. Celem ćwiczenia jest ustalenie przedziału częstotliwości słyszanych przez poszczególnych studentów, oraz przedziału częstotliwości odbieranego przez słuchaczy za najgłośniejszy. a. Przy maksymalnym natężeniu dźwięku zmieniaj powoli częstotliwość generatora od 20 Hz do 20 000 Hz. Obserwacje wpisz do tabeli. imię dolna granica słyszanych częstotliwości [Hz] górna granica słyszanych częstotliwości [Hz] b. Przy stałym natężeniu dźwięku zmieniaj powoli częstotliwość generatora. Zauważ jak zmienia się wrażenie głośności. Zapisz obserwacje: Wrażenie głośności.. Najgłośniej słyszę dźwięki o częstotliwości od...hz do... Hz. 2. Celem ćwiczenia jest uwidocznienie na oscyloskopie zmian napięcia wytwarzanych przez mikrofon, które odpowiadają zmianom ciśnienia przy fonacji poszczególnych głosek. Wypowiadaj do mikrofonu dźwięki głoski obserwuj ich strukturę widmową na ekranie oscyloskopu. Obserwowany obraz na oscyloskopie przedstawia dla poszczególnych głosek (czy wyrazów) zmiany amplitudy w funkcji czasu. Narysuj strukturę widmową dwóch głosek. widmo głoski... widmo głoski... 13

3. Na ekranie oscyloskopu zaobserwuj strukturę widmową dźwięku kamertonu. Narysuj poniżej zapis tego widma. Wyznacz częstotliwość kamertonu. Napisz obliczenia (wraz z jednostkami): Uzupełnij tabelę, w nawiasy wpisz odpowiednie jednostki: podstawa czasu [ ] ilość kratek w okresie [ ] okres [ ] częstotliwość [ ] Data Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punkty 14

Appendix 1 Kryteria oceny prezentacji: 1. Prezentacja przygotowana w programie PowerPoint lub kompatybilnym (OpenOffice) 2. Czas trwania prezentacji do 5 min. 3. Treść prezentacji czy zgodna z tematem, czy wyczerpuje temat. 4. Przejrzystość slajdów mało tekstu na slajdzie, odpowiednia wielkość czcionki. 5. Mówienie, omawianie a nie czytanie. 6. Ciekawe podejście do tematu. 7. Zainteresowanie słuchaczy, zachęta do dyskusji po prezentacji, prowadzenie dyskusji. 8. Przygotowanie 10 pytań zamkniętych dotyczących prezentowanych 4 prezentacji z danego laboratorium i przesłanie na adres beata.modzelewska@umb.edu.pl. Nazwa pliku składa się z: LogLab2.1g11.45gr.1 nazwisko (nazwa kierunku*-numer ćwiczenia-godzina ćwiczenia-numer grupy-nazwisko studenta) Tekst pytania nie więcej niż 95 znaków 4 możliwe odpowiedzi nie więcej niż 60 znaków (tylko 1 odpowiedź prawidłowa - zaznaczona) Dodany rysunek do pytania (związany z treścią pytania) Tematy do prezentacji: Lab 2.1 1. Prawo Coulomba i warunki jego stosowalności, pole elektryczne i elektro-magnetyczne, i jego własności 2. Termoemisja w oscyloskopie 3. Ruch ładunku w polu elektrycznym (na przykładzie oscyloskopu) 4. Luminescencja (na czym polega zjawisko) i jej rodzaje (luminescencja w oscyloskopie) Lab 2.2 1. Dźwięk jako fala mechaniczna: definicja dźwięku, rodzaje fal, mechanizm rozchodzenia się, własności, interferencja fal, fala stojąca, rezonans) 2. Wytwarzanie fali akustycznej: metody wytwarzania infradźwięków, dźwięków, ultradźwięków 3. Cechy dźwięku fizyczne: amplituda drgań źródła dźwięku, natężenie, częstotliwość, widmo 4. Cechy dźwięku psychologiczne: głośność, wysokość, barwa 15

Appendix 2 Masa spoczynkowa elektronu 31 m e 9,11 10 kg MeV 0,000549 u 0,51 2 c Jednostka masy atomowej 27 u 1,66 10 kg MeV 931,5 2 c Ładunek elektronu 19 e 1,6 10 C Masa spoczynkowa protonu 27 m p 1,67 10 kg MeV 1,007276 u 938 c 2 Prędkość światła w próżni 8 m c 3 10 2 s Liczba Avogadro 23 1 N A 6,02 10 mol Masa spoczynkowa neutronu 27 m p 1,68 10 kg MeV 1,008665 u 940 c 2 Stała Plancka 34 h 6,62 10 Js 16