150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki Ćwiczenie EL2 Realizacja logicznych układów kombinacyjnych tytul doswiadczenia z bramek NAND Ocena
Cel ćwiczenia Celem ćwiczenia było: 1. Zapoznanie się z funktorami realizującymi funkcje logiczne. 2. Zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego postawione zadanie w możliwie najprostszy sposób. Prawo de Morgana A + B +... = A B... Prawo de Morgana zostanie sprawdzone poprzez zbudowanie układu odpowiadającego wartości A B i porównanie jego wartości z A + B. Schemat układu oraz wyniki pomiarów zamieszczono poniżej: Schemat 1. Układ badający prawo de Morgana. B A 0 1 0 0 1 1 1 1 Tabela 1. Tabela wartości uzyskanych przez układ ze schematu 1. Jak wynika z przeprowadzonych pomiarów wartość x jest równa wartości A + B, zaś schemat 1. faktycznie realizuje funkcję bramki OR. 1. Podzielność przez 3 Doświadczenia 1. (*) Zaprojektować i połączyć układ sygnalizujący podzielność przez 3 liczby binarnej trzybitowej. W rozwiązaniu zaznaczyć czy liczbę zero uznano za podzielną. Zgodnie z zasadami matematyki oraz informatyki liczbę zero uznajemy za podzielną przez 3. Wówczas oczekiwana tablica wyników przybiera postać: EL2: Grzegorz Graczyk i Anna Janicka 2 / 6
ABC 000 001 010 011 100 101 110 111 Wartość (ABC) 2 0 1 2 3 4 5 6 7 Podzielność 1 0 0 1 0 0 1 0 Tabela 2. Podzielność przez 3 liczb mieszczących się na 3 bitowej liczbie. C AB 00 01 11 10 0 1 0 1 0 1 0 1 0 0 Tabela 3. Podzielność przez 3 zapisana za pomocą tablicy Karnaugha. Jak wynika z tabeli 2. metoda Karnaugha pozwala zapisać podzielność jako warunek logiczny: (A B C) + (A B C) + (A B C) czyli: Schemat realizujący powyższe równanie: W = (A B C) (A B C) (A B C) Schemat 2. Układ badający podzielność liczby 3 bitowej przez 3. ABC 000 001 010 011 100 101 110 111 Wynik 1 0 0 1 0 0 1 0 Tabela 4. Wynik działania schematu 2. Pomiary uzyskane za pomocą schematu 2. są identyczne jak przewidziane w tabeli 2. i 3.. Dowodzi to poprawności minimalizacji funkcji oraz poprawnego zrealizowania jej za pomocą układu. 2. Czterowejściowa bramka NOR 2. (*) Zaprojektować i połączyć układ realizujący funkcję czterowejściowej bramki NOR przy użyciu bramek NOT i NAND posiadających co najwyżej trzy wejścia. Wynik bramki NOR jest prawdziwy wtedy i tylko wtedy, gdy wszystkie dane wejściowe są równe 0. Funkcję taką można przedstawić w postaci minimalnej bez użycia metody Karnaugha i jej wartość wynosi A B C D. Realizacja tej instrukcji wykonana jedynie za pomocą dostępnych bramek to: W = (A B) (C D) Schemat realizujący taki warunek logiczny wygląda następująco: EL2: Grzegorz Graczyk i Anna Janicka 3 / 6
Schemat 3. Układ o działaniu 4 wejściowej bramki NOR. 00 1 0 0 0 01 0 0 0 0 11 0 0 0 0 10 0 0 0 0 Tabela 5. Wynik działania schematu 3. Pomiary uzyskane za pomocą schematu 3. są identyczne z przewidywaniami. Dowodzi to poprawnego zrealizowania szukanej funkcji za pomocą układu. 3. Zapalające się lampki 8. (***) Zaprojektować i połączyć układ, który na podstawie czterobitowej liczby binarnej steruje linijką złożoną z czterech diod świecących. Dla wartości binarnych od 0000 do 0100 (dziesiętnie od 0 do 4) układ powinien załączać kolejne diody w liczbie odpowiadającej wartości na wejściu układu, oraz utrzymywać świecenie wszystkich diod dla wszystkich wartości większych od 0100. Operacja przedstawiona w tabeli wygląda następująco: ABCD 0000 0001 0010 0011 0100 0101 0110 0111 Wartość (ABCD) 2 0 1 2 3 4 5 6 7 Wynik 0000 1000 1100 1110 1111 1111 1111 1111 ABCD 1000 1001 1010 1011 1100 1101 1110 1111 Wartość (ABCD) 2 8 9 10 11 12 13 14 15 Wynik 1111 1111 1111 1111 1111 1111 1111 1111 Tabela 6. Oczekiwane wartości układu. Dla każdej z wartości wynikowych przygotujemy tablicę Karnaugha. EL2: Grzegorz Graczyk i Anna Janicka 4 / 6
01 1 1 1 1 11 1 1 1 1 10 1 1 1 1 Tabela 7. Tablica Karnaugha dla pierwszej lampki. 01 0 1 1 1 11 1 1 1 1 10 0 1 1 1 Tabela 9. Tablica Karnaugha dla trzeciej lampki. 01 0 1 1 1 11 1 1 1 1 10 1 1 1 1 Tabela 8. Tablica Karnaugha dla drugiej lampki. 01 0 1 1 1 11 0 1 1 1 10 0 1 1 1 Tabela 10. Tablica Karnaugha dla czwartej lampki. Z przygotowanych tablic odczytujemy następujące warunki: W 1 = A + B + C + D = A B C D W 2 = A + B + C = A B C W 3 = A + B + (CD) = A B (CD) W 4 = A + B = A B Tak przygotowane równości możemy uprościć do minimalnych postaci na kilka sposobów. Zastosowany z nich nie wymaga użycia żadnej bramki o 3 wejściach. Użyta zostanie natomiast zmienna pomocnicza T - będąca po prostu wybranym punktem w układzie użytym wielokrotnie różnym od wartości wejściowych i wyjściowych. W 4 = A B T = W 4 W 3 = T CD W 2 = T C W 1 = W 2 D Prezentowany schemat wykorzystuje więcej bramek NOT niż posiadamy. Nadmiarowe bramki NOT zastępujemy bramkami NAND ze zwartymi wejściami. ABCD 0000 0001 0010 0011 0100 0101 0110 0111 Wynik 0000 1000 1100 1110 1111 1111 1111 1111 ABCD 1000 1001 1010 1011 1100 1101 1110 1111 Wynik 1111 1111 1111 1111 1111 1111 1111 1111 Tabela 11. Wynik działania układu reprezentowanego przez schemat 4. EL2: Grzegorz Graczyk i Anna Janicka 5 / 6
Schemat 4. Układ realizujący wcześniej wymienione wzory. Pomiary uzyskane za pomocą schematu 4. są identyczne z przewidywaniami. Dowodzi to poprawnego zrealizowania szukanej funkcji za pomocą układu. Wnioski W czasie wykonywania ćwiczenia nie wystąpiły żadne błędy. Odpowiadają za to dwa czynniki: brak błędów pomiarowych oraz możliwość całkowitego przewidzenia wyniku (przy założeniu, że sprzęt działa poprawnie). Za pomocą bramki NAND można uzyskać wszystkie rodzaje bramek. Jest to właściwość kluczowa w tym ćwiczeniu, gdyż posługujemy się jedynie bramką NAND oraz NOT - tą drugą konstruujemy dostarczając ten sam sygnał na oba wejścia bramki NAND. Metoda Karnaugha jest skuteczną metodą minimalizacji funkcji, jednak w wypadku budowy układów logicznych kluczowe staje się wielokrotne używanie wyników pośrednich. Metoda zastosowana do minimalizacji wykorzysując wyniki pośrednie polegała na zgadywaniu rozwiązań, co oznacza, że mogą istnieć optymalniejsze rozwiązania przedstawionych problemów. EL2: Grzegorz Graczyk i Anna Janicka 6 / 6