Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium.
|
|
- Lidia Marciniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Zagadnienia do samodzielnego opracowania: rola sygnału taktującego (zegara) w układach synchronicznych; co robi sygnał CLEAR (w 74194)?; do czego służy sygnał RESET?; jaka jest podstawowa różnica między wejściami RIN. LIN oraz ABCD?; Na rysunku 1 podane są trzy schematy wykorzystujące układ scalony (uniwersalny rejestr przesuwający). Należy samodzielnie odnaleźć specyfikację układu (najlepiej w Internecie na stronach Motoroli, Texas Instruments bądź Philipsa) i dokładnie zapoznać się z zasadą jego działania. Następnie trzeba teoretycznie przeanalizować i słownie opisać zachowanie się podanych układów z rysunku 1. Szczególną uwagę proszę zwrócić na znaczenie sygnałów zewnętrznych układu scalonego, ponieważ oznaczenia podane na rysunku 1 mogą się różnić od tych pobranych z Internetu. Należy zrealizować dwa układy wskazane przez prowadzącego (wymagane 2 podpisy). 1. Połączyć pierwszy układ wskazany przez prowadzącego. Sprawdzić jego działanie obserwując wyjścia QD, QC, QB, QA. Gdy układ zachowuje się poprawnie poprosić prowadzącego o pierwszy podpis. 2. Połączyć drugi układ wskazany przez prowadzącego. Sprawdzić jego działanie. Gdy układ zachowuje się poprawnie poprosić prowadzącego o drugi podpis. Zawartość odręcznego sprawozdania z podziałem na strony: Odpowiednio na stronach 1, 2 oraz 3 przedstawić swój sposób analizy działania układu a), b) oraz c), Na ostatniej kartce zamieszczamy odręczne rysunki trzech układów (patrz obok). Z prawej strony każdego układu podajemy kilkuzdaniowy opis przewidywanego działania (oczywiście opis ten powinien być przygotowany w domu). Na odwrocie kartki z rysunkami zamieszczamy wnioski, jakie nasunęły się w trakcie ćwiczenia, Ewentualne potwierdzenia realizacji zadania w CAD (wydruk układu oraz wydruk z symulacji) zamieszczamy Zamieścić specyfikacje układu ćwiczenie jest bardzo proste, mimo wszystko wymaga starannego przygotowana. 2. proszę zwrócić uwagę, że do pewnych wejść nie wskazano wartości sygnału (co zrobić?), 3. źródłem sygnału zegarowego jest jeden z przełączników zadajnika wartości logicznych, 4. Nie wykorzystywać zadajnika wartości logicznych, gdy pewne wejście układu ma być zawsze wartością stałą (0 albo 1). Wykorzystać w tym celu dostępne wartości bezpośrednio z płyty montażowej (przewód czerwony wartość 1, przewód czarny wartość 0). 5. Na wyświetlaczu LED (lewy górny róg płyty montażowej) podglądamy wartości czterech wyjść układu. Do użytku wewnętrznego na laboratorium st. dzienne
2 Ćwiczenie nr 2 Temat: Układy kombinacyjne. Zagadnienia do samodzielnego opracowania: wyrażenie boolowskie; definicja funkcji przełączającej (boolowskiej) i jej związek z wyrażeniem boolowskim; tablica prawdy; prawa de Morgana; tablica Karnaugh a; minimalizacja funkcji z wykorzystaniem tablicy Karnaugh a; metoda zamiany układu dwupoziomowego AND-OR na układ wykorzystujący bramki NAND; metoda otrzymywania układu wykorzystującego tylko multipleksery (MUX) dla zadanej funkcji; zapoznać się ze specyfikacją układu (w szczególności zwrócić uwagę na sygnał zezwalający oraz sygnały sterujące); Poniższe dwie funkcje: a) f(abcd) = (a + b + c) + d b) f(abc) = abc + abc należy zrealizować w: 1. minimalnym (dwupoziomowym) układzie wykorzystującym bramki NAND oraz, 2. układzie wykorzystującym multiplekser (MUX). Należy pokazać, że oba układy realizują tę samą funkcję. Przygotować tablice prawdy (skorzysta z nich prowadzący przy sprawdzaniu układu). 1. Połączyć jednocześnie układ NAND oraz z MUX realizujący pierwszą funkcję. 2. Sprawdzić poprawność układu. 3. Jeżeli oba układy realizują tę samą funkcję, tylko wtedy należy poprosić prowadzącego. 4. Analogicznie postępujemy z realizacją drugiej funkcji. 5. Wymagana liczba podpisów 2. Na stronach 1 i 2 zamieszczamy syntezę odpowiednio funkcji a oraz b. Funkcję wpisać do tablicy Karnaugha, następnie zminimalizować. Na podstawie postaci minimalnych zrealizować układ NAND (przekształcić układ AND-OR w układ NAND wykorzystujący bramki dostępne na płycie montażowej). Pokazać na stronie 3 sposób otrzymywania układu multiplekserowego (MUX). Na ostatniej stronie zamieszczamy odręczne rysunki czterech układów wraz z tablicami prawdy w postaci pokazanej na rysunku 1. Na odwrocie kartki z rysunkami zamieszczamy wnioski, jakie nasunęły się w trakcie ćwiczenia, Ewentualne potwierdzenia realizacji zadania w CAD (wydruk układu oraz symulacji) zamieszczamy 1. Wykorzystać prawa de Morgana. 2. Nie wykorzystywać zadajnika wartości logicznych, gdy pewne wejścia układu mają być zawsze wartością stałą (0 albo 1). Wykorzystać w tym celu dostępne wartości bezpośrednio z płyty montażowej (przewód czerwony wartość logiczna 1, przewód czarny wartość 0). 3. Niewykorzystywane ( wiszące ) wejścia bramek należy podłączyć do odpowiedniej wartości logicznej (w szczególności dotyczy to MUX). 4. Na wyświetlaczu LED podglądamy wartości wyjść obu układów (NAND i MUX). Do użytku wewnętrznego na laboratorium st. dzienne
3 Ćwiczenie nr 3 Temat: Hazard statyczny. Zagadnienia do samodzielnego opracowania: wyjaśnić zjawisko hazardu statycznego; podać różnice między hazardem statycznym a dynamicznym; dlaczego eliminuje się hazardy?; omówić metody eliminacji hazardu statycznego; Ćwiczenie jest dwuczęściowe. Każda podlega sprawdzeniu przez prowadzącego. Należy zaproponować własną funkcję czterech zmiennych f(abcd), która w realizacji minimalnej posiada hazard statyczny (każda osoba z grupy proponuje własną funkcję). 1. Złożyć układ kombinacyjny z hazardem oraz sprawdzić czy realizuje zaproponowaną funkcję. 2. Złożyć układ wykrywający hazard ( oscyloskop ) sprawdzając czy przy zmianach sygnału zegarowego LED1 oraz LED2 migają (). 3. Podłączyć wyjście układu do wejścia zegarowego sprawdzonego układu wykrywania hazardu. 4. Kolejne zmiany wartości zmiennej powodującej hazard powinny powodować miganie LED2. 5. Prosimy prowadzącego (pierwszy podpis). 6. Eliminujemy hazard. 7. Kolejne zmiany wartości zmiennej, która powodowała hazard nie powinny powodować migania LED2. 8. Prosimy prowadzącego (drugi podpis). Na stronie 1 w sposób opisowy wytłumaczyć zjawisko hazardu statycznego dla zaproponowanej funkcji. Na stronie 2 należy opisać zasadę działania układu wykrywania hazardu zastępującego rzeczywisty oscyloskop. Bez jego zrozumienia trudno wyobrazić sobie celowość jego wykorzystania. Podać w punktach wady tego układu w porównaniu z oscyloskopem. Na ostatniej stronie zamieszczamy rysunki w formie pokazanej na rysunku 1. Oczywiście zamiast prostokątów reprezentujących układ kombinacyjny na rys. 1a należy narysować schemat minimalnego układu realizującego funkcję, a na rys. 1b schemat układu po eliminacji hazardu. W tablicy Karnaugh a z rys. 1a wpisać obwódki reprezentujące implikanty proste funkcji z hazardem oraz strzałkę wskazującą zmianę wartości zmiennej wejściowego powodującej zjawisko hazardu. W tablicy z rys. 1b wpisać obwódki reprezentujące implikanty proste po eliminacji hazardu. Ewentualne potwierdzenia realizacji zadania w CAD (wydruk układu oraz symulacji) zamieszczamy 1. Można stosować tylko bramki NAND oraz NOT. 2. Jeżeli jesteśmy pewni, że układ realizuje poprawną funkcję, lecz układ oscyloskopu go nie wykrywa należy zwiększyć opóźnienie za pomocą bramek NOT. 3. Do wyświetlacza podłączamy sygnały tak jak pokazano na rysunku 1 (LED1, LED2). Do użytku wewnętrznego na laboratorium st. dzienne
4 Ćwiczenie nr 4 Temat: Analiza układu synchronicznego. Zagadnienia do samodzielnego opracowania: na czym polega analiza układu synchronicznego; rodzaje przerzutników; układy wzbudzeń wejść przerzutników; układ wyjść układu synchronicznego; tablica przejść-wyjść; tablica stanów; Układ synchroniczny z rys.1a należy przekształcić do układu zawierającego tylko bramki NAND, które są dostępne na płycie montażowej (na płycie nie ma bramek AND ani OR). Oczywiście przekształcony układ MUSI się zachowywać identycznie jak podany na rysunku. UWAGA: nie można wykorzystywać bramek NOT, ani realizować NOT-a za pomocą bramki NAND. Ewentualnie można wykorzystać jedną bramkę NOR (7402). Na rysunku pominięto sygnał taktujący oraz wejścia asynchroniczne przerzutników. 1. Przyjmując, że stanem początkowym układu jest y 1y 2=00, sprawdź działanie układu podając na wejście x następującą sekwencje: (strzałka wskazuje wejście x). 2. Zapisz wartości wyjścia Z wraz z wartościami wyjść obu przerzutników do tabeli rys.1c. 3. Zgłosić prowadzącemu koniec realizacji układu (wymagana liczba podpisów: 1). Na stronie 1 - analiza układu (funkcje wzbudzające przerzutniki D 1, D 2 wraz z tabelą stanów-wyjść. Tabelę przejść-wyjść umieszczamy na ostatniej stronie rys.1b), Na stronie 2 - synteza układu synchronicznego zachowującego się identycznie jak układ z rys.1a, który wykorzystuje dwa przerzutniki JK. Należy tak zakodować stany, aby całość układu zawierała 1xNOT, 2xAND. Na ostatniej kartce zawierającej rysunki umieszczamy układ z rys. 1a, schemat realizowanego układu (rys.1d), wypełnioną tabelką przejść-wyjść (rys.1b) oraz wyniki eksperymentu po podaniu powyższej sekwencji (rys.1c). Rozmieszczenie na stronie podano poniżej. Na odwrocie kartki z rysunkami zamieszczamy wnioski, Ewentualne potwierdzenia realizacji zadania w CAD (wydruk układu oraz wydruk z symulacji) zamieszczamy 1. nie zapomnieć o podłączeniu wejść asynchronicznych przerzutników, 2. stałe wartości logiczne pobieramy z czerwonych przewodów (wartość 1) albo czarnych (wartość 0). Nie wolno ich pobierać z zadajnika wartości logicznych. 3. Na wyświetlaczu LED podglądamy wartości Z oraz y 1y 2. a Do użytku wewnętrznego na laboratorium st. dzienne
5 Ćwiczenie nr 5 Temat: Synteza układu synchronicznego. Zagadnienia do samodzielnego opracowania: podaj różnice między analizą a syntezą układu synchronicznego; graf stanów-wyjść; kodowanie stanów; tablica przejść wyjść; funkcje wzbudzeń; układ wyjść; Zaprojektuj układ synchroniczny o jednym wejściu x i dwóch wyjściach Z 1 oraz Z 2 działający w następujący sposób: pierwsza jedynka napotkana w sekwencji wejściowej generuje Z 1=1, druga jedynka - Z 2=1, trzecia jedynka - Z 1=1, czwarta jedynka - Z 2=1 itd. Dodatkowo należy przyjąć, że w danej chwili zawsze Z 1Z 2=0. Gdy x=0, to Z 1=0 i Z 2=0. Na rysunku 1 podano ilustrację działania układu dla przykładowej sekwencji wejściowe: w chwili t 1;x=0, chwili t 2;x=1, t 3,t 4,t 5; x=0, t 6;x=1, itd). Innymi słowy, układ ma przekazywać jedynki nieparzyste na wyjście Z 1, a jedynki parzyste na wyjście Z 2 ( rozdzielacz jedynek ). 1. Zrealizować układ Moore a i sprawdzić poprawność działania dla dwóch wcześniej przygotowanych testowych sekwencji wejściowych (sekwencja 1; sekwencja 2), 2. Poprosić prowadzącego (podpis 1). Nie rozmontowywać układu! 3. Zrealizować układ Mealyego i sprawdzić poprawność działania dla sekwencji 1 oraz sekwencji wejściowej 2 (takich samych jak w punkcie 1), 4. Porównać zachowanie układu Moore a z układem Mealyego (najlepiej na diagramie czasowym), 5. Poprosić prowadzącego (podpis 2). Na stronie 1 oraz 2 synteza układu Moorea przeprowadzona wg następujących punktów: a) graf stanówwyjść, b) minimalizacja tablicy stanów-wyjść, c) kodowanie stanów, d) otrzymywanie funkcji wzbudzających wejścia przerzutników, e) otrzymywanie funkcji wyjść. Wybrać przerzutniki D oraz wykorzystać tylko te układy, które są dostępne na płycie montażowej. Na stronie 3 synteza układu Mealyego (według identycznych punktów jak wyżej). Wykorzystać przerzutniki JK. Na ostatniej stronie umieszczamy Ostatnia strona rysunki zsyntezowanych układów wraz z diagramami czasowymi (rozkład rysunków na ostatniej stronie pokazano na rysunku 2). Ewentualne potwierdzenia realizacji zadania w CAD (wydruk układu oraz symulacji) zamieszczamy 1. nie zapomnieć o podłączeniu wejść asynchronicznych przerzutników, 2. stałe wartości logiczne pobieramy z czerwonych przewodów (wartość 1) albo czarnych (wartość 0). Nie wolno ich pobierać z zadajnika wartości logicznych. [1] A.Kaliś, Podstawy teorii układów logicznych, skrypt Rysunek 2 To jest przykładowy diagram Do użytku wewnętrznego na laboratorium st. dzienne
Technika Cyfrowa 1 wykład 12: sekwencyjne układy przełączające
Technika Cyfrowa 1 wykład 12: sekwencyjne układy przełączające Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sekwencyjny układ przełączający układ przełączający
Podstawowe układy cyfrowe
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,
Statyczne badanie przerzutników - ćwiczenie 3
Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz
Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.
Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 212
KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki ów Cyfrowych ćwiczenie Temat: Automat asynchroniczny. Cel ćwiczenia Celem ćwiczenia jest nabycie praktycznej umiejętności projektowania
WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie
Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne
Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Ćwiczenie nr 4: Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest
Laboratorium podstaw elektroniki
150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki
Układy sekwencyjne. 1. Czas trwania: 6h
Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów
Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10
Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),
Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0
Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich
TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH
Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów
Synteza strukturalna automatów Moore'a i Mealy
Synteza strukturalna automatów Moore'a i Mealy Formalna definicja automatu: A = < Z, Q, Y, Φ, Ψ, q 0 > Z alfabet wejściowy Q zbiór stanów wewnętrznych Y alfabet wyjściowy Φ funkcja przejść q(t+1) = Φ (q(t),
TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów
LABORATORIUM TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA Badanie rejestrów Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Typy, parametry, zasada działania i tablice stanów przerzutników
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole
Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB
Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby
2019/09/16 07:46 1/2 Laboratorium AITUC
2019/09/16 07:46 1/2 Laboratorium AITUC Table of Contents Laboratorium AITUC... 1 Uwagi praktyczne przed rozpoczęciem zajęć... 1 Lab 1: Układy kombinacyjne małej i średniej skali integracji... 1 Lab 2:
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole
dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL
Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)
Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp
Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.
Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony
Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)
DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne
Układy sekwencyjne. 1. Czas trwania: 6h
Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów
Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera
Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI
Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D
AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest
Errata do książki Multisim. Technika cyfrowa w przykładach.
. 3. 24 r. rrata do książki Multisim. Technika cyfrowa w przykładach.. str.5, źle jest zapisana postać funkcji wyjściowej równoważność (xclusive NOR, XNOR, NOR, XNOR), y 7 = a b + a b = a Ä b = a Å b 2.
Sławomir Kulesza. Projektowanie automatów asynchronicznych
Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)
Laboratorium podstaw elektroniki
150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki
Układy asynchroniczne
Układy asynchroniczne Model układu asynchronicznego y x n UK y m układ kombinacyjny q k BP q k blok pamięci realizuje opóźnienia adeusz P x x t s tan stabilny s: δ(s,x) = s automacie asynchronicznym wszystkie
Cyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2
tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz
Synteza strukturalna automatu Moore'a i Mealy
Synteza strukturalna automatu Moore'a i Mealy (wersja robocza - w razie zauważenia błędów proszę o uwagi na mail'a) Załóżmy, że mamy następujący graf automatu z 2 y 0 q 0 z 1 z 1 z 0 z 0 y 1 z 2 q 2 z
1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych
.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić
Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..
Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.
Proste układy sekwencyjne
Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające
Ćw. 8 Bramki logiczne
Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie
Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18
Spis treści Przedmowa... 11 Wykaz oznaczeń... 13 1. Wstęp... 15 1.1. Układycyfrowe... 15 1.2. Krótki esej o projektowaniu.... 15 2. Układy kombinacyjne... 18 2.1. Podstawyprojektowaniaukładówkombinacyjnych...
CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL
CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych
LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY
LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.
Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:
Asynchroniczne statyczne układy sekwencyjne
Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych
Automatyzacja i robotyzacja procesów produkcyjnych
Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb
Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014
Podstawy techniki cyfrowej Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Charakterystyka układów asynchronicznych Brak wejścia: zegarowego, synchronizującego. Natychmiastowa (niesynchronizowana)
LICZNIKI PODZIAŁ I PARAMETRY
LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność
Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1
Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI MIKROPROCESOROWEJ 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA
LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowa symulacja układów różniczkujących
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 23 Komputerowa symulacja
Układy asynchroniczne
Układy asynchroniczne Model układu sekwencyjnego Model układu asynchronicznego (synchronicznego) y 1 x n UK y m układ kombinacyjny Z clock t 1 q 1 k B x s tan stabilny s: δ(s,x) = s x blok pamięci jest
Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia
Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie
b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.
DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica
Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia
Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Ćwiczenie 23 Poznanie symboli własności. Zmierzenie parametrów podstawowych bramek logicznych TTL i CMOS. Czytanie schematów elektronicznych,
ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia
Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych
Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające
Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Liczniki klasyfikacja Licznik asynchroniczny:
LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW
POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU).
Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU). Cel ćwiczenia Poznanie własności analogowych multiplekserów demultiplekserów. Zmierzenie
Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.
Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka
Elektronika cyfrowa i optoelektronika - laboratorium
Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Elektronika cyfrowa i optoelektronika - laboratorium Temat: Minimalizacja funkcji logicznych multiplekser demultiplekser. Koder i dekodedr.
Synteza układów kombinacyjnych
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące
Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.
Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 6 BADANIE UKŁADÓW SEKWENCYJNYCH A. Cel ćwiczenia. - Poznanie przeznaczenia i zasady działania przerzutnika
Wstęp do Techniki Cyfrowej... Układy kombinacyjne
Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.
dwójkę liczącą Licznikiem Podział liczników:
1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem
SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie
SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1 Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 2 Stan
W ujęciu abstrakcyjnym automat parametryczny <A> można wyrazić następującą "ósemką":
KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 206 Temat: Automat parametryczny. Wiadomości podstawowe Automat parametryczny jest automatem skończonym
Bramki logiczne Podstawowe składniki wszystkich układów logicznych
Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości
Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55
Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )
Technika cyfrowa Synteza układów kombinacyjnych (I)
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1
Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również
Wydział Fizyki UW CC=5V 4A 4B 4Y 3A 3B 3Y
Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (00-INZ7) oraz Energetyki i hemii Jądrowej (00-ENPRFIZELEK) Ćwiczenie D Projekt układu cyfrowego Streszczenie
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników
Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.
Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość
Podstawy Techniki Cyfrowej Liczniki scalone
Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony
x x
DODTEK II - Inne sposoby realizacji funkcji logicznych W kolejnych podpunktach zaprezentowano sposoby realizacji przykładowej funkcji (tej samej co w instrukcji do ćwiczenia "Synteza układów kombinacyjnych")
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie LABORATORIUM Teoria Automatów. Grupa ćwiczeniowa: Poniedziałek 8.
Akademia Górniczo-Hutnicza im. isława Staszica w Krakowie LABORATORIUM Teoria Automatów Temat ćwiczenia Przerzutniki L.p. Imię i nazwisko Grupa ćwiczeniowa: Poniedziałek 8.000 Ocena Podpis 1. 2. 3. 4.
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:
1.2 Funktory z otwartym kolektorem (O.C)
Wydział EAIiIB Laboratorium Katedra Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 4. Funktory TTL cz.2 Data wykonania: Grupa (godz.): Dzień tygodnia:
Podział układów cyfrowych. rkijanka
Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych
Tranzystor JFET i MOSFET zas. działania
Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 4 (3h) Przerzutniki, zatrzaski i rejestry w VHDL
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 4 (3h) Przerzutniki, zatrzaski i rejestry w VHDL Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów
Komputerowa symulacja rejestrów
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 32 Komputerowa symulacja
Technika cyfrowa Synteza układów kombinacyjnych
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1
Projektowanie i badanie liczników synchronicznych i asynchronicznych
Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 08 PTC Projektowanie i badanie liczników synchronicznych i asynchronicznych opr. tech. Mirosław Maś Uniwersytet
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/6 Pętla synchronizacji fazowej W tym ćwiczeniu badany będzie układ pętli synchronizacji fazowej jako układu generującego przebieg o zadanej
Asynchroniczne statyczne układy sekwencyjne
Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych
Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.
Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich
Elementy cyfrowe i układy logiczne
Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie
Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych Instytut Automatyki i Robotyki Warszawa, 2015 Układy o programach liniowych - Przykład Zaprojektować procesowo-zależny układ sterowania
LICZNIKI LABORATORIUM. Elektronika AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI Rev.1.0 1. Wprowadzenie Celem ćwiczenia
Rys Schemat montażowy (moduł KL blok e) Tablica C B A F
Ćwiczenie 30 Temat: Układy multiplekserów i demultiplekserów. Cel ćwiczenia Poznanie zasad działania multiplekserów. Budowanie multiplekserów z podstawowych bramek logicznych i układu scalonego TTL. Czytanie
LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY. Rev.1.1
LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY Rev.1.1 1. Cel ćwiczenia Praktyczna weryfikacja wiedzy teoretycznej z zakresu projektowania układów kombinacyjnych oraz arytmetycznych 2. Projekty Przy
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW
INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na
INFORMATOR LABORATORYJNY. TECHNIKA CYFROWA (studia niestacjonarne)
INFORMATOR LABORATORYJNY TECHNIKA CYFROWA (studia niestacjonarne) A REGULAMIN LABORATORIUM 1. Laboratorium składa się z 3 ćwiczeń (8 terminów zajęć). Udział na każdych zajęciach jest obowiązkowy. Termin