Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy A. B. C. D. Zad.3. (1p) Dany jest trójkąt o bokach Promień okręgu opisanego na tym trójkącie ma długość A. B. C. D. Zad.4. (1p) Wartość wyrażenia, gdzie n jest dowolną liczbą naturalną dodatnią A. jest zawsze liczbą nieparzystą B. jest zawsze liczbą parzystą C. jest zawsze liczbą podzielną przez 5 D. nigdy nie jest liczbą podzielną przez 3 Zad.5. (1p) sin15 0 jest równy A. B. C. D. Zad.6. (2p) Funkcja kwadratowa ma dokładnie jedno miejsce zerowe równe 3 i przecina oś OY w punkcie. Oblicz wartość tej funkcji dla argumentu 3. Zakoduj otrzymany wynik. Zad.7. (2p) Stożek S 2 jest podobny do stożka S 1 w skali. Wysokość stożka S 1 jest równa 8, a objętość stożka S 2 jest równa. Oblicz długość promienia podstawy stożka S 1. Zakoduj trzy początkowe cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Zad.8. (2p) Oblicz granicę ciągu. Zakoduj trzy początkowe cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Zad.9. (3p) Wyznacz maksimum lokalne funkcji. Zakoduj wartość tego maksimum. Zad.10. (3p) Okrąg o równaniu jest opisany na pewnym kwadracie. Oblicz pole tego kwadratu. Zad.11. (3p) Wykaż, że dla dowolnej liczby spełniona jest nierówność:. Zad.12. (3p) Rozwiąż równanie +. Zad.13. (3p) Pięć liczb tworzy ciąg arytmetyczny a liczby pierwsza, trzecia i piąta tworzą ciąg geometryczny. Wykaż, że wszystkie liczby tworzące ciąg arytmetyczny muszą być równe. Zad.14. (4p) Napisz wzór wielomianu trzeciego stopnia jeżeli wiadomo, że: a) jednym z miejsc zerowych jest 1, b) przyjmuje wartości ujemne dokładnie w przedziale, c) przecina oś rzędnych w punkcie 6.
Zestaw nr 2 Poziom Rozszerzony Zad.1. (1p) Wielomian W(x)= + 24 posiada A. dokładnie trzy pierwiastki dodatnie, B. dokładnie dwa pierwiastki dodatnie, C. dokładnie jeden pierwiastek dodatni, C. nie posiada pierwiastków dodatnich. Zad.2. (1p) Ciąg dany jest wzorem rekurencyjnym: Wyraz czwarty tego ciągu jest równy Zad.3. (1p) Pole koła wpisanego w trójkąt równoboczny jest równe długość Zad.4. (1p) Wyrażenie gdzie można zapisać jako Zad.5. (1p) Funkcja liniowa OY powyżej punktu wtedy i tylko wtedy, gdy Bok tego trójkąta ma jest malejąca i jej wykres przecina oś Zad.6. (2p) Rozwiąż nierówność wszystkich liczb całkowitych spełniających powyższą nierówność. Zakoduj liczbę trzycyfrową wyrażającą ilość Zad.7. (2p) Oblicz wartość pochodnej funkcji dla argumentu. Zakoduj trzy początkowe cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Zad.8. (2p) Oblicz sinus najmniejszego kąta w trójkącie o bokach 4, 5, 6. Zakoduj trzy początkowe cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Zad.9. (2p) W pewnym ciągu arytmetycznym suma dziesięciu początkowych wyrazów jest równa 165 a suma ośmiu początkowych wyrazów jest równa 108. Zakoduj liczbę trzycyfrową będącą wartością setnego wyrazu tego ciągu. Zad.10. (5p) Napisz wzór funkcji kwadratowej wiedząc, że suma miejsc zerowych tej funkcji jest równa 2, iloczyn miejsc zerowych jest równy 120 i do wykresu funkcji należy punkt (5,170). Wyznacz wartość największą tej funkcji w przedziale Zad.11. (4p) Dana jest funkcja. Wiedząc, że do wykresu należą punkty (1, 1) oraz (2,5) wyznacz wartości a i b oraz narysuj wykres tej funkcji. Zad.12. (4p) Dany jest prostokąt ABCD o bokach 4 i 8. Punkt E jest środkiem boku AB, a punkt F punktem przecięcia odcinków BD i EC. Oblicz pole trójkąta BEF. Zad.13. (5p) Prosta dzieli koło o nierówności na dwie części. Wyznacz nieujemną różnicę pól tych części koła.
Zestaw nr 3 Poziom Rozszerzony Zad.1. (1pkt) Wskaż liczbę największą spośród czterech podanych Zad.2. (1pkt) Ilość ekstremów funkcji jest równa A. 0, B. 1, C. 2, D. 3. Zad.3. (1pkt) Dane są punkty. Wtedy. Wiadomo, że Zad.4. (1pkt) Równanie A. nie ma rozwiązań, B. ma dokładnie jedno rozwiązanie, C. ma dokładnie dwa rozwiązania, D. ma dokładnie trzy rozwiązania. Zad.5. (1pkt) Liczba jest równa Zad.6. (2pkt) Do liczby 100 dodajemy liczbę trzy razy mniejszą, do otrzymanej sumy znów liczbę trzy razy mniejszą od uzyskanej poprzednio itd. Zakoduj wartość otrzymanej sumy. Zad.7.(3pkt) Suma miejsc zerowych, funkcji kwadratowej jest równa 2, a iloczyn ( 80). Zakoduj liczbę trzycyfrową równą sumie sześcianów miejsc zerowych funkcji Zad.8. (2pkt) Wykaż, że suma kwadratów trzech kolejnych liczb naturalnych nie jest podzielna przez 3. Zad.9. (4pkt) Rozwiąż nierówność. Zad.10. (3pkt) Trzy różne liczby o sumie 3 tworzą ciąg arytmetyczny. Jeżeli zamienimy miejscami drugą i trzecią liczbę, to otrzymamy ciąg geometryczny. Wyznacz te liczby. Zad.11. (5pkt) Wielomian czwartego stopnia jest iloczynem dwóch wielomianów drugiego stopnia i takich, że: pierwiastkami są liczby 2 i 4, a do wykresu należy punkt, zaś wszystkie współczynniki są równe. Wyznacz wiedząc, że wyraz wolny tego wielomianu jest równy 8. Zad.12. (4pkt) Oblicz długość boku rombu wiedząc, że wysokość i przekątna poprowadzone z tego samego wierzchołka mają długości odpowiednio 4 i 6. Zad.13. (5pkt) Wierzchołki prostokąta mają współrzędne. Wyznacz współrzędne wierzchołka oraz równanie okręgu opisanego na tym prostokącie.
Zestaw nr 4 Poziom Rozszerzony Zad.1. (1pkt) Wyznacz takie, aby ciąg był arytmetyczny i malejący. Zad.2 (1pkt) Wyznacz takie, aby ciąg był geometryczny, rosnący. Zad.3 (1pkt) Określ monotoniczność ciągu Zad.4 (1pkt) Rozwiąż równanie:, gdzie. Zad.5 (1pkt) Rozwiąż równanie:. Zad.6 (2pkt) Rozwiąż równanie:. Zad.7 (3pkt) Z czterech liczb pierwsze trzy tworzą ciąg arytmetyczny a ostatnie trzy ciąg geometryczny. Wyznacz liczby. Zakoduj kwadrat sumy liczb. Zad.8 (3pkt) Wyznacz wartości takie, aby ciąg był arytmetyczny, zaś ciąg był geometryczny. Zad.9 (5pkt) O liczbach wiemy, że ciąg jest arytmetyczny i, zaś ciąg jest geometryczny. Wyznacz te liczby. Zad.10 (5pkt) Rozwiąż równanie. Zad.11. (6pkt) Wyznacz równania prostych stycznych do okręgu o równaniu nachylonych do osi OX pod takim kątem α, że Zad.12. (5pkt) Wyznacz wszystkie wartości parametru m, dla których równanie ma dwa różne rozwiązania. Suma odwrotności liczb opisujących miejsca zerowe jest mniejsza od 2. Zad.13. (4pkt) Rozwiąż nierówność
Zestaw nr 5 Poziom Rozszerzony Zad.1. (1pkt) Ile dodatnich rozwiązań ma równanie A. 0 B. 1 C. 2 D. 3 Zad.2. (1pkt) Dla każdego, wartość wyrażenia jest równa: A. B. 1 C. 2 D. 0 Zad.3. (1pkt) Ile wynosi? A. B. C. 1 D. 5 Zad.4. (1pkt) Wartość wyrażenia, dla jest równa: A. 3 B. 1,5 C. 1 D. 0,75 Zad.5. (1pkt) W jednokładności o środku w punkcie M i skali k = -4 obrazem punktu A=(4,5) jest punkt A =(-11,-25). Środkiem tej jednokładności jest punkt A. M=(-8,-19) B. M=(1,-1) C. M=(-2,0) D. M=(9,15) Zad.6. (3pkt) Niech. Wykaż, że. Zad.7. (4pkt) W okrąg wpisano kwadrat, który jest podstawą ostrosłupa prawidłowego czworokątnego, którego wszystkie krawędzie są tej samej długości. Wiedząc, że objętość ostrosłupa jest równa 144 wyznacz długość promienia tego okręgu. Zad.8. (5pkt) W pojemniku jest 10 kul białych. Funkcję f(n), n = 0, 1, 2, określamy następująco: dla danego n dokładamy n kul czerwonych do pojemnika i losujemy jedną kulę, f(n) jest prawdopodobieństwem wylosowania kuli czerwonej. Wyznacz f(5) i f(10) oraz wzór funkcji f(n). Wykaż, że funkcja f(n) jest rosnąca, a następnie wyznacz o ile istnieją- wartości najmniejszą i największą. Zad.9. (3pkt) Udowodnij, że nie istnieje taka liczba rzeczywista x, aby ciąg (sinx, cosx, ctgx) był geometryczny. Zad.10. (2pkt) Dany jest ciąg określony rekurencyjnie. Zakoduj sumę czterech początkowych wyrazów tego ciągu. Zad.11. (5pkt) Dany jest ciąg,. a) Zbadaj monotoniczność tego ciągu. b) Oblicz granicę tego ciągu. c) Podaj największą liczbę a i najmniejszą liczbę b, takie że dla każdego n spełniony jest warunek. Zad.12. (4p) Ciąg zdefiniowano rekurencyjnie:. a) Dla k=2 wyznacz sześć początkowych wyrazów tego ciągu. b) Wyznacz wszystkie wartości k, dla których
Zestaw nr 6 Poziom Rozszerzony Zad.1. (6p) Narysuj wykres funkcji równanie a) nie ma rozwiązań, b) ma dwa rozwiązania różnych znaków.. Wyznacz wszystkie wartości m, dla których Zad.2. (5p) Rozwiąż równanie dla. Zad.3. (5p) Rozwiąż nierówność Zad.4. (1p) Ile rozwiązań ma równanie Zad.5. (2p) W nieskończonym ciągu geometrycznym pierwszy wyraz jest równy, a czwarty wyraz jest równy. Oblicz sumę wszystkich wyrazów tego ciągu. Zakoduj cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanej liczby. Zad.6. (2p) Wyznacz największą liczbę będącą rozwiązaniem równania, należącą do przedziału. Zakoduj cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanej liczby. Do obliczeń przyjmij Zad.7. (4p) Dana jest funkcja Wyznacz zbiór wartości tej funkcji. dla każdej liczby rzeczywistej Zad.8. (2p) Rozwiąż równanie w przedziale. Zad.9. (4p) Wyznacz cztery kolejne liczby całkowite takie, że największa z nich jest równa sumie kwadratów trzech pozostałych liczb. Zad.10. (4p) Okrąg jest styczny do osi układu współrzędnych w punktach i oraz jest styczny do prostej l w punkcie, gdzie. Wyznacz równanie prostej l.
Zestaw nr 7 Poziom Rozszerzony Zad.1. (4p) Rozwiąż równanie w przedziale. Zad.2. (4p) Dane są funkcje oraz, o których wiadomo, że ich wykresy mają wspólny punkt Wyznacz wartości parametrów a,b,c., a miejscem zerowym funkcji g jest liczba Zad.3. (4p) Suma trzech liczb będących kolejnymi wyrazami rosnącego ciągu geometrycznego jest równa 52. Jeżeli do pierwszej liczby dodamy 2, do drugiej 12, a do trzeciej 6, to otrzymamy trzy kolejne wyrazy ciągu arytmetycznego. Wyznacz ten ciąg. Zad.4. (5p) Podstawą ostrosłupa jest trójkąt, którego jeden z boków ma długość 6, a kąty przyległe do niego mają miary i Wysokość ostrosłupa ma długość równą długości promienia okręgu opisanego na podstawie. Oblicz objętość ostrosłupa. Wynik podaj w postaci, gdzie są liczbami wymiernymi. Zad.5. (4p) Ze zbioru liczb wybieramy losowo jednocześnie cztery liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że najmniejszą wylosowaną liczbą będzie 3 lub największą wylosowaną liczbą będzie 7. Zad.6. (5p) Punkty są wierzchołkami trapezu równoramiennego ABCD, którego podstawy AB i CD są prostopadłe do prostej k o równaniu. Oblicz współrzędne pozostałych wierzchołków trapezu, wiedząc że punkt D należy do prostej k. Zad.7. (3p) Wykaż, że dla dowolnych liczb rzeczywistych zachodzi nierówność Zad.8. (4p) W trapezie opisanym na okręgu boki nierównoległe mają długości 3 i 5, zaś odcinek łączący środki tych boków dzieli trapez na dwie części, których pola są w stosunku 5:11. Oblicz długości podstaw trapezu. Zad.9. (4p) Rozwiąż nierówność Zad.10. (4p) Rozwiąż równanie
Zestaw nr 8 Poziom Rozszerzony Zad.1. (3pkt) Rozwiąż nierówność:. Zad.2. (4pkt) Dana jest funkcja. Wymień wszystkie wartości parametru, aby suma sześcianów dwóch miejsc zerowych tej funkcji była większa od. Zad.3. (4pkt) Ciąg jest dany wzorem: dla a) Wykaż, że ciąg jest arytmetyczny, b) Wyznacz takie dwa kolejne wyrazy tego ciągu, aby różnica ich kwadratów była równa 153. Zad.4. (4pkt) Wymień dziedzinę funkcji określonej wzorem:. Zad.5. (4pkt) Rozwiąż równanie: dla. Zad.6. (5pkt) Dane są okręgi o równaniach: i,. Wyznacz wszystkie szerokości parametru, dla których okręgi te mają jeden punkt wspólny. Zad.7. (4pkt) Dany jest ciąg o wyrazie ogólnym. Sprawdź, które wyrazy tego ciągu są równe 4. Zad.8. (5pkt) Dana jest funkcja określona wzorem. Funkcja przyporządkowuje każdej liczbie rzeczywistej najmniejszą wartość funkcji w przedziale. Wyznacz wzór funkcji. Zad.9. (5pkt) Dany jest wielomian. a) Wyznacz parametr, jeśli wiadomo, że pierwiastkiem wielomianu jest liczba. b) Rozwiąż nierówność. Zad.10. (4pkt) Funkcja określone wyrazem Wykaż, że zbiorem wartości tej funkcji jest zbiór liczb rzeczywistych. Zad.11. (5pkt) Dany jest wielomian trzeciego stopnia o współczynniku 1 przy najwyższej potędze. Pierwiastki tego wielomianu tworzą rosnący ciąg geometryczny o pierwszym wyrazie 4. Suma pierwiastków wielomianu jest równa 19. a) Wyznacz wzór tego wielomianu. b) Rozwiąż nierówność
Zestaw nr 9 (Rachunek prawdopodobieństwa i kombinatoryka) Poziom Rozszerzony Zad.1. (4pkt) Spośród punktów A = 1, 1 ), B = (1,0), C = ( 2, 1), D = (4,2), E = ( 4, 2), F = (0,2), ( 2 1 G = ( 1 8, 3), H = ( 16,4) wybrano 5 punktów. Oblicz prawdopodobieństwo, że dokładnie dwa z nich będą należały do wykresu funkcji f(x) = log 2 x. Zad.2. (5pkt) Ze zbioru {1, 2, 3,..., 2n}, gdzie n jest liczbą naturalną, wylosowano dwie liczby. Zdarzenie A oznacza, że suma wylosowanych liczb jest liczbą parzystą. Oblicz, dla jakiej wartości n prawdopodobieństwo zdarzenia A jest równe 115. Zad.3. (3pkt) Ze zbioru {0, 1, 2, 3,..., 9} losujemy 3 razy po jednej cyfrze bez zwracania i układamy w kolejności losowania w liczbę 3-cyfrową. Oblicz prawdopodobieństwo, że w ten sposób ułożymy liczbę większą od 443. Zad.4. (4pkt) Oblicz prawdopodobieństwo, że w czteroosobowej rodzinie wszyscy urodzili się w innym miesiącu w pierwszej połowie roku. Zad.5. (6pkt) W urnie jest 5 kul białych i 4 czarne. Z tej urny wyjmujemy losowo dwie kule. Oblicz, ile kul białych należy dołożyć do tej urny, aby prawdopodobieństwo wylosowania co najmniej jednej kuli białej było większe od 87. Zad.6. (4pkt) Ze zbioru cyfr {1, 2, 3,..., 9} wyjęto 2 razy po jednej ze zwracaniem i ułożono w kolejności losowania w liczbę dwucyfrową. Oblicz prawdopodobieństwo, że ta liczba jest mniejsza od 45 i ma różne cyfry. Zad.7. (4pkt) Oblicz prawdopodobieństwo, że w trzyosobowej rodzinie wszyscy urodzili się w innym dniu tygodnia, ale nie w sobotę i niedzielę. Zad.8. (4pkt) Spośród wierzchołków kwadratu o boku a=1 i środków jego boków wybrano trzy punkty. Oblicz prawdopodobieństwo, że wybrane punkty nie są współliniowe. Zad.9. (4pkt) Spośród wierzchołków trójkąta równobocznego o boku a=2 i środków jego boków wybrano losowo 3 punkty. Oblicz prawdopodobieństwo, że te punkty są wierzchołkami trójkąta o polu równym 43. Zad.10. (5pkt) Spośród cyfr {1, 2, 3, 4, 5, 6, 7} losujemy ze zwracaniem 3 razy po jednej cyfrze i otrzymujemy ciągi trójwyrazowe. Oblicz prawdopodobieństwo: a) zdarzenia A, że otrzymany ciąg jest ciągiem geometrycznym, b) zdarzenia B, że otrzymany ciąg jest ciągiem arytmetycznym, c) zdarzenia C, że otrzymany ciąg jest ciągiem geometrycznym i arytmetycznym. Zad.11. (5pkt) Oblicz prawdopodobieństwo zdarzenia A, że kwadrat losowo wybranej liczby n 1,100 kończy się cyfrą: a) 1, b) 2, c) 5, d) 8. Zad.12. (4pkt) Na egzaminie zdający losuje 4 pytania. Oblicz, ile jest możliwości, że odpowie on pozytywnie na co najmniej 3 pytania, jeżeli umie odpowiedzieć tylko na 20 spośród 25 przygotowanych pytań egzaminacyjnych.
Zestaw nr 10 Poziom Rozszerzony Zad.1 (5p) Dany jest trójkąt ABC równoboczny o boku a. Przez środek D boku AB tego trójkąta poprowadzono prostą tworzącą z tym bokiem kąt o mierze. Prosta ta przecięła bok BC w punkcie E i podzieliła trójkąt na dwie figury o stosunku pól 1:7. Wyznacz kąt. Zad.2 (5p) W okręgu o środku O i promieniu r poprowadzono dwie prostopadłe średnice AB, CD oraz cięciwę AE, która przecięła średnicę CD w punkcie F. Wiadomo, że miara kąta EAB wynosi. Wykazać, że w czworokąt OBEF można wpisać okrąg. Zad.3 (4p) Wykaż, że jest liczbą całkowitą. Zad.4 (5p) Rozwiąż nierówność Zad.5. (5p) Dany jest ciąg. Wyznacz wszystkie wartości, dla których ten ciąg jest arytmetyczny. Zad.6. (4p) W banku w pierwszym roku oszczędzania stopa procentowa była równa, a w drugim roku była o 2 punkty procentowe niższa. Po dwóch latach, przy rocznej kapitalizacji odsetek, stan konta wzrósłby z 1000 zł do 1231 zł, gdyby niw potrącono podatku od odsetek. Oblicz p. Zad.7. (6p) Wysokość H prawidłowego ostrosłupa sześciokątnego jest dwa razy większa niż długość krawędzi jego podstawy. Oblicz cosinus kąta zawartego między sąsiednimi ścianami bocznymi tego ostrosłupa. Zad.8.(6p) Dla jakich wartości parametru m równanie ma rozwiązanie? Zad.9.(6p) Przekształcenie płaszczyzny, które punktowi A o współrzędnych (3;-3) przyporządkowuje punkt A' taki, że A'=(x';y'), gdzie jest jednokładnością o środku w punkcie P=(-2;-1). Wyznacz współrzędne punktu A' oraz skalę tej jednokładności. Napisz równanie obrazu okręgu w tej jednokładności. Zad.10 (5p) Dla kątów trójkąta ABC zachodzi związek Uzasadnij, że trójkąt ABC jest równoramienny.
Zestaw nr 11 Poziom Rozszerzony Zad.1. (4pkt) Dany jest układ równań spełniająca ten układ spełniała warunek. Wyznacz parametr m tak, aby para liczb (x,y) Zad.2. (4pkt) W trapez równoramienny o podstawach długości a i b wpisano okrąg o promieniu r. Wykaż, że. Zad.3. (4pkt) Z drutu o długości 8 dm wykonano prostokątną ramkę. Oblicz wymiary ramki tak, aby pole obszaru ograniczonego tą ramką było największe. Zad.4. (5pkt) Obwód trójkąta jest równy 6, jeden z jego kątów ostrych ma miarę a stosunek długości boków zawartych w ramionach tego kąta jest równy 1:2. Oblicz pole tego trójkąta. Zad.5. (6pkt) Podaj odpowiednie założenia i wykaż: a) b) c). Zad.6. (5pkt) Krawędź sześcianu ma długość. Oblicz pole przekroju tego sześcianu płaszczyzną przechodzącą przez przekątną podstawy i środki dwóch kolejnych krawędzi górnej podstawy. Zad.7. (5pkt) Dany jest okrąg o równaniu i prosta o równaniu. Wyznacz zbiór tych wszystkich m, dla których prosta ta jest styczna do okręgu. Zad.8. (5pkt) Trójkąt o bokach 10, 8, 12 obraca się wokół prostej zawierającej najdłuższy bok. Oblicz objętość i pole powstałej bryły.
Zestaw nr 12 Poziom Rozszerzony Zad.1 (4p) Uzasadnij, że dla każdej liczby całkowitej k liczba przez 36. jest podzielna Zad.2 (4p) Wyznacz wartości współczynników a i b wielomianu wiedząc, że oraz reszta z dzielenia przez dwumian jest równa 10. Zad.3 (4p) Uzasadnij, że jeżeli, to. Zad.4 (5p) Przez wykres funkcji poprowadzono prostą równoległą do osi OX, która przecięła wykres tej funkcji w punktach A i B. Niech C=(3,-1). Wykaż, że pole trójkąta ABC jest większe lub równe 2. Zad.5. (4p) Rozwiąż nierówność: Zad.6. (5p) Wyznacz wszystkie wartości parametru m, dla których równanie ma dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od Zad.7. (6p) Wyznacz wszystkie wartości parametru m, dla których równanie ma dwa różne pierwiastki rzeczywiste takie, że ) 2 Zad.8. (4p) Bok kwadratu ABCD ma długość 1. Na bokach BC i CD wybrano odpowiednio punkty E i F umieszczone tak, aby Oblicz wartość, dla której pole trójkąta AEF jest najmniejsze. Zad.9. (5p) O liczbach a, b, c wiemy, że ciąg (a,b,c) jest arytmetyczny i jest geometryczny. Wyznacz te liczby., zaś ciąg Zad.10 (4p) O ciągu dla wiadomo, że a) Ciąg określony wzorem dla jest geometryczny o ilorazie b) Oblicz Zad.11 (4p) Wyznacz wszystkie wartości rozwiązania równania do przedziału. należące Zad.12.(4p) Rozwiąż równanie w przedziale.