ĆWICZENIE 3 BADANIE SYSTEMU POMIAROWO-DIAGNOSTYCZNEGO W ASPEKCIE NIEPEWNOŚCI DIAGNOZY

Podobne dokumenty
BADANIE WŁAŚCIWOŚCI KOMPUTEROWEGO SYSTEMU POMIAROWO-DIAGNOSTYCZNEGO

ĆWICZENIE 4 WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

Sposoby opisu i modelowania zakłóceń kanałowych

Program APEK Użytkownik Instrukcja użytkownika

OPIS PROGRAMU USTAWIANIA NADAJNIKA TA105

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki. Badanie silników skokowych. Temat ćwiczenia:

Laboratorium Komputerowe Systemy Pomiarowe

ĆWICZENIE 6 KOMPUTEROWY SYSTEM WSPOMAGAJĄCY PROCESY DIAGNOSTYCZNO-OBSŁUGOWE

INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2

Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń. K-5a I PRACOWNIA FIZYCZNA

LABORATORIUM PODSTAW TELEKOMUNIKACJI

I. Interfejs użytkownika.

Instrukcja obsługi Kalkulator 15st.C ELATECH 2010

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA

Przetwarzanie AC i CA

Instrukcja obsługi Szybkiego paragonu w programie LiderSim [ProLider].

Ćwicz. 4 Elementy wykonawcze EWA/PP

Przetwarzanie A/C i C/A

Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Dokumentacja sterownika mikroprocesorowego "MIKSTER MCC 026"

Temat ćwiczenia: Przekaźniki półprzewodnikowe

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

14. TWORZENIE MAKROPOLECEŃ

Parametryzacja przetworników analogowocyfrowych

Celem ćwiczenia jest zapoznanie się z podstawowymi funkcjami i pojęciami związanymi ze środowiskiem AutoCAD 2012 w polskiej wersji językowej.

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

DIAGNOZOWANIE I DOZOROWANIE STANU OBIEKTU EKSPLOATACJI

Program V-SIM tworzenie plików video z przebiegu symulacji

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

INSTRUKCJA PROGRAMU DO REJESTRATORÓW SERII RTS-05 ORAZ RTC-06. wyposażonych w komunikację. Bluetooth lub USB PRZEDSIĘBIORSTWO PRODUKCYJNO HANDLOWE

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

PROGRAMOWALNE STEROWNIKI LOGICZNE

Ćwiczenie 5 Badanie sensorów piezoelektrycznych

Opis ultradźwiękowego generatora mocy UG-500

Obrabiarki CNC. Nr 10

Temat: Organizacja skoroszytów i arkuszy

Licznik rewersyjny MD100 rev. 2.48

Konsola operatora TKombajn

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2013 CZĘŚĆ PRAKTYCZNA

STACJA PAMIĘCI SP2005

Rozdział 8 PROGRAMOWANIE SIECIOWE

Przekształcenia sygnałów losowych w układach

Politechnika Warszawska

Ustawienia ogólne. Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony

Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego

Maskowanie i selekcja

LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU

Windows 10 - Jak uruchomić system w trybie

I Tworzenie prezentacji za pomocą szablonu w programie Power-Point. 1. Wybieramy z górnego menu polecenie Nowy a następnie Utwórz z szablonu

1. Wybierz polecenie rysowania linii, np. poprzez kliknięcie ikony W wierszu poleceń pojawi się pytanie o punkt początkowy rysowanej linii:

AAT Trading Company Sp. z o.o. ul. Puławska 359, Warszawa tel.: , fax: http.://

Ćwiczenie Zmiana sposobu uruchamiania usług

PRZENOŚNY MIERNIK MOCY RF-1000

Terminal WSP dla sygnalizatorów wibracyjnych

Zadanie 11. Przygotowanie publikacji do wydrukowania

OBSŁUGA ZA POMOCĄ PROGRAMU MAMOS.EXE

OPROGRAMOWANIE DEFSIM2

Opis programu Konwersja MPF Spis treści

Kalk15 Instrukcja obsługi ELATECH 2010

CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM

Wyznaczanie prędkości dźwięku w powietrzu

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

Rozdział 5. Administracja kontami użytkowników

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Zastosowania liniowe wzmacniaczy operacyjnych

INDU-52. Przemysłowy Sterownik Mikroprocesorowy. Przeznaczenie Kotły warzelne, Patelnie gastronomiczne, Piekarniki

Instrukcja obsługi rejestratora cyfrowego DLM-090

INSTALACJA DOSTĘPU DO INTERNETU

INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System

Rozdział 8. Sieci lokalne

Część I. Pomiar drgań własnych pomieszczenia

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Systemy operacyjne I Laboratorium Część 3: Windows XP

III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE

Orientacja pojedynczego zdjęcia

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

INSTRUKCJA PROGRAMOWANIA TMI-20W wersja 1.01

8. Sieci lokalne. Konfiguracja połączenia lokalnego

POMIAR CZĘSTOTLIWOŚCI I INTERWAŁU CZASU

Dlaczego stosujemy edytory tekstu?

( L ) I. Zagadnienia. II. Zadania

TERMINAL DO PROGRAMOWANIA PRZETWORNIKÓW SERII LMPT I LSPT MTH-21 INSTRUKCJA OBSŁUGI I EKSPLOATACJI. Wrocław, lipiec 1999 r.

U 2 B 1 C 1 =10nF. C 2 =10nF

POMIARY WIDEO W PROGRAMIE COACH 5

(L, S) I. Zagadnienia. 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia.

Edytor tekstu OpenOffice Writer Podstawy

1 Obsługa aplikacji sonary

Mapa interaktywna Śladami Przeszłości - przewodnik użytkownika

Instrukcja obsługi licznika promieniowania jonizującego MAZAR 01

DIAGNOSTYKA DIAGNOSTYKA

Kontrola topto. 1. Informacje ogólne. 2. Wymagania sprzętowe i programowe aplikacji. 3. Przykładowa instalacja topto. 4. Komunikacja.

Fragment tekstu zakończony twardym enterem, traktowany przez edytor tekstu jako jedna nierozerwalna całość.

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt

1. Opis okna podstawowego programu TPrezenter.

Transkrypt:

ĆWICZENIE 3 BADANIE SYSTEMU POMIAROWO-DIAGNOSTYCZNEGO W ASPEKCIE NIEPEWNOŚCI DIAGNOZY Cel ćwiczenia: - wyznaczenie zależności prawdopodobieństwa zdatności obiektu od wartości sygnału diagnostycznego i niepewności pomiaru; - dyskusja pojęć: sprawdzenie, wynik sprawdzenia, objaw, syndrom, warunkowe i bezwarunkowe prawdopodobieństwo stanu niezdatności, warunki badania, koszt sprawdzenia, niepewność pomiaru. Przedmiot ćwiczenia: - obiekt diagnozowania: generator sygnałowy Narzędzia wspomagające realizację ćwiczenia: - komputerowy program do pomiaru sygnałów diagnostycznych; - komputerowy zestaw pomiarowy z kartą PCL 818. 3.1. Podstawy teoretyczne i założenia Diagnozowanie jest złożonym, kilkuetapowym procesem przetwarzania pierwotnej informacji o wielkościach opisujących obiekt na informację o stanie obiektu czyli na diagnozę. Na każdym etapie mogą występować czynniki powodujące niejednoznaczność tego przetwarzania. W efekcie końcowym powoduje to, że diagnoza jest obarczona niepewnością lub inaczej mówiąc charakteryzuje się obniżoną wiarygodnością. Szczególnie istotny wpływ na wiarygodność diagnozy mają początkowe etapy procesu diagnostycznego: badanie diagnostyczne i wnioskowanie pomiarowe (Rys.3.1). Rys.3.1. Początkowe, zasadnicze etapy procesu diagnozowania 1

Badanie diagnostyczne realizowane jest najczęściej jako pomiar przyrządowy i obarczone jest niepewnością pomiaru. Rzeczywista wartość sygnału diagnostycznego może więc być inna niż wartość zmierzona. Jeśli badanie diagnostyczne zawiera obserwacje organoleptyczne to wynik takiego badania jest na ogół jeszcze mniej wiarygodny. Wnioskowanie pomiarowe, w najprostszym przypadku, polega na porównaniu wyników badania diagnostycznego (czyli zmierzonych wartości sygnału diagnostycznego) z odpowiednimi przedziałami wartości dopuszczalnych dla wyróżnionych stanów obiektu. Przedziały te często nie są jednoznacznie określone są przedziałami o wartościach brzegowych rozmytych (Rys.3.). Stwierdzenie, że zmierzona wartość sygnału (czyli wynik badania) zawiera się w określonym przedziale wartości jest stwierdzeniem istnienia określonego objawu stanu. Tym samym niepewność zaliczenia wyniku pomiaru do określonego przedziału przekłada się na niepewność stwierdzenia określonego objawu (czyli symptomu) stanu. Rys.3.. Ilustracja niepewności pomiaru w aspekcie niepewności symptomu Z wymienionego powodu cały proces wnioskowania diagnostycznego jest realizowany w warunkach informacji niepewnej co wpływa na zmniejszenie wiarygodności diagnozy. Teoretyczna analiza wiarygodności diagnozy nawet w aspekcie nałożenia się dwóch czynników niepewności jest stosunkowo skomplikowana. Można natomiast przeprowadzić analizę wpływu każdego z czynników osobno. W celu przeprowadzenia obserwacji wpływu niepewności pomiaru na wiarygodność diagnozy przyjmijmy następujące założenia upraszczające: 1. Badanie diagnostyczne polega na pomiarze tylko jednej wielkości fizycznej.. Relacja sygnał wynik pomiaru jest obciążona niepewnością wyniku pomiaru. 3. Przedział dopuszczalnych wartości badanego sygnału jest ściśle określony. 4. Wszystkie relacje pomiędzy wynikiem pomiaru a diagnozą eksploatacyjną są jednoznaczne (zdeterminowane i w pełni wiarygodne). W takim przypadku schemat sekwencji etapów procesu diagnostycznego można przedstawić jak na Rys.3.3.

Rys.3.3. Schemat uproszczonego łańcucha działań w procesie diagnozowania Powyższy przypadek można zilustrować również tak jak na Rys.3.4. Rys.3.4. Ilustracja wpływu niepewności pomiaru na wiarygodność symptomu stanu gdzie: x 1, x granice przedziału dopuszczalnych wartości x dla określonego stanu obiektu; x wartość rzeczywista; x 0 wartość zmierzona (wynik pomiaru); f(x x 0 ) rozkład wartości rzeczywistej pod warunkiem otrzymania wartości x 0 oraz P x x x x f x x dx 1 1 0 0 x1 x (3.1) Z dotychczasowych rozważań wynikają następujące wnioski: 1. Na ogół przyjmuje się, że przedział dopuszczalnych wartości jest przedziałem odpowiadającym stanowi zdatności obiektu.. Jeżeli wartość rzeczywista wielkości mierzonej (czyli wielkości symptomowej) mieści się w przedziale dopuszczalnych wartości, to oznacza to, że obiekt jest zdatny. 3. Dla przyjętych założeń upraszczających prawdopodobieństwo zdatności obiektu jest takie jak prawdopodobieństwo tego, że wartość rzeczywista wielkości mierzonej zawiera się w przedziale wartości dopuszczalnych. 3

Najczęściej wolno przyjąć, że niepewność wyniku pomiaru jest dobrze ilustrowana przez normalny (gaussowski) rozkład prawdopodobieństwa zdarzenia polegającego na tym, iż wartość rzeczywista wielkości mierzonej zawiera się w przedziale: 3σ x0 3σ gdzie: - odchylenie standardowe rozkładu normalnego; niepewność standardowa wyniku pomiaru. Przypomnijmy tu, że gęstość prawdopodobieństwa wystąpienia rzeczywistej wartości sygnału badanego wyraża się wzorem: (xx o ) σ 1 p(x, x o,σ) e (3.) πσ zaś prawdopodobieństwo, że wartość rzeczywista znajduje się w przedziale (x 1 x ) czyli, że obiekt jest np. w stanie zdatności wynosi: x P(x,x,σ) p(x,x,σ)dx (3.3) o Zauważmy, że prawdopodobieństwo stanu zdatności zależy nie tylko od niepewności wyniku pomiaru ale także od odległości zmierzonej wartości sygnału od granic przedziału wartości dopuszczalnych. 3.. Opis stanowiska laboratoryjnego Omawiany model procesu diagnostycznego został odwzorowany w stanowisku laboratoryjnym (Rys.3.5). x 1 o Monitor Generator sygnału diagnostycznego Karta PCL 818 Komputer PC Drukarka Obiekt diagnozowania Klawiatura Mysz Połączenia: Rys. 3.5. Schemat funkcjonalny stanowiska pomiarowego Wyjście generatora jest połączone z wejściem analogowym karty pomiarowej. Karta PCL-818 jest integralną częścią komputera. Drukarka, monitor, klawiatura i mysz są na stałe połączone z komputerem. Opis działania układu: Sygnał z generatora z modulacją częstotliwości jest podawany na wejście karty pomiarowej PCL 818, która dokonuje konwersji analogowo-cyfrowej sygnału. 4

Specjalistyczny program pomiarowo-sterujący realizuje rejestrację przebiegów w pamięci komputera a następnie wylicza częstotliwość generowanego sygnału. Dla serii pomiarów program oblicza estymowaną wartość średnią i niepewność pomiaru sygnału diagnostycznego oraz prawdopodobieństwo hipotezy, że rzeczywista wartość mierzonej wielkości mieści się w zadanym przedziale wartości. W ćwiczeniu przyjmujemy, że generator stanowi obiekt diagnozowania a częstotliwość sygnału na jego wyjściu jest wielkością opisującą jego stan (czyli jest sygnałem diagnostycznym). Instrukcja użytkowania programu: Uruchomienie programu następuje poprzez wywołanie go z menu Nortona (klawisz F) i wybranie opcji DIAG. Na ekranie pojawia się menu programu, w którym występują opcje: ZBIORY, INFORMACJE, POMIARY, WYDRUK. Wybór opcji następuje poprzez ustawienie znacznika myszy na danym napisie i jednokrotne kliknięcie lub przejście za pomocą klawisza F10 do linijki menu, ustawienie podświetlenia na odpowiednim napisie za pomocą kursorów i naciśnięcie klawisza Enter, lub wciśnięcie klawisza litery podświetlonej w wybranym napisie. W efekcie wybrania opcji następuje przejście do podmenu. Opcje podmenu a) Zbiory: ZAPIS, ODCZYT, ZAPISASK, WYJŚCIE. Po uaktywnieniu opcji ZAPIS pojawia się na ekranie okno dialogowe umożliwiające wybranie ścieżki dostępu i nadanie nazwy pliku, w którym zostaną zapisane na dysku zmierzone dane. Uaktywnienie opcji ZAPISASK umożliwia zapis na dysku dane w formacie tekstowym ASCII. Opcja ODCZYT umożliwia natomiast wybranie jednego z wcześniej zapisanych plików danych. W oknie dialogowym przedstawiona jest lista istniejących plików. Wybranie opcji WYJŚCIE powoduje zakończenie pracy programu. b) INFORMACJE - po uaktywnieniu pojawi się tekst niniejszej instrukcji. c) WYDRUK - wywołuje wydruk wcześniej przygotowanego ekranu. d) POMIARY: WIELKOŚCI NIEZALEŻNE. Wybranie podopcji powoduje przejście do procedury pomiarowej. Po uruchomieniu podopcji pomiarowej program działa w trybie graficznym i dalsze sterowanie odbywa się tylko z klawiatury za pomocą klawiszy sterujących. Opis klawiszy sterujących procedur pomiarowych F10 F9 F8 Wykonanie pojedynczego pomiaru. Pojawia się charakterystyczne mignięcie ekranu, co oznacza, że wykonany został pojedynczy pomiar sygnału na wyjściu generatora i układu wykonawczego oraz odpowiednie obliczenia badanych wielkości. Następnie program przechodzi w stan oczekiwania na polecenia operatora. Przejście do trybu pracy ciągłej. Efekt bardzo podobny do pracy oscyloskopu. Pomiary powtarzane są aż do chwili naciśnięcia dowolnego klawisza. Mignięcia ekranu sygnalizują wykonanie kolejnych pomiarów i obliczeń. Włączenie / wyłączenie rejestracji pomiarów. Naciśnięcie klawisza powoduje zmianę stanu rejestracji pomiarów do pamięci komputera. Stan jest sygnalizowany napisem w górnej części ekranu. Rejestracja powinna być włączona podczas wykonywania serii pomiarów służących do estymacji wartości średniej i niepewności. Natomiast powinna być wyłączona w pozostałych przypadkach. Rejestracja jest automatycznie wyłączana 5

w przypadku gdy parametry sygnałów nie spełniają zadanych wartości progowych. Przy włączonej rejestracji pomiarów jako wartość pomierzoną do obliczenia prawdopodobieństwa przyjmuje się estymowaną wartość średnią, natomiast przy wyłączonej rejestracji pomiarów przyjmuje się zmierzone wartości z ostatniego pomiaru. Shift+F1 Kasowanie zarejestrowanych pomiarów. Powoduje skasowanie wszystkich zarejestrowanych wartości służących do estymacji parametrów wielkości mierzonych. Esc Wyjście do głównego menu. Dotyczy podopcji i powoduje zakończenie wykonywanych operacji i zamknięcie okna wraz z przejściem do okna głównego menu. Ctrl+PrtScr Przygotowanie obrazu ekranu do wydruku. Następuje zmiana obrazu na czarno-biały, przetworzenie i zapamiętanie obrazu oraz powrót do kolorowego obrazu. Wykonanie tej operacji jest koniecznie by następnie można było dokonać wydruku zapamiętanego ekranu za pomocą opcji WYDRUK z menu głównego. Kursory poziome Zmiana wartości środkowej przedziału diagnostycznego (dokładnie). Ctrl+ Kursory poziome Zmiana wartości środkowej przedziału (zgrubne). Kursory pionowe Zmiana szerokości przedziału diagnostycznego. Wymienione klawisze pozwalają na sterowanie pomiarem i przetwarzaniem danych w zależności od wybranych opcji. 3.3. Zadanie laboratoryjne Przygotowanie stanowiska laboratoryjnego: a) Sprawdzić, czy do wejść płytki pomiarowej karty PCL818 są podłączone odpowiednie sygnały. b) Włączyć komputer, monitor i przygotować drukarkę. c) Uruchomić program pomiarowy. Objaśnienie pojęć i użytych oznaczeń - wartość środkowa przedziału wartości dopuszczalnych (tu: przedziału diagnostycznego charakteryzującego stan zdatności): x1 x xsr (3.4) - względne odchylenie od wartości środkowej przedziału diagnostycznego: x0 xsr Δxr (3.5) x x1 - względna niepewność pomiaru: σ σr (3.6) x x1 - wiarygodność pozytywnej diagnozy (prawdopodobieństwo, że obiekt jest w stanie zdatności): P x x x x R x,x, (3.7) 1 0 1 x0 6

Pomiary: a) Ustawić parametry generatora i wartości przedziałów oraz wykonać co najmniej 30 pomiarów przy włączonej rejestracji w celu określenia niepewności pomiaru. Zmodyfikować ustawienia generatora tak, by niepewność pomiaru wynosiła około 0,1 szerokości przedziału diagnostycznego. Względną niepewność pomiaru wpisać do tabeli 3.1. b) Wyłączyć rejestrację i wykonać pojedynczy pomiar. c) Ustawić przedział diagnostyczny tak, by jego wartość środkowa była równa wartości zmierzonej, czyli by względne odchylenie od środka przedziału wynosiło 0. d) Przyjmując, że niepewność pomiaru w danym cyklu pomiarowym się nie zmienia odczytać prawdopodobieństwo zdatności i wpisać do tabeli 3.1. e) Zmieniając położenie przedziału diagnostycznego odczytać prawdopodobieństwo zdatności dla wartości względnego odchylenia od środka przedziału wyszczególnionych w tabeli 3.1. f) Powtórzyć czynności z punktów a) e) dla względnej niepewności około 0,; 0,3; 0,4; 0,5; 0,7; 1; 1,5. Prawdopodobieństwo zdatności obiektu w funkcji odchylenia i niepewności względnej tabela 3.1. Tabela 3.1. Odchylenie względne Niepewność względna Z R -1,50-1,10-1,05-1,00-0,95-0,90-0,50 0,00 0,50 0,90 0,95 1,00 1,05 1,10 1,50 0,10 0,0 0,30 0,40 0,50 0,70 1,00 1,50 gdzie: Z założona niepewność względna; R rzeczywista niepewność względna (patrz wyrażenie 3.6) 3.4. Uwagi końcowe W wyniku wykonania ćwiczenia należy przedstawić sprawozdanie, które powinno zawierać: wykresy: - prawdopodobieństwa zdatności diagnozowanego obiektu w funkcji odchylenia sygnału diagnostycznego od środka przedziału zdatności przy stałej niepewności pomiaru; - prawdopodobieństwa zdatności w funkcji niepewności pomiaru przy stałej wartości sygnału diagnostycznego; 7

- niepewności pomiaru w funkcji odchylenia sygnału diagnostycznego od środka przedziału zdatności przy stałym prawdopodobieństwie zdatności. wnioski z przeprowadzonych badań i dyskusji. Przygotowanie do ćwiczenia powinno obejmować zapoznanie z treścią rozdziału 3 podręcznika: L. Będkowski, T. Dąbrowski Podstawy eksploatacji, cz. 1. Podstawy diagnostyki technicznej, Wyd. WAT 000 oraz z treścią rozdziału 5 (a szczególnie pkt. 5.5) podręcznika: L. Będkowski, T. Dąbrowski Podstawy eksploatacji, cz.. Podstawy niezawodności eksploatacyjnej, Wyd. WAT 006. 3.5. Zagadnienia kontrolne 1. Zdefiniować znaczenie pojęć: sprawdzenie, wynik sprawdzenia, objaw, syndrom, prawdopodobieństwo stanu niezdatności i zdatności, koszt sprawdzenia, niepewność pomiaru.. Omówić wpływ wartości sygnału diagnostycznego i niepewności pomiaru na prawdopodobieństwo stanu zdatności. 3. Omówić właściwości rozkładu normalnego zmiennej losowej. 4. Na czym polega badanie diagnostyczne i co jest efektem tego badania? 5. Od czego zależy wiarygodność diagnozy? 6. Na czym polega wnioskowanie pomiarowe i co jest efektem tego wnioskowania? 7. Jak oblicza się wiarygodność symptomu? 8. Na czym polega wnioskowanie syndromowe i co jest efektem tego wnioskowania? 9. Na czym polega wnioskowanie strukturalne i co jest efektem tego wnioskowania? 10. Na czym polega wnioskowanie eksploatacyjne i co jest efektem tego wnioskowania? 8