Jolanta Królczyk PROCES MIESZANIA WIELOSKŁADNIKOWYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU ŚLIMAKOWYM



Podobne dokumenty
OCENA JAKOŚCI WIELOSKŁADNIKOWEJ, NIEJEDNORODNEJ MIESZANINY ZIARNISTEJ

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W PRZEMYSŁOWYM MIESZALNIKU PASZ

WYZNACZENIE EFEKTYWNEGO CZASU MIESZANIA W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM

OKREŚLENIE EFEKTYWNEGO CZASU MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW DLA DZIESIĘCIOSKŁADNIKOWEJ MIESZANKI PASZOWEJ

BADANIE PROCESU MIESZANIA WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W ZALEŻNOŚCI OD SPOSOBU PODAWANIA SKŁADNIKÓW

MIESZANIE I SEGREGACJA PODCZAS PROCESU UJEDNORODNIANIA PASZ

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWYCH MIESZANIN ZIARNISTYCH NA LINII MIESZANIA W PRZEMYSŁOWEJ WYTWÓRNI PASZ

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Wprowadzenie do analizy korelacji i regresji

Jolanta Królczyk, Dominika Matuszek, Marek Tukiendorf Wydział Mechaniczny Politechnika Opolska

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

Przykład 1. (A. Łomnicki)

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Analiza wariancji. dr Janusz Górczyński

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

KORELACJE I REGRESJA LINIOWA

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

PDF created with FinePrint pdffactory Pro trial version

OCENA JEDNORODNOŚCI JEDENASTOSKŁADNIKOWEJ MIESZANKI PASZ

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.

Statystyka i Analiza Danych

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

Analiza autokorelacji

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

W1. Wprowadzenie. Statystyka opisowa

Weryfikacja hipotez statystycznych

ADAPTACJA FUNKCJI KWADRATOWEJ DO OPISU ZMIAN JAKOŚCI MIESZANKI ZIARNISTEJ

Statystyka matematyczna dla leśników

Podstawowe pojęcia statystyczne

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

Statystyka matematyczna i ekonometria

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

WNIOSKOWANIE STATYSTYCZNE

OGRANICZENIE SEGREGACJI MIESZANEK PASZOWYCH DLA PTAKÓW PODCZAS WIELOPUNKTOWEGO ZASYPU ZBIORNIKA

POLITECHNIKA OPOLSKA

Zadania ze statystyki cz.8. Zadanie 1.

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Analiza współzależności zjawisk

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

METODY STATYSTYCZNE W BIOLOGII

Zadania ze statystyki, cz.6

Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych

Hierarchiczna analiza skupień

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

STATYSTYKA I DOŚWIADCZALNICTWO

Wykład ze statystyki. Maciej Wolny

Ekonometria. Zajęcia

Kilka uwag o testowaniu istotności współczynnika korelacji

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Metody Ilościowe w Socjologii

Statystyka w pracy badawczej nauczyciela

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

3. Modele tendencji czasowej w prognozowaniu

Sposoby prezentacji problemów w statystyce

Regresja logistyczna (LOGISTIC)

Regresja i Korelacja

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Analiza regresji - weryfikacja założeń

MODELE LINIOWE. Dr Wioleta Drobik

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA I DOŚWIADCZALNICTWO

Skalowanie wielowymiarowe idea

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Analiza Współzależności

Rozdział 8. Regresja. Definiowanie modelu

Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA

KARTA KURSU. Kod Punktacja ECTS* 1

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

Porównanie dwóch rozkładów normalnych

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Testowanie hipotez statystycznych.

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Wnioskowanie statystyczne. Statystyka w 5

STATYSTYKA MATEMATYCZNA

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji

Etapy modelowania ekonometrycznego

Badanie zależności skala nominalna

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Analiza współzależności dwóch cech I

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Wykład 4: Statystyki opisowe (część 1)

ANALIZA STRUKTURY WIEKOWEJ ORAZ PŁCIOWEJ CZŁONKÓW OFE Z WYKORZYSTANIEM METOD TAKSONOMICZNYCH

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Transkrypt:

PROCES MIESZANIA WIELOSKŁADNIKOWYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU ŚLIMAKOWYM Jolanta Królczyk Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska 1 WPROWADZENIE Proces mieszania jest szczególną operacją jednostkową, występującą w wielkiej liczbie zastosowań praktycznych i w każdej branży przetwórczej. Jego rola jest niezwykle istotna, zwłaszcza kiedy pojawiają się nowe technologie, czy zwiększone wymagania dotyczące jakości produktu. Czasem postęp technologiczny wyprzedza opracowanie podstaw teoretycznych, a czasem to nowe pomysły badawcze są z powodzeniem aplikowane do przemysłu. Podstawowe problemy mieszania nie zmieniły się od lat i są aktualne, zarówno od strony naukowej z punktu widzenia badacza, jak i przemysłowej, z punktu widzenia przedsiębiorcy nastawionego na zysk. Zagadnienia te można sprowadzić do trzech pytań: 1 Jaką mieszaninę można uznać za jednorodną? Kiedy można stwierdzić, że układ materiałów został dobrze wymieszany? 3 Jak uzyskać mieszaninę jednorodną możliwie szybko i niewielkim kosztem? [3]. Mimo wielu prac badawczych z tego zakresu mieszanie materiałów ziarnistych jest zagadnieniem stale aktualnym. Jest to proces złożony, zależny od szeregu parametrów, takich jak: charakterystyka mieszanych materiałów, typ urządzenia mieszającego oraz warunki prowadzenia procesu. Nie należy zapominać, iż jest to również proces losowy, w którym składniki rozpraszane są w mieszalniku przez chaotyczny, przypadkowy ruch cząstek. Wielowątkowość tego zjawiska sprawia, że jest to interesujące zagadnienie. Do tej pory przedstawiono wiele propozycji wyjaśniających mechanizmy mieszania, jednak większość prac badawczych dotyczyła modeli i prac prowadzonych w warunkach laboratoryjnych [, 5, 8, 1, 15]. Na tej podstawie udało się przybliżyć zjawiska i mechanizmy cząstkowe. Żaden z modeli nie jest jednak doskonały i każdy ma wady i zalety. Wiadomo również, iż wyników i wniosków uzyskanych z modelowania procesu w warunkach laboratoryjnych nie można bezpośrednio przełożyć na warunki przemysłowe z uwagi na zmianę skali urządzenia. Realne sytuacje są zazwyczaj bardziej złożone, niosąc ze sobą nowe problemy do rozwiązania i konieczność opracowania innych metod opisu stanu mieszaniny. Większość rzeczywistych mieszanin ziarnistych, z jakimi mamy do czynienia w przemyśle, np. w mieszalni pasz, to wieloskładnikowe układy niejednorodne. Szczególnie na tym polu procesy mieszania nie zostały dobrze poznane. W modelowaniu procesów mieszania coraz częściej wykorzystywane są nowe metody informacyjne, np. komputerowa analiza obrazu czy modelowanie neuronowe. Jednak nie zawsze te precyzyjne narzędzia badawcze są w stanie pomóc w analizie układów składających się z wielu komponentów, tak jak ma to miejsce w produkcji mieszanek paszowych. Dlatego też w pracy przedstawiono nowatorską w tej dziedzinie wiedzy analizę wykorzystującą metodę taksonomiczną. WYBRANE PROBLEMY BADAWCZE PRACY 1 Jak ocenić jakość wieloskładnikowych, niejednorodnych mieszanin ziarnistych w procesie mieszania z recyrkulacją? Jak opisać przebieg procesu w czasie? 95

3 Czy można uzyskać mieszaninę zgodną ze wzorcem (składem zakładanym przez producenta)? 4 Jak długo prowadzić proces mieszania? 5 Czy można skrócić czas mieszania, aby uzyskać rozkład częstości badanych komponentów zgodny ze wzorcem? 3 CEL I ZAKRES PRACY Analiza aktualnego, dość ubogiego stanu wiedzy, wynikającego z niewielkiej liczby publikacji dotyczących opisu mieszania wieloskładnikowych, niejednorodnych mieszanin ziarnistych, skłoniła autorkę do podjęcia własnych badań eksperymentalnych, mających na celu poszerzenie wiedzy z tego zakresu. Dodatkowym aspektem prowadzonych badań była recyrkulacja składników, odbywająca się w trakcie procesu mieszania oraz prowadzenie procesu w warunkach przemysłowych. Zestawienie braków wiedzy, zaprezentowanych w problemach badawczych, skłoniło do poszukiwania nowych sposobów opisu procesu mieszania niejednorodnych, wieloskładnikowych mieszanin ziarnistych w urządzeniu z mieszadłem ślimakowym. Dodatkowym uzasadnieniem do podjęcia badań własnych jest brak metod obliczeniowych pozwalających na opisanie przebiegu tego procesu i stanu mieszanin materiałów ziarnistych podczas prowadzenia procesu z recyrkulacją składników. Hipoteza pracy: Czas mieszania może być krótszy niż czas zalecony przez producenta mieszalnika (3 minut), przy jednoczesnym zachowaniu rozkładu częstości badanych ziaren zgodnego ze wzorcem - wymaganym składem mieszanki pasz. Cel pracy: Celem pracy było zbadanie działania mieszalnika stosowanego do mieszania układów wieloskładnikowych, pracującego w warunkach przemysłowych. Przyczyną podjęcia się badań było zapytanie dotyczące możliwości poprawy ekonomiki procesu (skrócenie czasu mieszania z uwagi na konieczność zwiększenia produkcji). Podjęto próbę opisu procesu mieszania w oparciu o dyskretną analizę składu dla trzech wybranych mieszanek w odstępach 3 sekundowych w 3 minutowym przedziale czasu mieszania. Intencją pracy była ponadto próba opisu intensywności badanego zjawiska w oparciu o metody statystyczne pozwalające na bezwymiarowy opis poszczególnych faz mieszania, jeżeli takie można by zaobserwować. 4 METODYKA BADAŃ Badania eksperymentalne prowadzono w warunkach przemysłowych w mieszalni pasz Ovigor. Do badań wykorzystano mieszalnik o działaniu okresowym z komorą nieruchomą i pionowym mieszadłem ślimakowym (rys. 1, tab. 1). Moc mieszadła wynosiła 5,5 kw. Prędkość mieszania była stała. Rys. 1. Schemat mieszalnika pasz wykorzystanego do badań mieszalnik o działaniu okresowym z komorą nieruchomą z pionowym mieszadłem ślimakowym [opracowanie własne autora]. Tabela 1. Wymiary mieszalnika pasz wykorzystanego do badań [Ovigor ]. Wymiary mieszalnika [mm] Wysokość części cylindrycznej - A 155 Wysokość części stożkowej - B 16 Wysokość otworu wysypowego - C 3 Średnica wewnętrzna części cylindrycznej - D 18 Średnica wewnętrzna otworu wysypowego - E 3 96 www.statsoft.pl/czytelnia.html Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1

Masa zasypanego materiału ziarnistego do mieszalnika wynosiła kg w przypadku mieszaniny 9-składnikowej o nazwie Ekonomik Z, kg w przypadku mieszaniny Ekonomik RL i 99,5kg w przypadku mieszaniny Ekonomik BP. Charakterystyczna dla procesu mieszania była zewnętrzna recyrkulacja składników poprzez przenośnik kubełkowy. Mieszanie zasypanego materiału ziarnistego następowało w wyniku ruchu mieszadła ślimakowego mieszalnika oraz w wyniku recyrkulacji składników poprzez przenośnik kubełkowy. Zasypany do mieszalnika materiał ziarnisty wysypywał się w miejscu spustu z mieszalnika i kierowany był do kosza zasypowego, a następnie poprzez przenośnik kubełkowy zasypywany był z powrotem do wnętrza mieszalnika. Pełny cykl mieszania od momentu zasypu wszystkich komponentów do wnętrza mieszalnika trwał 3 minut. W tym czasie pobierano próby do badań. Pobór próbek do analizy odbywał się w sposób dyskretny w miejscu wysypu z mieszalnika w 3 sekundowych odstępach czasu. W ten sposób otrzymano 6 prób. Następnie próby rozdzielono na poszczególne składniki. Każdy z komponentów ważono, przeliczając masę wydzielonych składników na udziały procentowe. Uzyskano w ten sposób udziały procentowe poszczególnych składników mieszanki w zależności od czasu mieszania (kolejnych minut). Tabela. Skład badanych mieszanin ziarnistych, ich udziały procentowe oraz masowe na wejściu. Nazwa mieszanki Komponenty mieszanin ziarnistych Ekonomik Z (9-składnikowa) procentowy [%] masowy [kg] Ekonomik RL (1-składnikowa) procentowy [%] masowy [kg] Ekonomik BP (1-składnikowa) procentowy [%] masowy [kg] Dari (sorgo białe) 1,5 5,,91,,86 6, Groch zielony - -,7 5, 4,76 1, Groch żółty 5, 1, 6,14 135, 1,48, Jęczmień 9, 58, - - - - Kardi (krokosz) - - - - 1,19 5, Kukurydza 16, 3, 36,35 8, 4,49 85, Owies bezłuskowy - - - -,38 5, Peluszka 1,, 8,64 19, 16, 34, Proso żółte,5 45, 6,8 15, 7,6 16, Pszenica 3, 6, 9,9 64, - - Ryż biały - - - - 1,19 5, Słonecznik czarny 1,5 3, 1,8 4, 1,88 39,5 Sorgo 5, 1, 6,8 15, 8,57 18, Wyka brązowa - - 1,14 5,,38 5, Suma 1,, 1,, 1, 99,5 5 WYNIKI Uzyskane wybrane wyniki badań eksperymenttalnych zostały przedstawione na rys.. Zauważono, iż udziały składników oscylują wokół udziału wymaganego, zmieniając wartość amplitudy odchylenia od wartości oczekiwanej. W początkowych minutach procesu amplitudy te są największe, stopniowo zmniejszając swoje wartości, i dążą do wartości docelowej. Przebieg zmian koncentracji komponentów w czasie przyjmuje postać funkcji okresowej. Zjawisko to nie zostało wcześniej opisane w literaturze przedmiotu badań. Do opisu przebiegu funkcji w czasie zaproponowano zatem połączenie funkcji sinusoidalnej (harmoniki) z efektem tłumienia. W pracy zaproponowano matematyczny opis procesu mieszania niejednorodnych, wieloskładnikowych mieszanin ziarnistych za pomocą funkcji harmonicznej z tłumieniem. Funkcja ta przyjęła postać: u Ae at sin( t ) c (1) gdzie: u udział komponentu w mieszaninie [%], t czas mieszania [s], c parametr przesunięcia funkcji względem osi t, A, a, ω, φ, c parametry funkcji. Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1 www.statsoft.pl/czytelnia.html 97

RSK koncentracja składnika [%] koncentracja składnika [%] Proces mieszania wieloskładnikowych materiałów ziarnistych w mieszalniku ślimakowym Do oszacowania parametrów powyższej funkcji wykorzystano pakiet STATISTICA. 7 6 5 4 3 1 pszenica 3 6 9 1 15 18 w artości empiryczne czas mieszania [s] w ymagany udział Rys.. Wykres zmian procentowego udziału pszenicy w czasie 3 minut mieszania otrzymany dla mieszaniny Ekonomik RL. Na wybranym wykresie (rys. 3) przedstawiono przebieg empiryczny oraz krzywą regresji uzyskaną w wyniku dopasowania funkcji harmonicznej. Do oceny dopasowania modelu do danych empirycznych zastosowano współczynnik determinacji R [13]. kukurydza Model: u=4,746*exp(-,53*t)*sin(-1,17*t-,6)+39,957 R^=,8811 9 8 7 6 5 4 3 1 3 6 9 1 15 18 czas mieszania [s] wartości empiryczne linia regresji Rys. 3. Przebieg funkcji uzyskanej w wyniku modelowania otrzymany dla mieszaniny Ekonomik RL dla kukurydzy. jakość mieszaniny w danej jednostce czasu. W tym celu wykorzystano parametr jednozmiennowej analizy regresji liniowej resztową sumę kwadratów. Modelowano związki między dwiema zmiennymi: zmienną zależną Y (wynikową) docelowym rozkładem częstości składników, zmienną niezależną X (objaśnianą) rozkłady udziałów poszczególnych składników w kolejnych odstępach czasowych. Resztowa suma kwadratów jest zdefiniowana następująco: n n e ( ˆ i yi yi i 1 i 1 RSK ) (), gdzie: RSK resztowa suma kwadratów, e i błąd i tej obserwacji, y i docelowy rozkład częstości składników, ŷ i wartość przewidywana z oszacowania otrzymanego z prostej regresji [1]. Resztowe sumy kwadratów (RSK) stały się podstawą do opracowania wykresów przedstawiających zmianę jakości mieszanin w czasie. Gdy RSK jest równa zero, wówczas udziały wszystkich komponentów w określonym punkcie czasowym są równe wartościom docelowym, a więc uzyskuje się najlepszą jakość mieszaniny. Na wykresie (rys. 4) zaprezentowano przebieg zmian resztowej sumy kwadratów w czasie. 9 8 7 6 Ekonomik Z 5 Zauważono, że funkcja harmoniczna z tłumieniem bardzo dobrze odzwierciedla zmiany udziałów poszczególnych składników w czasie procesu mieszania. Ze względu na to, iż próby do badań pobierano w inny sposób niż tradycyjnie (pobór prób z wnętrza mieszalnika na różnej wysokości złoża), również klasyczne, opisane w literaturze miary opisu jakości nie znalazły zastosowania do opisu przebiegu procesu badanych mieszanin w czasie. Analiza przebiegu zmian procentowych udziałów komponentów w mieszaninach skłoniła do poszukiwania parametru, który określiłby za pomocą jednej wartości liczbowej 4 3 1 3 6 9 1 15 18 czas mieszania [s] 1 pomiar pomiar 3 pomiar Rys. 4. Wykres zmian resztowej sumy kwadratów w zależności od czasu mieszania uzyskany dla 9-składnikowej mieszaniny Ekonomik Z dla 3 serii badawczych. Analiza wykresów zmian RSK w funkcji czasu przeprowadzona dla serii trzech prób badanych mieszanin ziarnistych skłoniła do 98 www.statsoft.pl/czytelnia.html Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1

RSK Proces mieszania wieloskładnikowych materiałów ziarnistych w mieszalniku ślimakowym wysunięcia wniosku o skróceniu czasu Mieszania. Widać wyraźnie, iż w początkowych minutach procesu zmiany jakości mają burzliwy przebieg, a następnie przebieg zmienności parametru stabilizuje się. Na tej podstawie wysunięto wniosek o podziale procesu na dwa etapy: etap zmian burzliwych (pierwsza faza procesu) oraz etap zmian łagodnych (druga faza procesu). W pierwszym etapie zmian burzliwych amplitudy odchyleń od wartości docelowej (czyli ) są znacznie większe niż w drugim etapie zmian łagodnych. Etap łagodnych zmian charakteryzuje się niewielkimi zmianami odchyleń udziałów wszystkich komponentów w określonym punkcie czasowym od wartości docelowych. Prowadzenie procesu po okresie zmian burzliwych wydaje się niezasadne, gdyż mieszanie po tym etapie nie przynosiło wyraźnej zmiany (polepszenia) jakości mieszaniny. W celu wyznaczenia granicznego czasu procesu, dzięki któremu można podzielić proces na dwa etapy, wykorzystano dwie metody statystyczne: test t-studenta i analizę skupień. 5.1 Test t-studenta Na wykresie zmian RSK w czasie (por. rys. 4) przedstawiono graficznie amplitudy odchyleń od wartości maksymalnych (lokalne maksima funkcji) (rys. 5). Następnie zestawiono wartości amplitud wraz z odpowiadającymi im minutami procesu mieszania i wykonano test t-studenta w celu podziału procesu na dwa etapy. Hipotezę badawczą testu t-studenta sformułowano następująco: H: μ1 = μ. Nie ma różnicy między pierwszą i drugą grupą minut. Wyniki pierwszej i drugiej grupy pochodzą z populacji o tych samych średnich, a więc wartości resztowej sumy kwadratów (RSK) zakwalifikowane do pierwszej grupy minut burzliwego mieszania nie różnią się statystycznie od drugiej grupy minut łagodnego mieszania. Hipotezę alternatywną sformułowano następująco: H1: μ1 μ. Wartości RSK w etapie minut zmian burzliwych różnią się od wartości RSK w grupie minut zmian łagodnych. Sprawdzano statystyczną istotność testu t-studenta wyznaczoną dla dwóch grup minut burzliwego i łagodnego mieszania. Wizualna ocena przebiegu wykresów zmian burzliwego i łagodnego mieszania pozwoliła na arbitralne założenie w przybliżeniu przynależności poszczególnych minut procesu do danej grupy. Fakt ten wymaga jednak statystycznego dowodu. Przeprowadzono zatem wspomniany już test t-studenta. W kolejnych krokach sprawdzano wartości istotności testu dla różnych przypadków podziału procesu. Następnie odrzucono przypadki, w których hipoteza badawcza została przyjęta, a do podziału procesu na dwa etapy wybrano wartość minimalną wartość testu t-studenta dla grup różniących się statystycznie. Otrzymane wyniki zaprezentowano na przykładowym wykresie (rys. 5) 9 8 7 6 5 4 3 1 Ekonomik Z 3 6 9 1 15 18 wartości empiryczne czas mieszania [s] amplitudy odchyleń od wartości docelowej Rys. 5. Wykres zmian resztowej sumy kwadratów w zależności od czasu mieszania uzyskany dla 9-składnikowej mieszaniny Ekonomik Z wraz z amplitudami odchyleń od wartości docelowej. Czas trwania I i II etapu jest różny dla kolejnych serii pomiarowych badanych mieszanin ziarnistych: Ekonomik Z I etap średnio 14 minut i 5 sekund, a więc czas mieszania w mieszalniku w tym przypadku można skrócić o połowę; Ekonomik RL I etap średnio 1 minut i 5 sekund; Ekonomik P I etap średnio 8 minut i 45 sekund. Ma to istotne znaczenie w kontekście czasu i nakładów energetycznych ponoszonych podczas mieszania, a przede wszystkich wpływa na zwiększenie wydajności produkcji pasz. 5. Analiza skupień eta p W niniejszej pracy analizę skupień (cluster analysis) [6, 14] wykorzystano na dwa sposoby. W pierwszym przypadku analiza skupień Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1 www.statsoft.pl/czytelnia.html 99

posłużyła do podziału procesu na dwa etapy: I burzliwych zmian oraz II zmian łagodnych. Analizę zastosowano do określenia granicy przejścia etapu I w etap II. Analizę taksonomiczną zastosowano również do klasyfikacji komponentów wchodzących w skład wieloskładnikowych mieszanin ziarnistych oraz do oceny wpływu udziału poszczególnych składników na przebieg procesu mieszania. Procedury różniły się algorytmami. Analiza skupień jest zbiorem metod służących do wyodrębnienia homogenicznych podpopulacji wśród obiektów pochodzących z populacji heterogenicznej [14]. Podstawową ideą jest znajdowanie grup (skupień) obiektów, które są bardziej podobne (w sensie zastosowanej miary) do obiektów współtworzących dane skupienie (wewnątrz grupy) aniżeli do obiektów innych skupień [14]. Algorytm analizy skupień, którego celem był podział procesu na dwa etapy (burzliwych i łagodnych zmian) oraz określenie granicy przejścia z etapu I do II, przebiegał następująco: 1 Opisanie przebiegu procesu w czasie za pomocą resztowej sumy kwadratów w czasie dla 3 serii badawczych poszczególnych mieszanin 9-, 1-, 1-składnikowych. Do opisu wykorzystano opisaną wcześniej funkcję harmoniczną z tłumieniem. Zdefiniowanie macierzy danych. Macierz danych wyjściowych zawierała wartości zmian RSK uzyskane w wyniku modelowania za pomocą funkcji harmonicznej z tłumieniem (wartości otrzymane z linii regresji dla kolejnych minut procesu). Obiektami macierzy (przypadkami) były minuty mieszania, natomiast cechami (zmiennymi) były wartości RSK uzyskane dla 3 serii badawczych. 3 Przeprowadzenie standaryzacji zmiennych. 4 Wybranie miary podobieństwa. Do obliczeń przyjęto euklidesową miarę (metrykę) odległości pomiędzy obiektami opisanymi odpowiednimi cechami: d ik p x j 1 ij x kj 1 (3) gdzie: x ij wartość j-tej cechy dla i-tego obiektu, x kj wartość j-tej cechy dla k-tego obiektu, d ik odległość pomiędzy i-tym i k-tym obiektem (i, k=1,,...,m j=1,,...,p) [4]. 5 Określenie macierzy odległości taksonomicznych. 6 Przeprowadzenie aglomeracji skupień metodą Warda. Powszechnie potwierdzona jest najlepsza efektywność tej metody. Cechą tej metody jest zapewnienie minimalnej wariancji wewnątrz skupienia. Metoda ta zapewnia homogeniczność wewnątrz skupień i heterogeniczność pomiędzy skupieniami (w sensie minimalizacji i maksymalizacji wariancji) [9]. Na dendrogramach (rys. 6 7) przedstawiono graficzną interpretację sposobu tworzenia połączeń dla dwóch wybranych mieszanin ziarnistych. Odległość wiąz. 7 6 5 4 3 1 Diagram dla 6 przyp. Metoda Warda Odległości euklidesowe Ekonomik Z 3 9,5 9 8,5 8 7,5 7 6,5 6 5,5 5 4,5 4 3,5 3,5 1,5 1,5 19,5 19 18,5 18 17,5 17 16,5 16 15,5 15 14,5 14 13,5 13 1,5 1 11,5 11 1,5 1 9,5 9 8,5 8 7,5 7 6,5 6 5,5 5 4,5 4 3,5 3,5 1,5 1,5 minuty mieszania Rys. 6. Dendrogram ilustrujący otrzymaną hierarchię skupień poszczególnych minut dla 9-składnikowej mieszaniny Ekonomik Z. Odległość wiąz. 6 5 4 3 1 etap Diagram dla 6 przyp. Metoda Warda Odległości euklidesowe Ekonomik BP 3 9,5 9 8,5 8 7,5 7 6,5 6 5,5 5 4,5 4 3,5 3,5 1,5 1,5 19,5 19 18,5 18 17,5 17 16,5 16 15,5 15 14,5 14 13,5 13 1,5 1 11,5 11 1,5 1 9,5 9 minuty mieszania 8,5 8 etap Rys. 7. Dendrogram ilustrujący otrzymaną hierarchię skupień poszczególnych minut dla 1-składnikowej mieszaniny Ekonomik BP. 7 Dokonanie analizy dendrytu. Przy podziale dendrytu na poszczególne skupienia nie da się sformułować jednoznacznego kryterium formalnego. Jako kryterium zatrzymania procesu (tzw. kryterium stopu) zastosowano 7,5 7 6,5 6 5,5 5 4,5 4 3,5 3,5 1,5 1,5 3 www.statsoft.pl/czytelnia.html Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1

współczynnik fuzji. W miejscu, gdzie krzywa fuzji staje się bardziej płaska, tj. gdzie dodatkowy przyrost informacji jest niewielki, poprzez przyłączanie kolejnych obiektów do istniejącej grupy odcinamy gałęzie dendrogramu. Dodatkowym kryterium identyfikacji liczby skupisk były wcześniej wyciągnięte wnioski o podziale procesu na dwa etapy. Wnioski te wyciągnięto w oparciu o wykorzystanie resztowej sumy kwadratów w ocenie jakości mieszanin ziarnistych. Na podstawie analizy dendrogramów przedstawionych na rys. 6 i 7 potwierdzono wcześniej wyciągnięte wnioski o podziale procesu na dwa etapy: I etap zmian burzliwych oraz II etap zmian łagodnych, czyli niewielkich odchyleń amplitud udziałów procentowych od wartości docelowych oraz niewielkich zmian jakości ocenianych za pomocą resztowej sumy kwadratów. W fazie zmian burzliwych wartość odległości aglomeracyjnej łączącej minuty I etapu jest znacznie większa niż wartość tej odległości w II etapie. Oznacza to, iż w obrębie drugiego skupienia (II etapu) obiekty (minuty) cechują się większym podobieństwem, a więc mniejszymi zmianami wartości RSK. Natomiast w I etapie minuty charakteryzuje mniejsze podobieństwo. Porównanie granic podziału procesu dla 9-, 1- i 1-składnikowych mieszanin dostarcza kolejnych interesujących informacji. Dla mieszaniny 9-składnikowej Ekonomik Z I etap procesu trwa 15,5 minuty, dla mieszaniny 1- składnikowej Ekonomik RL 14 minut, natomiast dla mieszaniny 1-składnikowej Ekonomik BP etap ten trwa 9,5 minuty. Podział procesu za pomocą testu t-studenta dostarczył podobnych informacji, a mianowicie dla mieszaniny Ekonomik Z I etap trwał średnio 14 minut i 5 sekund, dla mieszaniny Ekonomik RL 1 minut i 5 sekund, natomiast dla mieszaniny Ekonomik BP 8 minut i 45 sekund. Porównanie czasów trwania etapów procesu zestawione jest w tab. 3. Podział procesu na dwa etapy za pomocą analizy skupień potwierdza wysunięte wcześniej przypuszczenie o skróceniu czasu mieszania. Można powiedzieć, że średnio etap I trwał 15 minut w przypadku mieszaniny Ekonomik Z, 1 minut dla mieszaniny Ekonomik RL oraz 9 minut dla mieszaniny Ekonomik BP. Tabela 3. Porównanie czasu trwania I i II etapu przeprowadzone za pomocą testu t-studenta i analizy skupień Nazwa mieszaniny Czas mieszania Liczba Test t-studenta Analiza skupień składników I etap II etap I etap II etap Ekonomik Z 9,5 14 min 5 s 14 min 1 s,5 15,5 min 16 3 min = 3 845 s = 85 18 s = 3 93 s = 96 18 s Ekonomik RL 1,5 1 min 5 s 1 min 3 s,5 14 min 14,5 3 min = 3 65 s = 63-18 = 3 84 s = 87 18 s Ekonomik BP 1,5 8 min 45 s 8 min 5 s,5 9,5 min 1 3 min = 3 55 s = 53 18 s = 3 57 s = 6 18 s Przebieg procesu mieszania zależny jest od wielu parametrów charakteryzujących zarówno materiał, jak i warunki prowadzenia procesu. Na jego przebieg mają wpływ charakterystyczne własności mieszanych materiałów (np. rozkład wymiarów ziaren, gęstość nasypowa), cechy urządzenia mieszającego (np. wymiary i kształt mieszalnika) czy też warunki prowadzenia procesu. Jak wykazują dotychczasowe badania istotny wpływ na przebieg procesu mieszania wywierają proporcje udziałów masowych lub objętościowych w mieszaninie [3]. Poznanie praw rządzących tym procesem należy do istotnych zagadnień naukowych. Do opisu zagadnień opisujących proces mieszania wieloskładnikowych, niejednorodnych mieszanin ziarnistych może posłużyć szeroko stosowana analiza skupień (cluster analysis) [6, 14]. Analiza skupień w tym przypadku posłużyła do oceny wpływu udziałów poszczególnych ziaren na przebieg procesu mieszania. Metoda ta, podobnie jak w przypadku pierwszego algorytmu, pozwoliła na wyszukanie w zbiorze danych grup obiektów podobnych i podzielenie zbioru na podzbiory. Zbiorem analizowanych danych były wszystkie składniki mieszaniny opisane kolejnymi minutami mieszania. W celu przeprowadzenia analizy zbioru danych wykorzystano następujący algorytm: Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1 www.statsoft.pl/czytelnia.html 31

1 Zdefiniowano macierz danych. Macierz danych stanowiły procentowe udziały poszczególnych składników mieszanin w zależności od minut mieszania. Obiektami (przypadkami) macierzy były komponenty mieszanin, a cechami (zmiennymi) były procentowe udziały tych komponentów w kolejnych minutach mieszania. Przeprowadzono standaryzację zmiennych. 3 Wybrano miarę podobieństwa (przyjęto miarę euklidesową odległości pomiędzy obiektami). 4 Określono macierz odległości taksonomicznych. 5 Przeprowadzono aglomerację skupień metoda Warda (rys. 8). 6 Dokonano analizy dendrytu. Przy podziale dendrogramów na skupienia dokonano analizy współczynników fuzji, a w ostatecznym kryterium zatrzymania procesu aglomeracji i weryfikacji przynależności obiektów (poszczególnych składników) do dendrogramu wykorzystano metodę zaproponowaną przez Z. Hellwiga [7]. W tej metodzie dwa podzbiory zbioru uznajemy za istotnie różne, jeśli najkrótsza odległość między parą punktów należących do dwóch różnych podzbiorów jest większa niż pewna wartość krytyczna (Wk). Odległość taksonomiczna wiązania 4 35 3 5 15 1 5 PROSO SORGO SŁONECZN Diagram dla 9 przypadków Metoda Warda, odległości euklidesowe Ekonomik Z GROCH ŻÓ JĘCZMIEŃ KUKURYDZ DARI PELUSZKA PSZENICA Rys. 8. Dendrogram ilustrujący otrzymaną hierarchię skupień poszczególnych składników dla 9-składnikowej mieszaniny Ekonomik Z. Do oszacowania wartości krytycznej należy znaleźć wartość minimalną w poszczególnych wierszach macierzy odległości. Następnie dla tak powstałych zmiennych oblicza się średnią arytmetyczną x i odchylenie standardowe. Wartość krytyczną oblicza się na podstawie wzoru [11]: W k x (4) 7 Zanalizowano strukturę każdego skupienia. Do analizy wykorzystano metodę średnich arytmetycznych [1]. W metodzie tej dla macierzy danych wyjściowych, dla poszczególnych skupień, obliczono średnie arytmetyczne kolejnych cech X n (kolejnych minut mieszania). Kolejnym krokiem było obliczenie średnich grupowych X, czyli średnich dla danej cechy (minuty mieszania). Wskaźnikiem struktury każdego skupienia są ilorazy X n / X. Iloraz większy od jedności świadczy o przewadze określonej cechy w skupieniu. Podsumowując wyniki analizy struktury, można powiedzieć, że składniki mieszaniny Ekonomik Z jęczmień i pszenica miały największy wpływ na przebieg procesu, ponieważ wartości ilorazów X n / X tego skupienia w 6 przypadkach były większe od 1, a w 54 przypadkach iloraz ten przyjął największą wartość (maksymalną) ilorazu X n / X. Analiza skupień dzieląca składniki na 3 grupy dostarczyła informacji o podobnym zachowaniu się cząstek ziaren pszenicy i jęczmienia. Wartość ilorazu X n / X skupienia 1-elementowego (kukurydza) o udziale procentowym 16 w 45 przypadkach była większa od 1 i skupienie to dominowało w 6 przypadkach. Pozostałe składniki, tj. peluszka, groch żółty, dari, sorgo, słonecznik i proso o najmniejszych udziałach procentowych, nie miały znaczącego wpływu na przebieg mieszania. Przebieg zmian koncentracji kukurydzy w czasie jest na tyle indywidualny i charakterystyczny, że składnik ten wydzielony został do osobnego 1-elementowego skupienia. W przypadku mieszaniny Ekonomik RL dominujący wpływ na przebieg tego procesu odegrały tylko dwa składniki: pszenica i kukurydza o największych udziałach procentowych. 1-składnikowa mieszanina BP została podzielona na 3 skupienia. Podobnie jak w przypadku mieszaniny Ekonomik Z kukurydza znalazła się w jednym skupieniu. Składnik ten o udziale 4,49% zdominował przebieg procesu we wszystkich minutach (wartości ilorazu X n / X były maksymalne we wszystkich minutach dla tego skupienia). W drugim skupieniu, grupującym groch żółty i peluszkę, wartości ilorazów X n / X były większe od 1 w 54 przypadkach, co świadczy o dużym wpływie tych składników na ten proces. Pozostałe składniki 3 www.statsoft.pl/czytelnia.html Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1

(kardi, owies bezłuskowy, dari, ryż biały, wyka brązowa, słonecznik, proso żółte, sorgo i groch zielony) nie odegrały znaczącego wpływu na przebieg procesu z recyrkulacją. Analiza porównawcza wyników przedstawionych dla różnych mieszanin ziarnistych wykazała istotną korelację pomiędzy udziałem składnika mieszaniny a jego wpływem na przebieg procesu. Im większy udział składnika, tym większą rolę odgrywa w procesie. 6 PODSUMOWANIE Podsumowując całość pracy można powiedzieć, że: 1 Wyniki badań uzasadniają i uwiarygodniają hipotezę w stopniu wskazującym na możliwość praktycznego z niej korzystania. Cel pracy wykazuje wyraźnie, iż istnieje możliwość poprawy ekonomiki procesu. Poniżej przedstawiono wnioski szczegółowe odnoszące się do poszczególnych aspektów omawianych w pracy. 7 WNIOSKI Proces mieszania odbywający się w urządzeniu z mieszadłem ślimakowym podzielono na etapy: etap zmian burzliwych (I faza), etap zmian łagodnych (II faza). Dzięki temu wyróżniono dwa wyraźne sposoby mieszania, różniące się charakterem przebiegu zmian koncentracji komponentów w kolejnych minutach mieszania. W pierwszym etapie amplitudy odchyleń od wartości docelowych są większe niż w drugim etapie. W etapie zmian łagodnych procesu koncentracja składników stabilizuje się, amplitudy odchyleń od wartości oczekiwanych są niewielkie, zatem nie następuje już praktycznie poprawa jakości mieszaniny. Podział procesu na dwa etapy stał się podstawą do wysunięcia wniosku o ograniczeniu czasu mieszania, w celu poprawy ekonomiki procesu i wydajności pracy mieszalni pasz. Prowadzenie procesu po okresie zmian burzliwych wydaje się niezasadne, gdyż mieszanie po tym etapie nie przyniosło znacznej poprawy jakości mieszanin ziarnistych, ocenianej na podstawie odchyleń wartości uzyskanych z pomiarów od wartości oczekiwanych (zakładanych przez producenta). Zatem czas mieszania można skrócić co najmniej o połowę dla wszystkich badanych mieszanin ziarnistych. Za pomocą dwóch metod statystycznych z różną dokładnością wyznaczono granicę przejścia z fazy zmian burzliwych do fazy zmian łagodnych, a więc długość trwania I i II fazy i na tej podstawie podano konkretne minuty procesu, po których mieszanie nie przynosi wyraźnej poprawy jakości. Średnio czas trwania I etapu dla mieszaniny Ekonomik Z wyniósł 15 minut, dla mieszaniny Ekonomik RL 1 minut, natomiast dla mieszaniny Ekonomik BP 9 minut. Zaproponowano nowy sposób opisu jakości mieszanin ziarnistych: resztowa suma kwadratów. Wykorzystanie parametru resztowej sumy kwadratów pozwoliło na obserwację zmian jakości mieszanin ziarnistych w czasie. Gdy resztowa suma kwadratów jest równa zero, wówczas udziały wszystkich komponentów w określonym punkcie czasowym są równe wartościom docelowym, a więc uzyskuje się najlepszą jakość mieszaniny. Analiza skupień została wykorzystana do oceny wpływu udziałów procentowych poszczególnych komponentów na przebieg mieszania i grupowania (klasyfikacji komponentów) wchodzących w skład wieloskładnikowych mieszanin ziarnistych. Na tej podstawie określono podobieństwo w zachowaniu się poszczególnych ziaren w procesie mieszania z recyrkulacją. Analiza porównawcza wyników przedstawionych dla różnych mieszanin ziarnistych wykazała istotną korelację pomiędzy udziałem składnika mieszaniny a jego wpływem na przebieg procesu. Im większy udział składnika, tym większą rolę odgrywa w procesie. W przypadku mieszaniny Ekonomik Z i BP charakter zmian koncentracji kukurydzy w czasie mieszania był na tyle indywidualny, iż została ona wyodrębniona w jedno skupienie. Kukurydza w przypadku mieszaniny Ekonomik BP odegrała największy wpływ na przebieg tego procesu (ponad 4%). W przypadku mieszaniny Ekonomik Z największy wpływ na przebieg procesu odegrały jęczmień i pszenica, natomiast w przypadku mieszaniny Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1 www.statsoft.pl/czytelnia.html 33

Ekonomik RL dominujący wpływ na proces miały pszenica i kukurydza. Zauważono, iż zmiany koncentracji komponentów w czasie przyjmują kształt funkcji harmonicznej z tłumieniem. Matematyczny opis funkcji harmonicznej z tłumieniem Obrazuje przebieg procesu w czasie i dobrze odzwierciedla zmiany koncentracji składników. BIBLIOGRAFIA 1) Aczel A. D., 5: Statystyka w zarządzaniu. PWN, Warszawa. ) Alexander A., Shinbrot T., Muzzio F. J., 1: Granular segregation in the double-cone blender: Transition and mechanisms. Physics of Fluids 13, No 3, 578-587. 3) Boss J., 1987: Mieszanie materiałów ziarnistych. PWN, Warszawa Wrocław. 4) Brzeziński J., 1987: Wielozmiennowe modele statystyczne w badaniach psychologicznych. PWN, Warszawa. 5) Dury C. M., Ristow G. H., 1997: Radial segregation in two-dimensional rotating drum. J. Phys. I France, 7, 737. 6) Hartigan, J. A., 1975: Cluster algoritms. New York, Wiley. 7) Hellwig Z., 1968. Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Przegląd Statystyczny z. 4. 8) Królczyk J., Tukiendorf M., 5: Using the methods of geostatic function and Monte Carlo in estimating the randomness of distribution of a two-component granular mixture during the flow mixing, EJPAU, Vol. 8 Issue 4 (5). 9) Marek T., 1989: Analiza skupień w badaniach empirycznych. Metody SAHN. PWN, Warszawa. 1) Moakher M., Shinbrot T., Muzzio F. J., : Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology 19, 58-71. 11) Pluta W., 1977. Wielowymiarowa analiza porównawcza w badaniach ekonomicznych. PWN Warszawa. 1) Runge J., 199: Wybrane zagadnienia analizy przestrzennej w badaniach geograficznych. Skrypt Uniwersytetu Śląskiego nr 469. 13) Stanisz A.,. Przystępny kurs statystyki z wykorzystaniem programu STATISTICA PL na przykładach z medycyny. Tom II. StatSoft, Kraków. 14) Tryon R. C., 1939: Cluster Analysis. Ann Arbor, Ml: Edwards Brothers. 15) Tukiendorf M., 3: Modelowanie neuronowe procesów mieszania niejednorodnych układów ziarnistych. Rozprawa habilitacyjna, Akademia Rolnicza w Lublinie. 34 www.statsoft.pl/czytelnia.html Zastosowania metod statystycznych w badaniach naukowych IV StatSoft Polska 1