CHEMIA ZAGADNIENIA EGZAMINACYJNE NA EGZAMIN MAGISTERSKI



Podobne dokumenty
CHEMIA PYTANIA NA EGZAMIN DYPLOMOWY MAGISTERSKI ANALIZA INSTRUMENTALNA

Spektrofotometria ( SPF I, SPF II ) Spektralna analiza emisyjna ( S ) Fotometria Płomieniowa ( FP )

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Spis treści CZĘŚĆ I. PROCES ANALITYCZNY 15. Wykaz skrótów i symboli używanych w książce... 11

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

2. Metody, których podstawą są widma atomowe 32

Zakres wymagań przedmiotu Analiza instrumentalna

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

WYMAGANIA DO KOLOKWIUM

3. Ogniwa galwaniczne i ich podział (ogniwa chemiczne i stężeniowe). 5. Zasada i sposoby pomiaru siły elektromotorycznej ogniwa (metoda kompensacyjna

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, Warszawa

ZAKRES MATERIAŁU Z ANALIZY INSTRUMENTALNEJ

POTENCJOMETRIA KONDUKTOMETRIA

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

POTENCJOMETRIA KONDUKTOMETRIA

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

ZAKŁAD CHEMII ANALITYCZNEJ

Fizykochemiczne metody w kryminalistyce. Wykład 7

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Modelowanie molekularne

Chemia I Semestr I (1 )

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: FARMACJA... PROFIL KSZTAŁCENIA: PRAKTYCZNY...

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: FARMACJA...

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Metody analizy fizykochemicznej związków kompleksowych"

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej...

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej

Modelowanie molekularne

Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: ANALITYKA MEDYCZNA... PROFIL KSZTAŁCENIA: PRAKTYCZNY...

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Zagadnienia z przedmiotu CHEMIA ANALITYCZNA I INSTRUMENTALNA dla II roku farmacji

Model wiązania kowalencyjnego cząsteczka H 2

Spektroskopia molekularna. Spektroskopia w podczerwieni

RENTGENOGRAFIA. Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd 1W e, 2L PRZEWODNIK PO PRZEDMIOCIE

Spis treści. Przedmowa redaktora do wydania czwartego 11

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok WF (kierunek farmacja)

Modelowanie molekularne

Analityka przemysłowa i środowiskowa. Nowoczesne techniki analityczne. Analityka środowiskowa. Analityka radiochemiczna

Kierunek i poziom studiów: Biotechnologia, pierwszy Sylabus modułu: Chemia ogólna (1BT_05)

SPIS TREŚCI 1. PODSTAWOWE POJĘCIA CHEMII. MASA ATOMOWA I CZĄSTECZKOWA... 3

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki

Metody badań fizykochemicznych w inżynierii środowiska. Wykład na kierunku IŚ studia III stopnia Ewa Regulska

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Rozwiązanie: Zadanie 2

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

Analiza instrumentalna

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Zakres wymagań z przedmiotu CHEMIA ANALITYCZNA dla II roku OML

Właściwości kryształów

Spektroskopowe metody identyfikacji związków organicznych

Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

Metody Badań Składu Chemicznego

Konwersatorium ze Spektroskopii Molekularnej III ROK

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK /~bezet

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

KRYTERIA WYBORU W PLANOWANIU I REALIZACJI ANALIZ CHEMICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki

Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2016/2017. Semestr 1M

Opis efektów kształcenia dla modułu zajęć

TEORIA PASMOWA CIAŁ STAŁYCH

Spektroskopia w podczerwieni

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy chemii. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: pierwszego stopnia

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Opis efektów kształcenia dla modułu zajęć

Zagadnienia z przedmiotu CHEMIA ANALITYCZNA I INSTRUMENTALNA dla. II roku farmacji ANALIZA KLASYCZNA

CHEMIA OGÓLNA (wykład)

Wykład z Chemii Ogólnej

Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski.

Chemia koordynacyjna. Podstawy

PRZEWODNIK PO PRZEDMIOCIE

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)

Chemia bionieorganiczna / Rosette M. Roat-Malone ; red. nauk. Barbara Becker. Warszawa, Spis treści

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.

Metoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie

Uniwersytet Śląski w Katowicach str. 1 Wydział

Księgarnia PWN: Krzysztof Pigoń, Zdzisław Ruziewicz Chemia fizyczna. T. 2

Podstawy krystalochemii pierwiastki

Rentgenografia - teorie dyfrakcji

Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

Transkrypt:

CHEMIA ZAGADNIENIA EGZAMINACYJNE NA EGZAMIN MAGISTERSKI Chemia analityczna 1. Zasada podziału kationów na grupy analityczne. 2. Zastosowanie reakcji maskowania w analizie chemicznej. 3. Wyjaśnić różnice w przebiegu krzywych miareczkowania mocny kwas mocna zasada i słaby kwas mocna zasada. 4. Zasada działania wskaźników alkacymetrycznych jedno- i dwubarwnych. 5. Roztwory buforowe skład, właściwości, mechanizm działania. 6. Zastosowanie EDTA w analizie miareczkowej, uwzględnić krzywe miareczkowania. 7. Zasada działania wskaźników metalochromowych. 8. Wyjaśnić pojęcia: stała trwałości, warunkowa stała trwałości. Uwzględnić współczynnik reakcji ubocznych. 9. Omówić czynniki wpływające na potencjał układów redoks. 10. Wyjaśnić pojęcie amfoteryczności w reakcjach kwasowo-zasadowych i reakcjach redoks. Napisać odpowiednie równania reakcji. 11. Mieszanina Zimmermanna-Reinhardta skład, właściwości i zastosowanie. 12. Miareczkowanie bezpośrednie i pośrednie w jodometrii. 13. Zdefiniować iloczyn rozpuszczalności i omówić czynniki wpływające na rozpuszczalność. 14. Omówić zasady wytrącania osadów w analizie wagowej. 15. Metody argentometrycznego oznaczania jonów Cl. 16. Budowa, zasada działania i zastosowanie elektrody szklanej. 17. Narysować i omówić schemat układu pomiarowego w potencjometrii. Wyjaśnić rolę i właściwości elektrod. 18. Omówić budowę, zasadę działania i zastosowanie elektrod jonoselektywnych. 19. Zdefiniować przewodnictwo właściwe oraz omówić czynniki wpływające na jego wartość. 20. Typy krzywych w miareczkowaniu konduktometrycznym. 21. Narysować i omówić budowę naczynka polarograficznego 3-elektrodowego. Wyjaśnić rolę i właściwości elektrod. 22. Elektrolit podstawowy skład, właściwości i zastosowanie. 23. Omówić powstawanie, właściwości i zastosowanie prądu dyfuzyjnego w polarografii. 24. Metody oznaczeń ilościowych w polarografii. 25. Narysować i omówić przebieg fali polarograficznej. Wyjaśnić zasadę analizy jakościowej i ilościowej w polarografii. 26. Na dowolnym przykładzie wyjaśnić zasadę miareczkowania amperometrycznego z jedną elektrodą spolaryzowaną, typy krzywych. 27. Narysować i omówić schemat układu do miareczkowania biamperometrycznego. 28. Omówić zasadę miareczkowania kulometrycznego. Wykazać jego zalety w porównaniu do kulometrii bezpośredniej. 29. Zasada doboru długości fali do oznaczeń spektrofotometrycznych w zakresie UV-Vis. Miareczkowanie spektrofotometryczne. 30. Scharakteryzować chromatografię jako metodę analityczną. Przedstawić podział metod chromatograficznych.

Spektroskopia 1. Oddziaływanie promieniowania elektromagnetycznego z materią. Energia promieniowania, dualizm korpuskularno-falowy, absorpcja, rozpraszanie i emisja promieniowania. 2. Rodzaje spektroskopii, kryteria podziału: zakres promieniowania, rodzaj oddziaływania promieniowania z układem materialnym formy energii wewnętrznej cząsteczek. 3. Reguły wyboru w spektroskopii rotacyjnej, oscylacyjnej i elektronowej. 4. Zastosowanie praw absorpcji w pomiarach spektralnych. 5. Widmo rotacyjne molekuł dwuatomowych, wieloatomowych, zastosowanie mikrofalowej spektroskopii rotacyjnej. 6. Widmo oscylacyjne cząsteczek dwuatomowych, modele stosowane do opisu oscylacji cząsteczek. 7. Widmo oscylacyjne i oscylacyjno - rotacyjne cząsteczek wieloatomowych, klasyfikacja drgań normalnych, zastosowanie spektroskopii w podczerwieni. 8. Rodzaje przejść elektronowych omówić na przykładach. 9. Elektronowe widma absorpcji. Aparatura do pomiaru widm, parametry pasma absorpcji. 10. Zależność widma absorpcji od barwy substancji. 11. Wpływ środowiska na stany energetyczne cząsteczek. Oddziaływania elektrostatyczne. Przesunięcia solwatochromowe i termochromowe. 12. Zastosowanie pomiarów spektrofometrycznych. 13. Spektroskopia Ramana. Pasma stokesowskie i antystokesowskie. 14. Dezaktywacja stanów wzbudzonych (diagram Jabłońskiego). 15. Rodzaje luminescencji (podział ze względu na sposób wzbudzenia cząsteczki, oraz ze względu na multipletowość stanu emitującego). 16. Widma fluorescencji i widma wzbudzenia fluorescencji, wygaszanie fluorescencji. Wzorce fluorescencyjne. 17. Ilościowy opis zjawiska luminescencji: wydajność kwantowa fluorescencji, czas życia fluorescencji. 18. Podstawy teoretyczne rezonansu magnetycznego jąder i elektronów. Zjawisko ekranowania jądrowego. Sprzężenia spinowo spinowe. Warunek rezonansu 19. Interpretacja widm magnetycznego rezonansu jądrowego i ich zastosowanie. 20. Zasada rejestracji widm magnetycznego rezonansu jądrowego i elektronowego rezonansu jądrowego. 21. Zastosowania magnetycznego rezonansu jądrowego i elektronowego rezonansu jądrowego.

Krystalografia 1. Udowodnij w oparciu o konkretne przykłady, że krystalografia jest interdyscyplinarną dziedziną naukową. 2. Podaj znane Ci definicje kryształów. Omów anizotropowe własności fizyczne kryształów takie jak twardość, łupliwość, rozszerzalność cieplna, przewodnictwo cieplne i elektryczne 3. Co rozumiesz pod pojęciem uporządkowania? Scharakteryzuj stany materii pod względem uporządkowania. Co to są funkcje dystrybucji? 4. Podaj krystalograficzny sens periodu identyczności i periodu zasadniczego. W jaki sposób można go opisać matematycznie? 5. Wymień układy krystalograficzne. Co jest podstawą do zaliczenia kryształu do danego układu krystalograficznego? 6. Podaj sens geometryczny wskaźników Millera prostej i płaszczyzny sieciowej. Narysuj w rzucie aksonometrycznym prostą sieciową o wskaźnikach [1 1 0] oraz płaszczyznę sieciową o wskaźnikach (1 1 0), w krysztale z układu regularnego. 7. Jakie ograniczenia narzuca teoria sieciowa na osie symetrii? 8. Co to są grupy translacyjne Bravaisa? 9. Podaj genezę grup przestrzennych występujących w kryształach. 10. Jakie są zasady symboliki grup przestrzennych według International Tables? 11. Jakie znasz źródła promieniowania rentgenowskiego? Scharakteryzuj jedno z nich. 12. Opisz doświadczenie Friedricha i Knippinga. 13. Jakie znasz sposoby monochromatyzowania wiązki rentgenowskiej używanej do badań rentgenostrukturalnych? 14. Jakie czynniki wpływają na intensywność refleksu rentgenowskiego? 15. Wyprowadź równanie Bragga i uzasadnij jego wykorzystanie. 16. Omów zastosowanie rentgenowskich pomiarów dyfraktometrycznych do identyfikacji faz krystalicznych. 17. Wyjaśnij do czego służy wskaźnikowanie dyfraktogramów? 18. Scharakteryzuj monokrystaliczne metody dyfraktometryczne (na wybranym przykładzie 19. Scharakteryzuj polikrystaliczne metody dyfraktometryczne (na wybranym przykładzie). 20. Przedstaw tok analizy rentgenostrukturalnej. 21. Omów struktury: NaCl, CsCl, diamentu, grafitu, sfalerytu, wurcytu, Cu metalicznej, stałego CO2, SiO2 (krystobalitu i heksagonalnego kwarcu). Podziel struktury na typy pod względem wiązań chemicznych oraz przedstaw korelacje z właściwościami tych związków. 22. Zdefiniuj energię sieci krystalicznej i czynniki wpływające na jej wielkość (przykłady). 23. Wymień i scharakteryzuj metody hodowli monokryształów? 24. Opierając się na przykładach wyjaśnij wpływ liczby koordynacyjnej na geometrię wielościanu koordynacyjnego. 25. Wyjaśnij na czym polega efekt piro-i piezoelektryczny.

Analiza instrumentalna 1. Spektrometria absorpcji promieniowania w podczerwieni IR 2. Podstawy absorpcji promieniowania IR - reguły wyboru 3. Zasady interpretacji widm IR 4. Spektrometria absorpcji promieniowania UV VIS 5. Prawa absorpcji promieniowani UV-VIS 6. Interpretacja widm UV-VIS i ich wykorzystanie w analizie chemicznej 7. Chromatografia, parametry retencyjne, mechanizm rozdziału chromatograficznego 8. Analiza jakościowa w chromatografii - sposoby identyfikacji substancji 9. Analiza ilościowa w chromatografii - metody kalibracji 10. Detektory wykorzystywane w chromatografii gazowej (FID, ECD, MS) 11. Chromatografia cieczowa kolumnowa (HPLC) 12. Podstawowe detektory wykorzystywane w HPLC (UV-VIS, DaD, MS) 13. Chromatografia cienkowarstwowa TLC 14. Chromatografia jonowymienna 15. Potencjometria: rodzaje elektrod, zastosowanie analityczne 16. Potencjometria: elektrody jonoselektywne, budowa i zastosowanie 17. Miareczkowanie potencjometryczne 18. Elektrograwimetria 19. Polarografia stałoprądowa - rola elektrolitu podstawowego 20. Polarografie zmiennoprądowe rodzaje polarografii 21. Woltamperometria: podstawy metody i podział 22. Woltamperometria inwersyjna: wykorzystanie w analityce 23. Miareczkowanie amperometryczne; zasada metody, krzywe miareczkowania 24. Konduktometria -podstawy teoretyczne, zastosowanie konduktometrii

Chemia teoretyczna 1. Czym różnią się, a w czym są podobne metody Hartree-Focka oraz Hartree-Focka- Roothaana? 2. Wyjaśnić na czym polega proces iteracyjny w metodzie pola samouzgodnionego (SCF, Self-Consistent Field). Skąd pochodzi nazwa tej metody? 3. Skąd wynikają podstawowe trudności rachunkowe w obliczeniach ab initio dla czasteczek. 4. Rodzaje baz funkcyjnych w obliczeniach ab initio. Co oznaczają poszczególne symbole w nazwach baz funkcyjnych: STO-3G, 6-31G, 6-31G*, 6-311++G**? 5. Co to są metody półempiryczne chemii kwantowej? Skąd pochodzi ich nazwa? Czym jest parametryzacja metody półempirycznej? 6. Na czym polega przybliżenie zerowego nakrywania różniczkowego (ZDO, Zero Differential Overlap)? Jakie są konsekwencje jego zastosowania w metodach CNDO, INDO oraz NDDO? 7. Co oznacza używane w chemii kwantowej określenie optymalizacja geometrii? Co w tym wypadku jest optymalizowane a co jest tzw. funkcją celu? Co to są: minimum lokalne, minimum globalne, punkt siodłowy? 8. Co to jest i do czego służy mechanika molekularna (MM, Molecular Mechanics)? Skąd wynikają jej zalety? 9. Teoria drgań normalnych 10. Omówić podstawową ideę metody dynamiki molekularnej (MD, Molecular Dynamics). 11. Omówić podstawowe podziały kanonicznych orbitali molekularnych cząsteczek wieloatomowych. Czym różnią się orbitale molekularne kanoniczne od zlokalizowanych? W jaki sposób tworzone są zlokalizowane orbitale molekularne? 12. Co to jest gęstość elektronowa? W jaki sposób może być wykorzystana do obliczenia momentu dipolowego molekuły? 13. Na czym polega analiza populacyjna Mullikena? W jaki sposób można obliczyć populacje elektronową na atomie? 14. Co to jest i do czego może być używany molekularny potencjał elektrostatyczny (MEP, Molecular Electrostatic Potential)? 15. Do czego służy i na czym polega metoda mieszania (oddziaływania) konfiguracji (CI, Configuration Interaction)? Jakie są jej wady i zalety? Czym od metody CI różni się wielokonfiguracyjna metoda pola samo uzgodnionego (MC SCF, Multiconfiguration Self-Consistent Field)? 16. Na czym polega teoria funkcjonału gęstości (DFT, Density Functional Theory) i czym różni się od wcześniejszych metod chemii kwantowej? Co to jest energia korelacyjnowymienna? 17. Metody supermolekularna i perturbacyjna w teorii oddziaływań międzycząsteczkowych.

Teoria Grup 1. Dowieść, że grupa dowolna rzędu czwartego jest grupą komutatywna. 2. Jak za pomocą widm drganiowych ustalić ksztalt cząsteczki N2 F2. 3. Jakie typy przejść możliwe są w pirydynie. 4. Dowieść, że istnieje przynajmniej dwa typy grup rzędu czwartego. 5. Jak za pomocą widm drganiowych ustalić ksztalt cząsteczki SF4. Termodynamika statystyczna 1. Napisać wyrażenie dla drganiowej funkcji rozkładu. 2. Obliczyć postępową funkcję rozkładu amoniaku w kontenerze o pojemności 380 cm3 w temperaturze 327 K. 3. Obliczyć postępową funkcję rozkładu azotu w kontenerze o pojemności 250 cm3 w temperaturze 298 K 4. Napisać wyrażenie dla rotacyjnej funkcji rozkładu cząsteczki liniowej.