PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I



Podobne dokumenty
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna System dziesiątkowy System rzymski 5-6

Wymagania na poszczególne oceny klasa 4

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

Przedmiotowy system oceniania z matematyki w klasach IV - VI

K P K P R K P R D K P R D W

Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

SPRAWDZIANY Z MATEMATYKI

Przedmiotowy system oceniania z matematyki kl.i

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk

Rozkład materiału klasa 1BW

Ocena dostateczna. Ocena dobra

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi

Przedmiotowy system oceniania MATEMATYKA kl. IV na podstawie programu nauczania Matematyka z kluczem

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. MIKOŁAJA KOPERNIKA W KROŚNIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ W WÓLCE HYŻNEŃSKIEJ

,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz.

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PRZEDMIOTOWY SYSTEM OCENIANIA. z Matematyki. Krysztof Jerzy

ZASADY OCENIANIA PRZEDMIOTOWEGO Z MATEMATYKI

Plan wynikowy dla klasy 6 Matematyka wokół nas"

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI. Przedmiotowy system oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń:

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH

REGULAMIN KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH w roku szkolnym 2015/2016. Zagadnienia ogólne

NUMER IDENTYFIKATORA:

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA Z HISTORII DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA

ROK SZKOLNY 2012/2013

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

WYMAGANIA EDUKACYJNE W ROKU SZKOLNYM 2014 /2015

Szczegółowe kryteria ocen dla klasy czwartej.

EGZAMIN MATURALNY Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

Czas pracy 170 minut

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016

Program nauczania matematyki

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014

WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

ZASADY PRZEDMIOTOWEGO OCENIANIA Z MATEMATYKI W GIMNAZJUM W WĄSOWIE

JĘZYK ANGIELSKI. Przedmiotowy system oceniania w klasach 1-3

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.

Przedmiotowy System Oceniania z Katechezy w Szkole Podstawowej w Trzebielu dla klas IV-VI zgodny z programem nauczania Odkrywamy tajemnice Bożego

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA UCZNIÓW O SPECJALNYCH POTRZEBACH EDUKACYJNYCH

Treści kształcenia i zakładane osiągnięcia uczniów w edukacji matematycznej

PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI W GIMNAZJUM i LICEUM

nie zdałeś naszej próbnej matury z matematyki?

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1

Dział 1. Działania na ułamkach zwykłych i dziesi tnych Ucze :

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych

Przedmiotowy system oceniania klasa II gimnazjum rok szkolny 2015/2016

SYSTEM OCENIANIA PRZEDMIOTÓW PRZYRODNICZYCH (FIZYKA, CHEMIA, BIOLOGIA, GEOGRAFIA) W GIMNAZJUM NR 18 W GDYNI.

Przedmiotowe Zasady Oceniania

Matematyka z plusem Program nauczania matematyki dla drugiego etapu edukacyjnego

Kurs wyrównawczy dla kandydatów i studentów UTP

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

PRZEDMIOTOWE ZASADY OCENIANIA UCZNIÓW Z ZAJĘĆ TECHNICZNYCH Podstawa prawna do opracowania Przedmiotowych Zasad Oceniania: Rozporządzenie Ministra

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM w ZESPOLE SZKÓ W SZTUTOWIE

Przedmiotowy system oceniania z przedmiotu wiedza o społeczeństwie Publicznego Gimnazjum Sióstr Urszulanek UR we Wrocławiu w roku szkolnym 2015/2016

Załącznik nr 4 do PSO z matematyki

I. Formy i sposoby sprawdzania i oceniania wiedzy i umiejętności uczniów na lekcjach biologii:

Przedmiotowe Zasady Oceniania z przedmiotu Informatyka

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

SCENARIUSZ LEKCJI. Podstawa programowa:

AUTORSKI PROGRAM NAPRAWCZY Z MATEMATYKI SPRAWDZIAN NA PLUS PRZYGOTOWUJĄCY UCZNIÓW DO SPRAWDZIANU W KLASIE SZÓSTEJ

PRZEDMIOTOWY SYSTEM OCENIANIA ETYKA: LICEUM OGÓLNOKSZTAŁCĄCE

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W PUBLICZNYM GIMNAZJUM IM. JANUSZA KORCZAKA W LASKOWEJ

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

PROJEKT EDUKACYJNY MATEMATYCZNO FIZYCZNY CZY KAŻDY MOŻE OSZCZĘDZAĆ ENERGIĘ ELEKTRYCZNĄ

EGZAMIN MATURALNY 2013 MATEMATYKA

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Matematyka z plusem dla szkoły ponadgimnazjalnej

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO KLASY I-III GIMNAZJUM

WYMAGANIA PROGRAMOWE KLASA III EDUKACJA POLONISTYCZNA

Przedmiotowy System Oceniania - zajęcia techniczne kl. IV, V, VI

Transkrypt:

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH Nauczyciel matematyki: Teresa Feliksiak 1/14

ZASADY OCENIANIA: 1. Każdy uczeń jest oceniany sprawiedliwie. 2. Uczeń ma obowiązek noszenia zeszytu, podręcznika, przyrządów geometrycznych, kalkulatora. 3. Brak zeszytu traktowany jest jak brak pracy domowej. 4. Każdy dział posiada wymagania na poszczególne oceny. 5. Sprawdzian działowy jest zapowiadany z tygodniowym wyprzedzeniem. 6. Uczeń ma prawo zgłaszać nauczycielowi wątpliwości związane z otrzymaną oceną. 7. Uczeń nieobecny na sprawdzianie działowym musi zaliczyć materiał zgodnie z wymogami na ocenę co najmniej dopuszczającą. 8. Ocenę niedostateczną ze sprawdzianu działowego trzeba poprawić, można poprawić również inną ocenę w ustalonym przez nauczyciela terminie. 9. Krótki sprawdzian (kartkówka) nie musi być zapowiadany. 10. Testy, sprawdziany, kartkówki oceniane są według skali: 98% - 100% celujący 86% - 97% bardzo dobry 71% - 85% dobry 50% - 70% dostateczny 30% - 49% dopuszczający 0% - 29% niedostateczny Pomiar osiągnięć uczniów odbywa się za pomocą następujących narzędzi: prace klasowe / 1 godzina lekcyjna /, sprawdziany / kartkówki, odpowiedzi ustne, prace domowe, udział w konkursach matematycznych, obserwacja ucznia: przygotowanie się do lekcji, aktywność na lekcji, praca w grupie. zadania dodatkowe wykonywane w domu. Liczba i częstotliwość pomiarów jest zależna od realizowanego programu, od zespołu klasowego oraz od liczby godzin. Na lekcjach matematyki oceniane są następujące obszary aktywności ucznia: 1. Rozumienie pojęć matematycznych i znajomość ich definicji, 2. Znajomość i stosowanie poznanych twierdzeń, 3. Prowadzenie rozumowań, 4. Rozwiązywanie zadań z wykorzystaniem poznanych metod, 5. Posługiwanie się symboliką i językiem matematyki, 6. Analizowanie tekstów w stylu matematycznym, 7. Prezentowanie wyników swojej pracy w różnych formach, 8. Aktywność na lekcjach, praca w grupach i własny wkład pracy ucznia, 9. Stosowanie wiedzy przedmiotowej w rozwiązywaniu problemów pozamatematycznych. 2/14

Wydzielone zostały następujące poziomy wymagań programowych: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D), wykraczające (W). Poziom wymagań Wymagania konieczne określają: wiadomości i umiejętności, które umożliwiają uczniowi świadome korzystanie z lekcji i wykonywanie prostych zadań z życia codziennego. Wymagania podstawowe określają: wiadomości i umiejętności stosunkowo łatwe do opanowania, użyteczne w życiu codziennym i absolutnie niezbędne do kontynuowania nauki na wyższym poziomie. Wymagania rozszerzające określają: wiadomości i umiejętności średnio trudne, wspierające tematy podstawowe, rozwijane na wyższym etapie kształcenia. Wymagania dopełniające określają: wiadomości i umiejętności złożone lub o charakterze problemowym. K K P K P R K P R D Wymagania wykraczające określają: wiadomości i umiejętności pogłębiające podstawę programową, często związane ze szczególnymi zainteresowaniami ucznia z danej dziedziny. K P R D W Na ocenę dopuszczający uczeń powinien opanować umiejętności z pierwszej części tabeli; na ocenę dostateczny umiejętności z pierwszej i drugiej części; na ocenę dobry z pierwszej, drugiej i trzeciej; na ocenę bardzo dobry z czterech pierwszych części; na ocenę celujący wszystkie umiejętności z tabeli. 3/14

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 I. UŁAMKI ZWYKŁE I DZESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe. Rozszerza ułamek zwykły. Skraca ułamek zwykły. Zapisuje ułamek niewłaściwy w postaci liczby mieszanej. Sprowadza dwa ułamki do wspólnego mianownika. Porównuje ułamki zwykłe o jednakowych mianownikach. Stosuje do ułamków porównywanie różnicowe i ilorazowe. Dodaje i odejmuje ułamki zwykłe w wyrażeniach dwuargumentowych. Mnoży ułamki zwykłe w wyrażeniach dwuargumentowych. W zbiorze liczb wskazuje liczby odwrotne. Dzieli ułamki zwykłe w wyrażeniach dwuargumentowych. Zamienia ułamek dziesiętny na zwykły i odwrotnie oraz przybliża je z określoną dokładnością. Dodaje i odejmuje ułamki dziesiętne sposobem pisemnym. Mnoży ułamki dziesiętne sposobem pisemnym. Wykonuje działanie dwuargumentowe na ułamkach zwykłych i dziesiętnych. Stosuje kolejność wykonywania działań przy obliczaniu wartości wyrażenia złożonego z co najwyżej trzech działań. Zapisuje działania sformułowane słownie. Podaje przybliżenia dziesiętne liczb. Szacuje wyniki. Oblicza ułamek z liczby i stosuje ten typ obliczeń w zadaniach praktycznych. Porównuje ułamki zwykłe o jednakowych licznikach i różnych mianownikach. Sprowadza ułamki zwykłe do najmniejszego wspólnego mianownika. Dodaje i odejmuje ułamki zwykłe w wyrażeniach kilkuargumentowych. Mnoży więcej niż dwa ułamki zwykłe. Znajduje liczbę odwrotną do danej. Oblicza wartość wyrażenia zawierającego więcej niż trzy działania arytmetyczne. Zamienia dowolny ułamek dziesiętny na zwykły i odwrotnie. Dodaje i odejmuje więcej niż dwa ułamki dziesiętne. 4/14

6 5 4 3 2 2 Sprowadza więcej niż dwa ułamki zwykłe do wspólnego mianownika. Dobiera najdogodniejszą metodę porównywania ułamków zwykłych. Oblicza liczbę na podstawie jej ułamka. Oblicza, jaką częścią jednej liczby jest druga liczba. Porównuje ułamek zwykły i dziesiętny. Wskazuje okresy rozwinięć dziesiętnych nieskończonych okresowych. Oblicza niewiadomy składnik, odjemnik, odjemną, dzielnik, dzielną, czynnik. Rozwiązuje zadania praktyczne prowadzące do porównywania różnicowego i ilorazowego, obliczania ułamka z liczby, liczby na podstawie jej ułamka oraz wartości wyrażenia. Porządkuje zbiory liczb zawierające ułamki zwykłe i dziesiętne dowolną metodą. Wstawia nawiasy w wyrażeniu tak, by otrzymać równość. Zamienia jednostki, np. długości, masy. Wybiera ze zbioru ułamków zwykłych te, które mają rozwinięcie dziesiętne skończone lub nieskończone okresowe. Rozwiązuje zadania złożone lub problemowe zadania tekstowe, m.in. z zastosowaniem obliczeń na ułamkach. Rozwiązuje zadania problemy typu: Trzej strzelcy strzelają do celu. Pierwszy strzela co 6 s, drugi co 8 s, a trzeci co 10 s. Ile razy strzelcy wystrzelą jednocześnie w ciągu 15 minut? Buduje kwadrat magiczny z wykorzystaniem ułamków. Wyjaśnia, kiedy nie można zamienić ułamka zwykłego na ułamek dziesiętny skończony. Oblicza wartość wyrażenia zawierającego ułamek wielopiętrowy. Zamienia ułamek okresowy na zwykły. 5/14

II. PROCENTY Zapisuje ułamki o mianownikach np. 100, 25, 4 w postaci procentów. Zapisuje procent wyrażony liczbą całkowitą w postaci ułamka. Odczytuje i zaznacza wskazany procent pola figury (25%, 50%). Stosuje algorytm obliczania procentu danej liczby całkowitej, wykorzystując również kalkulator. Zamienia każdą liczbę na procent. Zamienia procenty na liczbę. Odczytuje i zaznacza wskazany procent figury (20%, 25%, 50%, 75%). Stosuje obliczanie procentu danej wielkości w zadaniach praktycznych (np. dotyczące ceny). Stosuje wybrany algorytm obliczania liczby na podstawie danego jej procentu. Zaznacza dowolny procent figury. Odczytuje, jaki procent figury jest zaznaczony złożone przypadki. Oblicza liczbę na podstawie danego jej procentu oraz jakim procentem jednej liczby jest druga liczba. Rozwiązuje typowe zadania tekstowe dotyczące obliczeń procentowych obniżki, podwyżki, oprocentowanie lokat i kredytów, stężenia procentowe, próby złota i srebra. Stosuje wzór na odsetki od kapitału (bez jego przekształcania) przy dowolnej lokacie terminowej. Stosuje podstawowe obliczenia procentowe w zadaniach złożonych, problemach. Zdobyte wiadomości stosuje w praktyce np. potrafi efektywnie oszacować oprocentowania w różnych bankach, określić stężenie roztworu. Swobodnie stosuje pojęcie promila w zadaniach praktycznych z zakresu jubilerstwa. 6/14

III. FIGURY PŁASKIE, ICH WŁASNOŚCI, OBWODY I POLA Wskazuje i nazywa podstawowe figury geometryczne. Mierzy odcinki. Rozróżnia rodzaje kątów i mierzy kąty ostre i rozwarte. Rozróżnia kąty: wierzchołkowe, przyległe, naprzeciwległe i odpowiadające. Rozróżnia i nazywa trójkąty ze względu na boki i kąty. Stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta. Rozróżnia czworokąty. Rozróżnia okrąg, koło, promień, średnicę, cięciwę. Rysuje okrąg o podanym promieniu. Wskazuje trójkąty przystające. Stosuje podstawowe jednostki pola powierzchni. Oblicza pole, zliczając kwadraty jednostkowe. Rysuje wysokości w trójkącie. Oblicza obwody trójkątów i czworokątów. Oblicza pola: trójkąta, kwadratu, prostokąta, równoległoboku, trapezu, korzystając ze wzorów bez ich przekształcania. Podaje przybliżoną wartość liczby. Oblicza pole i obwód koła, korzystając ze wzorów bez ich przekształcania. Rysuje proste oraz odcinki prostopadłe i równoległe. Rysuje trójkąty i czworokąty. Rozróżnia kąt zewnętrzny i wewnętrzny. Nazywa boki trójkąta prostokątnego. Wymienia podstawowe własności czworokątów. Stosuje twierdzenie o sumie miar kątów wewnętrznych czworokąta. Rysuje okrąg o podanej średnicy. Określa pojęcia: promień, średnica, cięciwa. Symbolicznie zapisuje przystawanie trójkątów. Sprawdza, czy dwa trójkąty są przystające, korzystając z cech przystawania. Oblicza pole rombu, gdy dane są jego przekątne. Rozwiązuje zadania o treściach praktycznych z wykorzystaniem poznanych wzorów na pola i obwody figur płaskich. Rysuje figury w skali. Rozróżnia kąty: wklęsłe i wypukłe. Rozwiązuje zadania z wykorzystaniem własności trójkątów i czworokątów. Określa pojęcia koła i okręgu. Wymienia własności trójkątów przystających. Rozwiązuje zadania dotyczące różnego położenia prostych i punktów na płaszczyźnie. 7/14

Rozwiązuje zadania z wykorzystaniem wszystkich własności poznanych wielokątów. Rozwiązuje zadania z wykorzystaniem własności figur przystających. Określa własności wielokątów foremnych. Stosuje biegle przekształcanie wzorów w rozwiązywaniu zadań tekstowych. Oblicza pole koła, gdy zna jego obwód i odwrotnie. Rozwiązuje zadania dotyczące pól i obwodów różnych wielokątów, przekształcając wzory na pola, a także z wykorzystaniem np. obliczeń procentowych. Wyprowadza wzory na obwody i pola wielokątów. Wykorzystuje wiadomości i umiejętności w nowej sytuacji, np. z wykorzystaniem własności figur płaskich, obliczeń procentowych, przekształcaniem wyrażeń, skali, szacowania... 8/14

IV. LICZBY WYMIERNE Zaznacza liczby całkowite na osi liczbowej. Znajduje liczbę przeciwną do danej. Porównuje dwie liczby całkowite. Dodaje, odejmuje, mnoży i dzieli liczby całkowite. Wskazuje kolejność wykonywania działań w wyrażeniu. Oblicza wartość niezłożonego wyrażenia arytmetycznego w zbiorze liczb całkowitych. Zapisuje iloczyn jednakowych czynników w postaci potęgi i odwrotnie. Oblicza pierwiastki II i III stopnia z tych liczb naturalnych, które są liczbami naturalnymi. Zaznacza na osi liczby wymierne, gdy ma odpowiednio dostosowaną jednostkę. Mnoży i dzieli w zbiorze liczb wymiernych. Oblicza wartość niezłożonego wyrażenia arytmetycznego w zbiorze liczb wymiernych z uwzględnieniem kolejności działań. Oblicza potęgi liczb wymiernych o wykładniku naturalnym. Oblicza pierwiastki II i III stopnia z liczb wymiernych, które są liczbami wymiernymi. Samodzielnie ustala jednostkę, by zaznaczyć podane liczby wymierne na osi liczbowej. Porównuje liczby wymierne. Dodaje i odejmuje liczby wymierne. Mnoży i dzieli w zbiorze liczb wymiernych. Rozwiązuje zadania o treści praktycznej z zastosowaniem działań na liczbach wymiernych. Oblicza wartość złożonego wyrażenia arytmetycznego z wykorzystaniem potęg i pierwiastków. Rozwiązuje złożone zadania z wykorzystaniem działań na liczbach wymiernych. Rozwiązuje problemy z wykorzystaniem liczb wymiernych. 9/14

V. WYRAŻENIA ALGEBRAICZNE Nazywa wyrażenie algebraiczne. Zapisuje wyrażenie algebraiczne opisane słownie. Odczytuje współczynniki liczbowe wyrazów sumy algebraicznej. Dodaje i odejmuje sumy algebraiczne. Redukuje wyrazy podobne o współczynnikach całkowitych. Mnoży sumę algebraiczną przez liczbę naturalną. Oblicza wartości liczbowe wyrażeń algebraicznych w zbiorze liczb całkowitych. Redukuje wyrazy podobne o współczynnikach wymiernych. Oblicza wartości liczbowe prostych wyrażeń algebraicznych w zbiorze liczb wymiernych. Mnoży sumę algebraiczną przez liczbę całkowitą. Wskazuje wspólny czynnik wśród wyrazów sumy. Zapisuje i nazywa złożone wyrażenie algebraiczne (z kilkoma działaniami). Mnoży sumę algebraiczną przez liczbę wymierną. Wyłącza wspólny czynnik przed nawias. Układa wyrażenie algebraiczne do reprezentacji graficznej, rysunkowej i odwrotnie. Rozwiązuje zadanie tekstowe prowadzące do ułożenia wyrażenia algebraicznego. Oblicza wartości liczbowe złożonych wyrażeń algebraicznych w zbiorze liczb wymiernych z uwzględnieniem obliczeń procentowych. Buduje wyrażenia algebraiczne, będące uogólnieniem cyklicznie powtarzającej się zależności między wielkościami. Rozwiązuje zadania problemy związane z układaniem wyrażeń algebraicznych i obliczaniem ich wartości. 10/14

VI. RÓWNANIA I NIERÓWNOŚCI Sprawdza, czy dana liczba całkowita jest pierwiastkiem równania. Rozwiązuje proste zadania praktyczne z zastosowaniem równań na porównywanie różnicowe i ilorazowe. Wymienia kilka liczb spełniających daną nierówność. Sprawdza, czy dana liczba całkowita spełnia nierówność.,, Właściwie używa znaków >, <, =,. Rozwiązuje równanie, np. z występującymi po prawej i lewej stronie sumami algebraicznymi. Oblicza stosunek dwóch wielkości wyrażonych tą samą jednostką. Sprawdza prawdziwość prostej proporcji. Sprawdza, czy dana liczba wymierna jest pierwiastkiem równania. Rozwiązuje równanie pierwszego stopnia z jedną niewiadomą, np. zawierające nawiasy okrągłe. Przedstawia za pomocą równania sytuację opisaną graficznie. Rozwiązuje typowe zadanie tekstowe z zastosowaniem równań, m.in. z uwzględnieniem wzorów na pola i obwody figur płaskich. Przedstawia graficznie rozwiązanie nierówności na osi liczbowej. Oblicza stosunek danych wielkości wyrażonych w różnych jednostkach. Wskazuje w proporcji wyrazy skrajne i środkowe oraz stosuje warunek prawdziwości proporcji. Rozwiązuje równanie w postaci proporcji. Przekształca wzory, by wyznaczyć dowolną wielkość. Rozwiązuje zadania tekstowe z zastosowaniem równań, uwzględniające obliczenia procentowe. Rozwiązuje równanie w postaci proporcji, zawierające np. nawiasy. Stosuje poznane wiadomości umiejętności w złożonych, nietypowych sytuacjach zadaniowych lub problemach. 11/14

VII. TWIERDZENIE PITAGORASA Odczytuje współrzędne punktów zaznaczonych w układzie współrzędnych. Zaznacza punkty w układzie współrzędnych, mając dane ich współrzędne. Wskazuje trójkąty prostokątne w zbiorze trójkątów. W trójkącie prostokątnym położonym dowolnie na płaszczyźnie wskazuje przyprostokątne i przeciwprostokątną. Zapisuje symbolicznie tezę tw. Pitagorasa. Oblicza długość przeciwprostokątnej, gdy dane są długości przyprostokątnych (liczby naturalne). Rysuje trójkąt prostokątny. Rysuje układ współrzędnych na płaszczyźnie i nazywa jego osie. Wyodrębnia założenia i tezy w twierdzeniach. Konstruuje trójkąt prostokątny, mając dane przyprostokątne. Oblicza długość dowolnego boku trójkąta prostokątnego, znając dwie pozostałe długości. Rozwiązuje proste zadania tekstowe z zastosowaniem twierdzenia Pitagorasa. Sprawdza algebraicznie, czy trójkąt jest prostokątny. Dzieli dowolny wielokąt na trójkąty prostokątne. W układzie współrzędnych dobiera tak trzeci wierzchołek, aby otrzymać trójkąt prostokątny. Uzasadnia graficznie twierdzenie Pitagorasa. Oblicza wysokość w dowolnym trójkącie prostokątnym. Rozwiązuje zadania tekstowe z zastosowaniem twierdzenia Pitagorasa. Konstruuje trójkąt prostokątny, mając długość przeciwprostokątnej i jednej przyprostokątnej. Stosuje twierdzenie Pitagorasa w zadaniach dotyczących czworokątów. Rozwiązuje złożone zadania tekstowe z zastosowaniem twierdzenia Pitagorasa. Odkrywa sposób znajdowania trójkątów pitagorejskich. Rozwiązuje zadania problemy z zastosowaniem twierdzenia Pitagorasa i twierdzenia odwrotnego. 12/14

VIII. GRANIASTOSŁUPY PROSTE Wskazuje graniastosłupy wśród wielościanów. Wskazuje wśród graniastosłupów prostopadłościan i sześcian. Wskazuje na modelu krawędzie, wierzchołki i ściany graniastosłupa. Rysuje siatkę prostopadłościanu (sześcianu). Oblicza pole powierzchni całkowitej prostopadłościanu (sześcianu), korzystając z gotowych wzorów. Zna podstawowe jednostki objętości. Oblicza objętość sześcianu i prostopadłościanu, korzystając z gotowych wzorów. Rysuje siatkę graniastosłupa w skali. Oblicza pole powierzchni dowolnego graniastosłupa prostego w prostych zadaniach o kontekście praktycznym. Oblicza objętość dowolnego graniastosłupa prostego w prostych zadaniach o kontekście praktycznym. Określa własności graniastosłupów prostych. Zamienia jednostki pola i objętości. Rozwiązuje zadania wymagające przekształcania wzorów na pole powierzchni lub objętość graniastosłupa. Oblicza pole powierzchni graniastosłupa z zastosowaniem twierdzenia Pitagorasa. Rozwiązuje złożone zadania z zastosowaniem wzorów na pole powierzchni i objętość graniastosłupów. Wyprowadza wzory na pola powierzchni i objętości graniastosłupów. Rozwiązuje nietypowe zadania dotyczące pól i objętości graniastosłupów, np. podejmuje decyzję, czy można narysować siatkę graniastosłupa przy określonych warunkach. 13/14

IX. ELEMENTY STATYSTYKI OPISOWEJ Zbiera dane ze wskazanych źródeł. Segreguje gotowe dane. Zapisuje dane w tabeli i w postaci diagramu słupkowego. Odczytuje dane z tabel i diagramów, ilustrujących wyniki prostych analiz. Zbiera samodzielnie dane statystyczne. Odpowiada na pytania związane z analizą danych przedstawionych różnymi sposobami. Znajduje różne źródła informacji. Opracowuje narzędzie zbierania informacji. Przedstawia zebrane dane za pomocą diagramów. Interpretuje wyniki przedstawiane różnymi sposobami. Formułuje sytuację problemową i określa cel badania statystycznego. Zadaje pytania do gotowych diagramów. Wykonuje np. statystyczne zadanie projektowe lub badawcze (sformułuje problem, pytania pośrednie, hipotezy, zaplanuje przebieg badania, stworzy narzędzia badań, zbierze i zapisze dane, uporządkuje je, przedstawi graficznie, zinterpretuje, wyciągnie wnioski, postawi tezę, dokona prezentacji z wykorzystaniem np. multimediów). 14/14