ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Podobne dokumenty
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

Czas pracy 170 minut

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

Próbny egzamin maturalny z matematyki Poziom podstawowy

LUBELSKA PRÓBA PRZED MATUR 2016

Czas pracy 170 minut

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

Transkrypt:

Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron (zadania 1..). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.. W zadaniach zamkniętych (1. 5.) zaznacz poprawną odpowiedź. 4. W rozwiązaniach zadań (6..) otwartych przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 7. Zapisy w brudnopisie nie będą oceniane. 8. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! Wpisuje zdający przed rozpoczęciem pracy LISTOPAD 014 Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów. PESEL ZDAJĄCEGO KOD ZDAJĄCEGO Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione. Wydawca zezwala na kopiowanie zadań przez dyrektorów szkół biorących udział w programie Próbna Matura z OPERONEM.

Poziom podstawowy Matematyka ZADANIA ZAMKNIĘTE W zadaniach od 1. do 5. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Wartość liczby a = ( 5 ) jest równa: A. 11 B. 9 C. 19 + 1 5 D. 9-1 5 Zadanie. (1 pkt) x+ 4 dla x, 1 Ilość miejsc zerowych funkcji f określonej wzorem f( x) = x 1 dla x ( 1, ) wynosi: x+ 5 dla x, + ) A. 4 B. C. D. 1 Zadanie. (1 pkt) Miejscem zerowym funkcji y = x jest liczba: A. - B. - C. Zadanie 4. (1 pkt) D. W trójkącie prostokątnym ABC kąt przy wierzchołku A ma miarę 0, a dłuższa przyprostokątna ma długość 6 cm. Długość przeciwprostokątnej jest równa: A. 4 cm B. 6 cm C. 6 cm D. 6 cm Zadanie 5. (1 pkt) Równanie x + ( y+) = 4 opisuje okrąg o środku w punkcie S i promieniu r. Wówczas: A. S= ( 0, ), r= 4 B. S= ( 0, ), r= C. S=( 0, ), r= 4 D. S=( 0, ), r= ( Zadanie 6. (1 pkt) Rozwiązaniem nierówności x + 4 > jest zbiór: A. (, 6) (, + ) B. (, 6), + C. 6, D. 6, Zadanie 7. (1 pkt) Proste l i k są prostopadłe i l: x+ 5y + 1= 0, k: y = ax + b. Wówczas: A. a= 5 B. a= 5 C. a= 5 D. a= 1

BRUDNOPIS (nie podlega ocenie)

Zadanie 8. (1 pkt) o wyrazach: ( ) Dany jest ciąg arytmetyczny a n 10, 6,,.... Czterdziesty wyraz tego ciągu jest równy: A. 16 B. 146 C. 156 D. 166 Zadanie 9. (1 pkt) Ciągiem arytmetycznym jest ciąg liczb: A. 48,,,, B. ( 91) C.,, 1 D. ( 4, 1, 0) Zadanie 10. (1 pkt) Ciąg ( x 714) A. x = 1,, jest geometryczny. Wówczas: Zadanie 11. (1 pkt) B. x = C. x = 1 Wartość liczby a = 7+ 9 + 4 jest równa: 10 9 A. B. C. D. Zadanie 1. (1 pkt) 7 D. x = 9 14 Dziedziną funkcji f określonej wzorem f( x)= 15+ x x jest zbiór: A. R \{ 5, } B. ( 5, ) C. (, 5 D. -5, Zadanie 1. (1 pkt) Zbiorem wartości funkcji f określonej wzorem f( x)= x 1 jest zbiór: A. 0, + ) B. 1, + ) C. 0, + Zadanie 14. (1 pkt) D. ( 1, + ) 4 Liczba rozwiązań rzeczywistych równania 16 + x = 0 wynosi: A. 4 B. C. 1 D. 0 5 Zadanie 15. (1 pkt) Liczbą odwrotną do liczby 7 jest: A. 7 B. -7 C. 7 - D. 7 - Zadanie 16. (1 pkt) Wartość liczby: a = 17, jest równa: A. 1, 7- B. 1, 7+ C. 17, + D. -17, - 4

BRUDNOPIS (nie podlega ocenie) 5

Zadanie 17. (1 pkt) Wzór funkcji, której wykres powstaje przez przesunięcie wykresu funkcji f( x)= x o 6 jednostek w lewo, to: A. y = x + 6 B. y = x 6 C. y = x 6 D. y = x + 6 Zadanie 18. (1 pkt) Wielomian W = x x + 4x 8 po rozłożeniu na czynniki ma postać: A. W = x x B. W = x x 4 C. W = x x D. W = x+ x 4 ( + ) ( + ) ( + ) ( + ) Zadanie 19. (1 pkt) Funkcja f( x)= m x m 1 + 1 jest malejąca dla: A. m 9, + B. m 1, + C. m,1 D. m,9 Zadanie 0. (1 pkt) Rozwiązaniem nierówności m+ 5 0jest zbiór: A. R B. /0 C. 5 Zadanie 1. (1 pkt) { } D. { 5 } Miara kąta dziesięciokąta foremnego wynosi: A. 150 B. 144 C. 14 D. 10 Zadanie. (1 pkt) Kąty a i b są przyległe i a jest o 5 większy od b. Wynika stąd, że: A. b = 5 B. b = 7, 5 C. b = 107, 5 D. b = 16, 5 Zadanie. (1 pkt) Przekrój osiowy stożka jest trójkątem równobocznym o boku 4. Objętość tego stożka jest równa: A. 8 p B. 8p C. 16 p D. 16p Zadanie 4. (1 pkt) Prosta l jest styczna do okręgu o środku S w punkcie A. Kąt między prostą l i cięciwą AB jest równy 7. Zatem kąt ASB ma miarę: A. 14 B. 16 C. 144 D. 156 Zadanie 5. (1 pkt) A. 7 B. 7 Kąt a jest ostry i cosa = 5. Wówczas sina jest równy: 7 C. 6 7 D. 6 7 6

BRUDNOPIS (nie podlega ocenie) 7

ZADANIA OTWARTE Rozwiązania zadań o numerach od 6. do. należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 6. ( pkt) Rozwiąż nierówność: 9x + 6x 1< 0. Zadanie 7. ( pkt) Punkt S = ( 8), jest środkiem odcinka AB i B = 614,. Wyznacz współrzędne punktu A. 8

Zadanie 8. ( pkt) W klasie IA było trzy razy więcej chłopców niż dziewcząt. Pewnego dnia do klasy doszły dwie dziewczyny i wówczas liczba dziewcząt stanowiła 0% wszystkich osób w klasie. Oblicz, ile było chłopców i dziewcząt na początku. Zadanie 9. ( pkt) Wykaż, że jeżeli a jest kątem ostrym i sina+ cosa= 6, to sin cos, 5 a a=0. 9

Zadanie 0. ( pkt) o dodatnich wyrazach trzeci wyraz jest równy 6, a piąty jest rów- W ciągu geometrycznym a n ny 4. Wyznacz pierwszy wyraz i iloraz tego ciągu. Zadanie 1. (4 pkt) Rzucono cztery razy symetryczną sześcienną kością do gry. Oblicz prawdopodobieństwo, że suma wyrzuconych oczek jest mniejsza od. 10

Zadanie. (5 pkt) Dany jest trójkąt prostokątny o przyprostokątnych AC, BC takich, że AC = 6 i BC = 8. Okrąg o środku C i promieniu r = AC przecina przeciwprostokątną AB w punkcie P. Wyznacz długość odcinka BP. 11

Zadanie. (6 pkt) Dany jest ostrosłup prawidłowy trójkątny. Ściana boczna tworzy z płaszczyzną podstawy kąt 0. Promień okręgu opisanego na podstawie jest równy. Oblicz objętość i pole powierzchni bocznej podanej bryły. 1

BRUDNOPIS (nie podlega ocenie) 1