WYDZIAŁ ***** KARTA PRZEDMIOTU

Podobne dokumenty
Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

KARTA PRZEDMIOTU CELE PRZEDMIOTU

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

KARTA PRZEDMIOTU WYMAGANIA WSTEPNE CELE KURSU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

PRZEWODNIK PO PRZEDMIOCIE

KARTA MODUŁU KSZTAŁCENIA

Analiza matematyczna

PRZEWODNIK PO PRZEDMIOCIE

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

AiRZ-0531 Analiza matematyczna Mathematical analysis

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

AiRZ-0531 Analiza matematyczna Mathematical analysis

STATYSTYKA MATEMATYCZNA

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Wykład Ćwiczeni a 15 30

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU KSZTAŁCENIA

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

Z-ID-102 Analiza matematyczna I

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki.

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Z-0476z Analiza matematyczna I

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO

KURSY WYDZIAŁOWE... 3 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B... 9 ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 5 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B ANALIZA MATEMATYCZNA 1.1 A...

KURSY WYDZIAŁOWE... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 5 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B ANALIZA MATEMATYCZNA 1.1 A...

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

KURSY WYDZIAŁOWE... 4 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A... 5 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B ANALIZA MATEMATYCZNA 1.1 A...

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz

Sylabus - Matematyka

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 60 45

Matematyka I i II - opis przedmiotu

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

Opis efektów kształcenia dla modułu zajęć

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

KARTA MODUŁU KSZTAŁCENIA

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.

1. Wiedza i umiejętności z fizyki ogólnej na poziomie kursu Fizyka Znajomość analizy matematycznej na poziomie kursu Analiza matematyczna I

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

Wykład Ćwiczenia Laboratoriu m ,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW

Opis efektów kształcenia dla modułu zajęć

Transkrypt:

Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma: I stopień*, stacjonarna / niestacjonarna* Rodzaj przedmiotu: obowiązkowy / wybieralny / ogólnouczelniany * Kod przedmiotu MAP 001091 Grupa kursów TAK / NIE* Liczba godzin zajęć zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego nakładu pracy studenta Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 0 150 90 (CNPS) Forma zaliczenia Egzamin Zaliczenie na ocenę Dla grupy kursów zaznaczyć kurs końcowy (X) Liczba punktów ECTS 5 w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego kontaktu (BK) 0 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym CELE PRZEDMIOTU C1. Opanowanie podstawowej wiedzy dotyczącej ogólnych własności funkcji, w szczególności funkcji elementarnych oraz rozwiązywania równań i nierówności z tymi funkcjami. C. Poznanie podstawowych pojęć z rachunku różniczkowego funkcji jednej zmiennych z wykorzystaniem do badania funkcji i rozwiązywania zadań optymalizacyjnych. C. Opanowanie podstawowej wiedzy dotyczącej całki nieoznaczonej. Poznanie konstrukcji i własności całki oznaczonej. Nabycie umiejętności stosowania całki oznaczonej (w tym niewłaściwej) do obliczeń inżynierskich. C4. Stosowanie nabytej wiedzy do tworzenia i analizy modeli matematycznych w celu rozwiązywania zagadnień teoretycznych i praktycznych w różnych dziedzinach nauki i techniki. *niepotrzebne skreślić 1

PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Z zakresu wiedzy student: PEK_W01 zna własności funkcji potęgowych, wykładniczych, trygonometrycznych i odwrotnych do nich PEK_W0 zna podstawy rachunku różniczkowego funkcji jednej zmiennej z zastosowaniem do rozwiązywania zagadnień optymalizacyjnych PEK_W0 ma podstawową wiedzę z zakresu całki nieoznaczonej, zna konstrukcję całki oznaczonej i jej własności, zna pojęcie całki niewłaściwej Z zakresu umiejętności student: PEK_U01 potrafi rozwiązywać równania i nierówności potęgowe, wielomianowe, wykładnicze, logarytmiczne i trygonometryczne PEK_U0 potrafi obliczać granice ciągów i funkcji, wyznaczać asymptoty funkcji, stosować twierdzenie de L Hospitala do symboli nieoznaczonych PEK_U0 potrafi obliczać pochodne funkcji i interpretować otrzymane wielkości, potrafi wykorzystać różniczkę do oszacowań, potrafi rozwiązywać zadania optymalizacyjne dla funkcji jednej zmiennej, potrafi zbadać własności i przebieg funkcji jednej zmiennej PEK_U04 potrafi wyznaczyć całkę nieoznaczoną funkcji elementarnych i funkcji wymiernych stosując własności i metody całkowania poznane na wykładzie, potrafi obliczać i interpretować całkę oznaczoną, potrafi rozwiązywać zagadnienia inżynierskie z wykorzystaniem całki Z zakresu kompetencji społecznych student: PEK_K01 potrafi wyszukiwać i korzystać z literatury zalecanej do kursu oraz samodzielnie zdobywać wiedzę PEK_K0 rozumie konieczność systematycznej i samodzielnej pracy nad opanowaniem materiału kursu Wy1 Wy Wy Wy4 Wy5 Wy6 Wy7 TREŚCI PROGRAMOWE Forma zajęć - wykłady Funkcja. Dziedzina, zbiór wartości, wykres. Funkcja monotoniczna. Przykłady funkcji: liniowa, x, kwadratowa, wielomianowa, wymierna. Równania i nierówności wymierne. Składanie funkcji. Przekształcanie wykresu funkcji (przesunięcie, zmiana skali, symetria względem osi i początku układu). Funkcje trygonometryczne. Kąt skierowany, koło trygonometryczne. Wzory redukcyjne i tożsamości trygonometryczne. Równania i nierówności trygonometryczne. Funkcje potęgowe, wykładnicze i logarytmiczne. Równania i nierówności wykładnicze i logarytmiczne. Funkcje różnowartościowe. Funkcje odwrotne. Wykres funkcji odwrotnej. Funkcje cyklometryczne. Granica właściwa ciągu. Twierdzenia o ciągach z granicami właściwymi. Liczba e. Granica niewłaściwa ciągu. Wyznaczanie granic niewłaściwych. Wyrażenia nieoznaczone. Granica funkcji w punkcie (właściwa i niewłaściwa). Granice jednostronne funkcji. Technika obliczania granic. Granice Liczba godzin 4 4

Wy8 Wy9 Wy10 Wy11 Wy1 Wy1 Wy14 Wy15 Wy16 podstawowych wyrażeń nieoznaczonych. Asymptoty funkcji. Ciągłość funkcji w punkcie i na przedziale. Ciągłość jednostronna funkcji. Punkty nieciągłości i ich rodzaje. Twierdzenia o funkcjach ciągłych na przedziale domkniętym i ich zastosowania. Przybliżone rozwiązywanie równań. Pochodna funkcji w punkcie. Pochodne jednostronne i niewłaściwe. Pochodne podstawowych funkcji elementarnych. Reguły różniczkowania. Pochodne wyższych rzędów. Interpretacja geometryczna i fizyczna pochodnej. Styczna. Różniczka funkcji i jej zastosowania do obliczeń przybliżonych. Twierdzenie o wartości średniej (Lagrange`a) i przykłady zastosowań. Przedziały monotoniczności funkcji. Ekstrema lokalne funkcji. Warunki konieczne i wystarczające istnienia ekstremów lokalnych. Wartość najmniejsza i największa funkcji w przedziale domkniętym. Zadania z geometrii, fizyki i techniki prowadzące do wyznaczania ekstremów globalnych.. Funkcje wypukłe oraz punkty przegięcia wykresu funkcji. Badanie przebiegu zmienności funkcji. Reguła de L`Hospitala.. Wzory Taylora i Maclaurina i ich zastosowania. Całki nieoznaczone i ich ważniejsze własności. Całkowanie przez części. Całkowanie przez podstawienie. Całkowanie funkcji 4 wymiernych. Całkowanie funkcji trygonometrycznych. Całka oznaczona. Definicja. Interpretacja geometryczna i fizyczna. Twierdzenie Newtona - Leibniza. Całkowanie przez części i przez podstawienie. Własności całki oznaczonej. Średnia wartość funkcji na przedziale. Zastosowania całek oznaczonych w geometrii (pole, długość łuku, objętość bryły obrotowej, pole powierzchni bocznej bryły obrotowej) i technice. Całka niewłaściwa I rodzaju. Definicja. Kryterium porównawcze i ilorazowe zbieżności. Przykłady wykorzystania całek niewłaściwych I rodzaju w geometrii i technice. Suma godzin 45 Ćw1 Ćw Ćw Ćw4 Forma zajęć - ćwiczenia Badanie ogólnych własności funkcji (monotoniczność, różnowartościowość, dziedzina, składanie funkcji, funkcja odwrotna). Badanie funkcji i rysownie wykresów funkcji potęgowej, wykładniczej, trygonometrycznych i odwrotnych do nich oraz ich złożeń. Rozwiązywanie równań i nierówności z tymi funkcjami. Obliczanie granic właściwych i niewłaściwych ciągów liczbowych i funkcji (w punkcie) oraz wyrażeń nieoznaczonych. Wyznaczanie asymptot funkcji. Badanie ciągłości funkcji w punkcie i na przedziale. Stosowanie twierdzeń o funkcji ciągłej na przedziale domkniętym do zagadnień ekstremalnych i przybliżonego rozwiązywania równań. Obliczanie pochodnych funkcji z wykorzystaniem reguł różniczkowania z interpretacją pochodnej. Wyznaczanie stycznych Liczba godzin 8

do wykresu funkcji. Stosowanie różniczki do obliczeń przybliżonych (szacowania błędu). Ćw5 Badanie przebiegu funkcji przedziały monotoniczności, wypukłość, ekstrema lokalne. Wyznaczanie ekstremów globalnych. Ćw6 Wyznaczanie wielomianu Taylora/Maclaurina funkcji z oszacowaniem dokładności. Stosowanie reguły de L Hospitala do obliczania granic. Ćw7 Obliczanie całek nieoznaczonych całkowanie przez części i przez 4 podstawienie. Całkowanie funkcji wymiernych. Całkowanie funkcji trygonometrycznych. Ćw8 Obliczanie całek oznaczonych z wykorzystaniem metod poznanych 4 na wykładzie. Badanie zbieżności całek niewłaściwych Stosowanie całki oznaczonej do obliczeń inżynierskich. Ćw9 Kolokwium Suma godzin 0 STOSOWANE NARZĘDZIA DYDAKTYCZNE 1. Wykład metoda tradycyjna. Ćwiczenia problemowe i rachunkowe metoda tradycyjna. Konsultacje 4. Praca własna studenta przygotowanie do ćwiczeń. OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA Oceny (F formująca (w trakcie semestru), P podsumowująca (na koniec semestru) F - Ćw F - Wy P Numer efektu kształcenia PEK_U01-PEK_U04 PEK_K01-PEK_K0 PEK_W01-PEK_W0 PEK_K0 PEK_U01-PEK_U04 PEK_W01-PEK_W0 PEK_K01-PEK_K0 Sposób oceny osiągnięcia efektu kształcenia Odpowiedzi ustne, kartkówki, kolokwia Egzamin Określa wykładowca LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA LITERATURA PODSTAWOWA: [1] G. Decewicz, W. Żakowski, Matematyka, Cz. 1, WNT, Warszawa 007. [] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 011. [] W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, Cz. I, PWN, Warszawa 006. LITERATURA UZUPEŁNIAJĄCA: [1] G. M. Fichtenholz, Rachunek różniczkowy i całkowy, T. I-II, PWN, Warszawa 007. [] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 011. [] R. Leitner, Zarys matematyki wyższej dla studiów technicznych, Cz. 1- WNT, Warszawa 006. [4] F. Leja, Rachunek różniczkowy i całkowy ze wstępem do równań różniczkowych, 4

PWN, Warszawa 008. [5] H. i J. Musielakowie, Analiza matematyczna, T. I, cz. 1 i, Wydawnictwo Naukowe UAM, Poznań 199. [6] W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, Cz. B, PWN, Warszawa 00. OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL) Dr inż. Jolanta Sulkowska Jolanta.Sulkowska@pwr.wroc.pl Komisja programowa Instytutu Matematyki i Informatyki 5

MACIERZ POWIĄZANIA EFEKTÓW KSZTAŁCENIA DLA PRZEDMIOTU ANALIZA MATEMATYCZNA MAP 001091 Z EFEKTAMI KSZTAŁCENIA NA KIERUNKU ***** I SPECJALNOŚCI.. Przedmiotowy efekt kształcenia Odniesienie przedmiotowego efektu do efektów kształcenia zdefiniowanych dla kierunku studiów i specjalności (o ile dotyczy) Cele przedmiotu** Treści programowe** Numer narzędzia dydaktycznego** PEK_W01 (wiedza) C1, C4 Wy1-Wy5 1,,4 PEK_W0 C, C4 Wy6-Wy1 1,,4 PEK_W0 C, C4 Wy1-Wy16 1,,4 PEK_U01 C1, C4 Ćw1,,4 (umiejętności) PEK_U0 C, C4 Ćw,Ćw,,,4 Ćw5 PEK_U0 C, C4 Ćw-Ćw6,,4 PEK_U04 C, C4 Ćw7,Ćw8,,4 C1-C4 Wy1-Wy16 1-4 Ćw1-Ćw9 PEK_K01- PEK_K0 (kompetencje) ** - z tabeli powyżej