15. DOWODZENIE VI WTÓRNE REGUŁY WNIOSKOWANIA I REGUŁY PODSTAWIANIA

Podobne dokumenty
14. DOWODZENIE V WYNIKANIE LOGICZNE, RÓWNOWAŻNOŚĆ LOGICZNA, DOWODZENIE TAUTOLOGII

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

11. DOWODZENIE II REGUŁY ELIM, WPR, MTP

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

LOGIKA Dedukcja Naturalna

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

Dowody założeniowe w KRZ

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

10. DOWODZENIE I REGUŁY WPR, ELIM, ELIM

Rachunek zdao i logika matematyczna

Wstęp do logiki. Klasyczny Rachunek Zdań III

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

Dalszy ciąg rachunku zdań

LOGIKA I TEORIA ZBIORÓW

WYKŁAD 7: DEDUKCJA NATURALNA

12. DOWODZENIE III REGUŁY WPR, R

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

Logika pragmatyczna dla inżynierów

Lekcja 3: Elementy logiki - Rachunek zdań

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Wstęp do logiki. Klasyczny Rachunek Zdań II

Logika matematyczna i teoria mnogości (I) J. de Lucas

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki

NOWE ODKRYCIA W KLASYCZNEJ LOGICE?

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

7. TAUTOLOGIE, KONTRTAUTOLOGIE I SCHEMATY LOGICZNIE NIEZDETERMINOWANE

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Rachunek zdań 1 zastaw zadań

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Logika Radosna 2. Jerzy Pogonowski. KRZ: dowody założeniowe. Zakład Logiki Stosowanej UAM

Paradygmaty dowodzenia

Rachunek zdań i predykatów

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

Konsekwencja logiczna

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Elementy logiki i teorii mnogości

Elementy logiki matematycznej

Podstawy Sztucznej Inteligencji (PSZT)

Matematyka ETId Elementy logiki

Drzewa Semantyczne w KRZ

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Definicja: alfabetem. słowem długością słowa

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

16. PODSTAWOWE POJĘCIA LOGIKI KWANTYFIKATORÓW

Adam Meissner.

1 Podstawowe oznaczenia

Elementy logiki matematycznej

WYKŁAD 3: METODA AKSJOMATYCZNA

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Kultura logiczna Wnioskowania dedukcyjne

8. SKRÓCONA METODA ZERO-JEDYNKOWA

Zagadnienia podstawowe dotyczące metod formalnych w informatyce

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Logika intuicjonistyczna

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

1 Działania na zbiorach

Zestaw 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Elementy logiki. Zdania proste i złożone

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

Rachunek zdań I i II rzędu

PODSTAWY LOGIKI I TEORII MNOGOŚCI

Logika Matematyczna (5-7)

Lista 1 (elementy logiki)

Rachunek logiczny. 1. Język rachunku logicznego.

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Logika Matematyczna (2,3)

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Podstawowe Pojęcia. Semantyczne KRZ

4 Klasyczny rachunek zdań

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20

Egzamin z logiki i teorii mnogości, rozwiązania zadań

ROZDZIAŁ 1. Rachunek funkcyjny

SPIS TREŚCI. Przedmowa... Wykaz skrótów... Wykaz ważniejszej literatury...

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Wstęp do Matematyki (2)

Imię i nazwisko:... OBROŃCY PRAWDY

Spis treści. Wykaz skrótów... Wykaz literatury... Przedmowa... XXIII

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

Reprezentowanie wiedzy Logika a reprezentacji wiedzy Rachunek zdań Literatura. Systemy ekspertowe. Wykład 2 Reprezentacja wiedzy Rachunek zdań

Transkrypt:

15. DOWODZENIE VI WTÓRNE REGUŁY WNIOSKOWANIA I REGUŁY PODSTAWIANIA W systemie SD dla każdego spójnika istnieje reguła wprowadzania i reguła eliminacji tegoż spójnika. Niemniej jednak dowodzenie za pomocą jedenastu reguł pierwotnych bywa uciążliwe. Dlatego ten podstawowy repertuar reguł pierwotnych często bywa uzupełniany wtórnymi regułami inferencji (opartymi na dowodzie logicznego wynikania) oraz regułami podstawiania (opartymi na dowodzie logicznej równoważności). Cele Pojęcie wtórnych reguł inferencji. Rozróżnienie reguł inferencji i reguł podstawiania. 15.1. Wtórne reguły wnioskowania Poznaliśmy już przykład wtórnej reguły inferencji była nią regułą MTP. j. ~q p MTP i, j j. ~p q MTP i, j Możemy teraz dowieść, że reguła MTP jest istotnie regułą wtórną dla systemu SD. Aby to uczynić, musimy wykazać, że wniosek uprawomocniony przez regułę MTP można wyprowadzić z przesłanek i oraz j za pomocą wyłącznie reguł pierwotnych nie używając MTP. i p q j ~q +1 p Zał. ( Elim) +2 p R +1 +3 q Zał. ( Elim) +4 ~p Zał. (~Elim) +5 ~q R j +6 q R +3 +7 p ~Elim (+4)-(+5), (+4)-(+6) +8 p Elim i, (+1)-(+2), (+3)-(+7) W ten sposób przedstawiamy ciąg kroków, którymi moglibyśmy zastąpić każde zastosowanie reguły MTP. Reguły wtórne to po prostu dodatkowe reguły, które wolno dołączyć do systemu, o ile można udowodnić za pomocą reguł wyłącznie pierwotnych, że wniosek uprawomocniony przez regułę wtórną wynika logicznie z przesłanek zakładanych przez tę regułę. Katarzyna Paprzycka Logika nie gryzie. Część I: Samouczek logiki zdań

15. Wtórne reguły inferencji i reguły podstawiania 293 Inną często dodawaną regułą jest reguła zwana modus tollendo tollens: j. ~r ~p MTT i, j Wprowadza się też zwykle regułę sylogizmu hipotetycznego: j. q r p r HS i, j Ćwiczenie 15.A Dowiedź, że następujące reguły inferencji mogłyby być dodane jako reguły wtórne do systemu SD. (Rozwiązania, s. 399-401). (a) (b) (c) p r RŻE i r p RŻE i j. r p p r RŻW i, j (d) (e) (f) j. ~p j. ~r j. q r q MTP i, j ~p MTT i, j p r HS i, j (g) (r q) (p q) HHS i (i) j. p s p (r s) MNi (k) j. q r (p q) r DPi (m) i. p (q r) j. p q p r RFi (h) (q p) (q r) HHS i (j) j. q s (p q) (r s) MPNi (l) j. q s (p q) (r s) DPNi (n) i. p (q r) (p q) (p r) RFi (o) (p) (q) i. p i. ~p p i. ~p r p RS i p RC i p r RDS i (r) i. (p ~r) ~p p r IWi (s) i. (p ~r) r p r IWi

15. Wtórne reguły inferencji i reguły podstawiania 294 15.2. Reguły wnioskowania a reguły podstawiania Aby dołączyć do systemu SD regułę inferencji postaci: i 1. 1... i k. k RI i 1,..., i k jako regułę wtórną systemu SD, trzeba wykazać, że wniosek wynika logicznie ze zbioru { 1,..., k }, czyli że { 1,, k }. Wtórne reguły inferencji dodawane są zatem do systemu inferencji na podstawie wykazania, że wniosek wynika logicznie z przesłanek. Systemy dedukcji naturalnej uzupełnia się często o jeszcze jeden bardzo użyteczny rodzaj reguł, tzw. reguły podstawiania. Podczas gdy wtórne reguły inferencji dodaje się na podstawie dowodu wskazującego, że pewne zdania wynikają logicznie z innych zdań, reguły podstawiania uzasadniane są na podstawie dowodu logicznej równoważności pewnych zdań. Reguły te choć bardzo intuicyjne zasadniczo się jednak różnią od reguł inferencji w użyciu. Nie bez przyczyny zapisuje się je też w różny sposób. Aby dołączyć do systemu SD regułę podstawiania postaci: RP jako regułę wtórną systemu SD, trzeba wykazać, że i są logicznie równoważne, tj. że { } oraz że { }. 15.3. Reguły podstawiania Oto reguły podstawiania, które warto dołączyć do systemu: Podwójna negacja (Neg) p ~~p Przemienność (Przem) p r r p p r r p p r r p Rozdzielność (Rozdz) p (q r) (p q) (p r) p (q r) (p q) (p r) Implikacja (Impl) p r ~p r Równoważność (Równ) p r (p r) (r p) p r (p r) (~p ~r) Eksportacja (Eksp) p (q r) (p q) r Idempotentność (Idem) p p p p p p Łączność (Łącz) p (q r) (p q) r p (q r) (p q) r De Morgan (DeM) ~(p r) ~p ~ r ~(p r) ~p ~ r Negacja implikacji (NegImpl) ~(p r) p ~r Negacja równoważności (NegRówn) ~(p r) (p ~r) (~p r) Transpozycja (Transp) p r ~r ~p Absorpcja (Abs) p r p (p r)

15. Wtórne reguły inferencji i reguły podstawiania 295 Niektóre z tych reguł, jak na przykład reguła podwójnej negacji czy reguły łączności i przemienności, są niezwykle wręcz intuicyjne. Stosujemy je z powodzeniem i bez wahania w rozumowaniu codziennym. Ćwiczenie 15.B Dowiedź, że można uzupełnić system SD o wszystkie podane wyżej reguły podstawiania. (Rozwiązania, s. 401-405). Reguły podstawiania stosują się Reguły podstawiania są niezwykle intuicyjne, niemniej jednak ich stosowanie w dowodzeniu różni się od stosowania reguł inferencji pod dwoma ważnymi względami. dwukierunkowo W przeciwieństwie do reguł inferencji, reguły podstawiania można stosować «w dwie strony». W następującym dowodzie obydwa zastosowania reguły Neg są prawidłowe: 1. ~~A Zał. 2. A Neg 1 3. ~~~~A Neg 1 Nieuprawniony byłby oczywiście krok: 4. ~~~~~~A Neg 1 Aby wprowadzić ~~~~~~A, należałoby zastosować regułę Neg do wiersza 3, a nie do wiersza 1. również do nieswobodnie stojących zdań Jak pamiętamy, reguły inferencji stosują się tylko do swobodnie stojących zdań. Reguły podstawiania natomiast można zastosować również do członów zdań. Następujące zastosowania reguły Neg są prawidłowe: 1. A (B C) Zał. 2. ~~[A (B C)] Neg 1 A (B C) 3. ~~A (B C) Neg 1 A (B C) 4. A ~~(B C) Neg 1 A (B C) 5. A (~~B C) Neg 1 A (B C) 6. A (B ~~C) Neg 1 A (B C) W chmurce zacieniowane są człony zdań, do których zastosowana została reguła Neg w poszczególnych krokach. Nie wolno natomiast stosować reguł podstawiania jednocześnie do paru członów. Nieuzasadniony zatem byłby krok: 7. ~~A (~~B C) Neg 1 Aby wyprowadzić zdanie ~~A (~~B C) ze zdania A (B C), należałoby zastosować regułę Neg dwukrotnie, np. w następujący sposób: 1. A (B C) Zał. 2. ~~A (B C) Neg 1 3. ~~A (~~B C) Neg 2

15. Wtórne reguły inferencji i reguły podstawiania 296 Ćwiczenie 15.C Ponieważ reguły podstawiania można stosować również do członów zdań, więc często będzie wiele sposobów zastosowania danej reguły do pewnego zdania. Uzupełnij brakujące informacje. (Rozwiązania, s. 405-406). (a) 1. C D Zał. 2. ~~(C D) Neg 1 3. ~~C D Neg 1 4. C ~~D Neg 1 (b) 1. ~A ~B Zał. 2. ~~(~A ~B) Neg 1 3. ~~~A ~B Neg 1 4. ~A ~~~B Neg 1 (c) 1. C ~~A Zał. 2. ~~(C ~~A) Neg 1 3. C A Neg 1 4. ~~C ~~A Neg 1 5. C ~~~~A Neg 1 (e) 1. ~(A ~(B C)) Zał. 2. ~A ~~(B C) DeM 1 3. ~(A (~B ~C)) DeM 1 (d) 1. ~~(B ~C) Zał. 2. B ~C Neg 1 3. ~~~~(B ~C) Neg 1 4. ~~(~~B ~C) Neg 1 5. ~~(B ~~~C) Neg 1 (f) 1. ~(~D ~(A C)) Zał. 2. ~~D ~~(A C) DeM 1 3. ~(~D (~A ~C)) DeM 1 4. ~~(D (A C)) DeM 1 (g) 1. ~(~(~A ~C) ~(~B ~D)) Zał. 2. ~(~~(A C) ~(~B ~D)) DeM 1 3. ~(~(~A ~C) ~~(B D)) DeM 1 4. ~((~~A ~~C) ~(~B ~D)) DeM 1 5. ~(~(~A ~C) (~~B ~~D)) DeM 1 6. ~~(~A ~C) ~~(~B ~D)) DeM 1 (h) 1. C B Zał. 2. (C B) (C B) Idem 1 3. (C B) (C B) Idem 1 4. (C C) B Idem 1 5. C (B B) Idem 1 6. (C C) B Idem 1 7. C (B B) Idem 1 (j) 1. (A B) (C D) Zał. 2. (C D) (A B) Przem 1 3. (B A) (C D) Przem 1 4. (A B) (D C) Przem 1 (i) 1. ~(A D) Zał. 2. ~(A D) ~(A D) Idem 1 3. ~(A D) ~(A D) Idem 1 4. ~((A A) D) Idem 1 5. ~(A (D D)) Idem 1 6. ~((A A) D) Idem 1 7. ~(A (D D)) Idem 1 (k) 1. (A B) (C D) Zał. 2. ((A B) C) D Łącz 1 3. A (B (C D)) Łącz 1

15. Wtórne reguły inferencji i reguły podstawiania 297 (l) 1. (A B) (C D) Zał. 2. ((A B) C) ((A B) D) Rozdz 1 3. (A (C D)) (B (C D)) Rozdz 1 4. (A B) (C D) Rozdz 2 5. ((A C) (B C)) ((A B) D) Rozdz 2 6. ((A B) C) ((A D) (B D)) Rozdz 2 7. (A B) (C D) Rozdz 3 8. ((A C) (A D)) (B (C D)) Rozdz 3 9. (A (C D)) ((B C) (B D)) Rozdz 3 Ćwiczenie 15.D Wykaż, że następujące równoważne symbolizacje zdań z wcześniejszych ćwiczeń Samouczka są logicznie równoważne. (Rozwiązania, s. 407). (a) (b) (c) Teoria Freuda jest prawdziwa, chyba że albo teoria Junga, albo teoria Adlera jest prawdziwa. Beata pójdzie z Lechem na randkę, chyba że albo po raz kolejny Lech się Spóźni, albo znów nie przyniesie jej Kwiatów. Ania przejdzie na dietę tylko wtedy, gdy Lidka lecz nie Kalinka przejdzie na dietę. (J A) F ~(J A) F (S ~K) B ~(S ~K) B A (L ~K) ~(L ~K) ~A (~L K) ~A d) Zaliczysz logikę, tylko jeżeli zarówno wszystko zrozumiesz, jak i będziesz poprawnie wykonywać wszystkie Ćwiczenia. Z (R Ć) ~(R Ć) ~Z (~R ~Ć) ~Z Ćwiczenie 15.E Stosując reguły wtórne przeprowadź dowody tautologii (a) i (b). Porównaj przeprowadzone dowody z dowodami z rozdziału 14. (Rozwiązania, s. 407). (a) p ~p (b) (p q) (q p).