Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe

Podobne dokumenty
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

Wyznaczanie długości fali świetlnej metodą pierścieni Newtona

Fizyka elektryczność i magnetyzm

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

Badanie rozkładu pola magnetycznego przewodników z prądem

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

Stanowisko do pomiaru fotoprzewodnictwa

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Ćw. III. Dioda Zenera

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

UMO-2011/01/B/ST7/06234

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)

I. PROMIENIOWANIE CIEPLNE

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Wyznaczanie stosunku e/m elektronu

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.

Tranzystor bipolarny LABORATORIUM 5 i 6

Ćwiczenie nr 43: HALOTRON

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

KONSPEKT LEKCJI. Podział czasowy lekcji i metody jej prowadzenia:

Laboratorium Podstaw Biofizyki

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

F = e(v B) (2) F = evb (3)

WFiIS. Wstęp teoretyczny:

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Sposoby opisu i modelowania zakłóceń kanałowych

Laboratorium z Krystalografii. 2 godz.

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA

Efekt fotoelektryczny

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

Laboratorium z Krystalografii. 2 godz.

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Analiza spektralna widma gwiezdnego

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

IV. Wyznaczenie parametrów ogniwa słonecznego

Ćwiczenie: "Mierniki cyfrowe"

Opis programu Konwersja MPF Spis treści

Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

ĆWICZENIE 1 WYZNACZANIE DŁUGOŚCI FALI ZA POMOCĄ SPEKTROSKOPU

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Wyznaczanie krzywej ładowania kondensatora

Ćwiczenie: "Rezonans w obwodach elektrycznych"

α k = σ max /σ nom (1)

Fale elektromagnetyczne w dielektrykach

Odgłosy z jaskini (11) Siatka odbiciowa

Ćwiczenie nr 13 POLARYZACJA ŚWIATŁA: SPRAWDZANIE PRAWA MALUSA

Bierne układy różniczkujące i całkujące typu RC

Ć W I C Z E N I E N R E-15

Pracownia fizyczna dla szkół

Propagacja światła we włóknie obserwacja pól modowych.

LABORATORIUM PODSTAW TELEKOMUNIKACJI

Ocena błędów systematycznych związanych ze strukturą CCD danych astrometrycznych prototypu Pi of the Sky

WYZNACZANIE KĄTA BREWSTERA 72

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Badanie transformatora

Ćwiczenie Nr 11 Fotometria

Transkrypt:

Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie Celem wykonanego na Pracownii Fizycznej dla Zaawansowanych ćwiczenia było zbadanie efektu Faraday a w próbkach CdTe i CdMnTe. Zmierzono widma transmisji światła w funkcji natężenia pola magnetycznego i polaryzacji fali. Otrzymane wyniki pozwoliły na określenie zawartości manganu w próbkach CdMnTe. Dla wszystkich badanych próbek wyznaczono stałą Verdeta V (hν). Doświadczenie wykonane pod kierunkiem: dr hab. Krzysztof Korona Instytut Fizyki Doświadczalnej Zakład Fizyki Ciała Stałego Warszawa, 25 listopada 2009

Spis treści 1 Wstęp teoretyczny 3 2 Opis układu pomiarowego i próbek 3 2.1 elektromagnes.................................................. 3 2.2 polaryzatory.................................................. 5 2.3 Próbki...................................................... 5 3 Pomiary i wyniki 7 3.1 Uzyskane pomiary............................................... 7 3.1.1 Próbka pierwsza............................................ 7 3.1.2 Próbka druga.............................................. 10 3.1.3 Próbka trzecia............................................. 12 3.2 Analiza pomiarów............................................... 14 3.2.1 próbka pierwsza............................................ 14 3.2.2 próbka druga.............................................. 17 3.2.3 próbka trzecia.............................................. 19 4 Podsumowanie 21 Spis rysunków 1 Schemat efektu Faraday a........................................... 3 2 Widmo oświetlacza wysokiej jasności rejestrowane przez detektor bez próbki i polaryzatorów..... 4 3 Charakterystyka elektromagnesu B(I).................................... 4 4 Dobroć polaryzatorów światła widzialnego w funkcji długości fali..................... 5 5 Dobroć polaryzatorów światła podczerwonego w funkcji długości fali................... 6 6 Pomiary próbki pierwszej przy natężeniu pola B 1 = 0 T.......................... 7 7 Pomiary próbki pierwszej przy natężeniu pola B 2 = 0.5 T......................... 8 8 Pomiary próbki pierwszej przy natężeniu pola B 3 = 0.75 T........................ 8 9 Pomiary próbki pierwszej przy natężeniu pola B 4 = 0.93 T........................ 9 10 Pomiary próbki pierwszej przy natężeniu pola B 5 = 1.02 T........................ 9 11 Pomiary próbki drugiej przy natężeniu pola B 1 = 0 T........................... 10 12 Pomiary próbki drugiej przy natężeniu pola B 5 = 1.02 T.......................... 11 13 Pomiary próbki trzeciej przy natężeniu pola B 1 = 0 T........................... 12 14 Pomiary próbki trzeciej przy natężeniu pola B 5 = 1.02 T.......................... 13 15 Absorbancja próbki pierwszej log I0 I w funkcji długości fali......................... 14 16 Wartości przesunięcia fazowego dla pierwszej próbki dla 4 wartości pola względem pomiaru bez pola. 15 17 Wartości przesunięcia fazowego dla pierwszej próbki dla 4 wartości pola względem pomiaru bez pola wraz z dopasowanymi krzywymi zależności przesunięcia w radianach od długości fali w nanometrach. 16 18 Absorbancja próbki drugiej log I0 I w funkcji długości fali.......................... 17 19 Wartości przesunięcia fazowego dla drugiej próbki dla maksymalnej wartości pola względem pomiaru bez pola..................................................... 18 20 Absorbancja próbki trzeciej log I0 I w funkcji długości fali.......................... 19 21 Wartości przesunięcia fazowego dla trzeciej próbki dla maksymalnej wartości pola względem pomiaru bez pola..................................................... 20 22 Wartości przesunięcia fazowego dla trzeciej próbki dla maksymalnej wartości pola względem pomiaru bez pola wraz z dopasowaną krzywą zależności przesunięcia w radianach od długości fali w nanometrach 20 2

1 Wstęp teoretyczny Efekt Farady a jest zjawiskiem foto-magnetycznym zachodzącym między innymi w kryształach CdMnTe polegającym na skręceniu liniowo spolaryzowanej fali podczas przechodzenia przez kryształ CdMnTe. Zjawisko to związane jest z silną magnetycznością manganu. Kryształy CdMnTe są dobrym materiałem do badania Efektu Faraday a ze względu na możlwiość wytworzenia ich z różnym stosunkim kadmu i manganu, dzięki czemu uzyskać można kryształy o różnej szerokości przerwy energetycznej wynoszącej od 1,59 ev do 2,98 ev. Schemat efektu Faraday a pokazano na rysunku 1. Rysunek 1: Schemat efektu Faraday a 2 Opis układu pomiarowego i próbek Do wykonania pomiarów efektu Faraday a wykorzystano stanowisko pomiarowe wypsażone w szynę optyczną, pozwalającą na zamontowanie i regulacje takich przyrządów jak oświetlacz wysokiej jasności, soczewki, polaryzatory, elektromagnes, uchwyt do próbki oraz światłowód. Światło pochodzące z oświetlacza skupiane było za pomocą soczewki na próbce znajdującej się pomiędzy okładkami elektromagnesu. Wiązka światła przechodząca za próbkę była skupiana ponownie, aby w całości trafić do światłowodu prowadzącego do monochromatora połączonego z sensorem CCD podłączonym do komputera. Dzięki podłączeniu układu do komputera możliwe było sprawne rejestrowanie ilości fotonów docierajacych do sensora CCD w funkcji długości fali. Zliczane były fotony o długości fali od 345, 38 nm do 1001, 10 nm w 2048 równych przedziałach. W torze biegu światła możliwe było umieszczenie polaryzatorów (przed i za próbką), dzięki czemu możliwy był pomiar zależności skręcenia polaryzacji w próbce od natężenia pola magnetycznego i długości fali. Na wykresie 2 pokazano zmierzone widmo oświetlacza wysokiej jasności wykorzystywanego w doświadczeniu do oświetlania próbki. Widmo to zostało zarejestrowane przez detektor bez próbki i polaryzatorów. 2.1 elektromagnes Jednym z elementów układu pomiarowego był elektromagnes, którego zadaniem było wytwarzanie pola magnetycznego w miejscu umieszczenia próbki, dzięki czemu możliwe było zaobserwowanie efektu Faraday a. Za pomocą teslomierza zmierzono natężenie pola magnetycznego w funkcji prądu zasilającego elektromagnes. Do uzyskanych wartości dopasowano krzywą wielomianową postaci B(I) = ai 2 + bi + c (1) 3

Rysunek 2: Widmo oświetlacza wysokiej jasności rejestrowane przez detektor bez próbki i polaryzatorów Uzyskano nasepujące wartości parametrów: a = 0, 1608, b = 0, 8325 oraz c = 0, 0369. Uzyskane pomiary wraz z dopasowaną krzywą przedstawiono na wykresie 3. Rysunek 3: Charakterystyka elektromagnesu B(I) 4

Przy pomiarach efektu Faraday a zastosowano pięć wartości natężenia prądu zasilającego elektromagnes: I 1 = 0 A, I 2 = 0.75 A, I 3 = 1.25 A, I 4 = 1.75 A, I 5 = 2.25 A. Na podstawie dopasowanej krzywej charakteryzującej elektromagnes obliczone zostały wartości natężenia pola magnetycznego w tych punktach: B 1 = 0 T, B 2 = 0.50 T, B 3 = 0.75 T, B 4 = 0.93 T, B 5 = 1.02 T. 2.2 polaryzatory Przed przystąpieniem do pomiarów właściwych zmierzono widmo światła przepuszczanego przez polaryzatory w ustawieniach prostopadłym i równoległym dla polaryzatorów światła widzialnego i podczerwonego. Na podstawie tak zebranych danych wyznaczono ich dobroć na podstawie wzoru: d(hν) = I (hν) I (hν) I (hν) + I (hν) (2) Zależność d(hν) dla polaryzatorów światła widzialnego przedstawiono na wykresie 4 a dla światła podczerwonego na wykresie 5. Rysunek 4: Dobroć polaryzatorów światła widzialnego w funkcji długości fali Z wykresów można odczytać, że polaryzatory światła widzialnego pracują dobrze w zakresie od 500 nm do 700 nm, a polaryzatory światła podczerwonego w zakresie od 650 nm do 900 nm. 2.3 Próbki W doświadczeniu badano trzy próbki oznaczone numerami 1, 2 i 3. Szybko dało się zaobserwować, że próbka numer 3 była czystym kryształem CdTe, gdyż nie obserwowano w niej skręcenia polaryzacji światła. Skręcenie dało się zaobserwować w pozostałych dwóch próbkach, jednak z faktu, że próbka numer jeden przepuszczała więcej światła, a efekt Faraday a był w niej dużo mocniejszy można szybko wnioskować, że miała ona największą zawartość manganu. W dalszej części opisu dokonano oszacowania zawartości manganu w próbkach 1 i 2. 5

Rysunek 5: Dobroć polaryzatorów światła podczerwonego w funkcji długości fali 6

3 Pomiary i wyniki 3.1 Uzyskane pomiary 3.1.1 Próbka pierwsza Ponieważ podczas badania pierwszej próbki obserwowano najsilniejszy efekt Faraday a (spośród trzech próbek), dokonano pomiaru natężenia fali w funkcji jej długości dla 18 kątów pomiędzy polaryzatorami (od 0 do 180 co 10 stopni), dla 5 watości pola magnetycznego: B 1 = 0 T, B 2 = 0.5 T, B 3 = 0.75 T, B 4 = 0.93 T, B 5 = 1.02 T. Pomiary dla próbki pierwszej zbierano korzystając z polaryzatorów światła widzialnego. Czas akwizycji wynosił t = 200 ms. Jeden pomiar stanowi uśrednienie 10 kolejnych akwizycji. Zbierano dane po odjęciu pomiarów tła. Uzyskane w ten sposób pomiary zostały zobrazowane na wykresach: 1. wykres 6 przedstawia pomiary uzyskane dla pola o natężeniu B 1 = 0 T 2. wykres 7 przedstawia pomiary uzyskane dla pola o natężeniu B 2 = 0.5 T 3. wykres 8 przedstawia pomiary uzyskane dla pola o natężeniu B 3 = 0.75 T 4. wykres 9 przedstawia pomiary uzyskane dla pola o natężeniu B 4 = 0.93 T 5. wykres 10 przedstawia pomiary uzyskane dla pola o natężeniu B 5 = 1.02 T Rysunek 6: Pomiary próbki pierwszej przy natężeniu pola B 1 = 0 T 7

Rysunek 7: Pomiary próbki pierwszej przy natężeniu pola B 2 = 0.5 T Rysunek 8: Pomiary próbki pierwszej przy natężeniu pola B 3 = 0.75 T 8

Rysunek 9: Pomiary próbki pierwszej przy natężeniu pola B 4 = 0.93 T Rysunek 10: Pomiary próbki pierwszej przy natężeniu pola B 5 = 1.02 T 9

3.1.2 Próbka druga Efekt Faraday a w próbce drugiej był dużo słabszy niż w próbce pierwszej. Dokonano pomiarów analogicznie jak dla próbki pierwszej, lecz tylko dla dwóch wartości pola B 1 = 0 T, B 5 = 1.02 T. Pomiary dla próbki drugiej zbierano korzystając z polaryzatorów światła podczerwonego. Czas akwizycji wynosił t = 8000 ms. Jeden pomiar stanowi uśrednienie 2 kolejnych akwizycji. Zbierano dane po odjęciu pomiarów tła. Uzyskane w ten sposób pomiary zostały zobrazowane na wykresach: 1. wykres 11 przedstawia pomiary uzyskane dla pola o natężeniu B 1 = 0 T 2. wykres 12 przedstawia pomiary uzyskane dla pola o natężeniu B 5 = 1.02 T Rysunek 11: Pomiary próbki drugiej przy natężeniu pola B 1 = 0 T 10

Rysunek 12: Pomiary próbki drugiej przy natężeniu pola B 5 = 1.02 T 11

3.1.3 Próbka trzecia Efekt Faraday a w próbce trzeciej był również dużo słabszy niż w próbce pierwszej. Dokonano pomiarów analogicznie jak dla próbki drugiej, dla dwóch wartości pola B 1 = 0 T, B 5 = 1.02 T. Pomiary dla próbki trzeciej zbierano korzystając z polaryzatorów światła podczerwonego. Czas akwizycji wynosił t = 8000 ms. Jeden pomiar stanowi uśrednienie 5 kolejnych akwizycji. Zbierano dane po odjęciu pomiarów tła. Uzyskane w ten sposób pomiary zostały zobrazowane na wykresach: 1. wykres 13 przedstawia pomiary uzyskane dla pola o natężeniu B 1 = 0 T 2. wykres 14 przedstawia pomiary uzyskane dla pola o natężeniu B 5 = 1.02 T Rysunek 13: Pomiary próbki trzeciej przy natężeniu pola B 1 = 0 T 12

Rysunek 14: Pomiary próbki trzeciej przy natężeniu pola B 5 = 1.02 T 13

3.2 Analiza pomiarów Do wszystkich operacji na danych użyto oprogramowania Mathworks MATLAB 7.9. Dla wszystkich 9 pomiarów pokazanych w sekcji 3.1 przprowadzono procedurę numerycznego wyznaczania przesunięcia fazowego funkcji okresowej (cosinus), której argumentami były kąty pomiędzy polaryzatorami a wartościami pomiary natężenia fali dla danej długości fali, danej próbki i danego natężenia pola magnetycznego. Wielkość przesunięcia faozwego obliczano ze wzoru ( ) cos Ni ϕ = arc tg (3) sin Ni W wyniku przeprowadzenia powyższej operacji dla wszystich 9 zbiorów danych otrzymano 9 wektorów wartości ϕ(hν). Ze względu na ograniczone zakresy pracy polaryzatorów, oraz przepuszczalność próbek do dalszej analizy nadawały się tylko fragmenty wspomnianych wektorów odpowiadające tym długościom fali, które były dobrze przepuszczane zarówno przez próbkę jak i polaryzatory. 3.2.1 próbka pierwsza Rysunek 15: Absorbancja próbki pierwszej log I0 I w funkcji długości fali Na wykresie 15 przedstawiono zależność absorbancji próbki pierwszej od długości fali. Z wykresu tego można odczytać, że pierwsza próbka przepuszczała światło o długości fali większej niż 600 nm. Długość fali przeliczono na energię w elektronovoltach za pomocą wzoru E = hc (4) λ Otrzymano w ten sposób wartość przerwy energetycznej E g, która dla pierwszej próbki wyniosła 2, 07 ± 0, 04 ev. Znając wzór na zależność między przerwą energetyczną i zawartością manganu w próbce E g (x) = (1, 59 + 1, 39x) ev (5) 14

obliczono zawartość manganu w pierwszej próbce: x = hc λ 1, 59 1, 39 = 0, 35 ± 0, 04 (6) Na wykresie 16 przedstawiono wartości przesunięcia fazowego dla pierwszej próbki dla 4 wartości pola względem pomiaru bez pola. Rysunek 16: Wartości przesunięcia fazowego dla pierwszej próbki dla 4 wartości pola względem pomiaru bez pola W zakresie długości fal od 630 do 700 nm dopasowano krzywe zależności kąta przesunięcia fazowego (w radianach) od dłogości fali (w nanometrach) postaci θ(hν) = a + exp(b hν) (7) Otrzymano wartości parametrów: 1. a = 1, 15 10 10 i b = 0, 0395 dla pola B 5 = 1.02 T 2. a = 2, 84 10 9 i b = 0, 03685 dla pola B 4 = 0, 93 T 3. a = 3, 40 10 9 i b = 0, 0379 dla pola B 3 = 0, 75 T 4. a = 1, 44 10 14 i b = 0, 05653 dla pola B 2 = 0, 5 T Dopasowane krzywe wraz z punktami pomiarowymi przedstawiono na wykresie 17. Stałą Verdeta dla tego zakresu długości fal można wyliczyć ze wzoru V (hν) = θ(hν) (8) lb gdzie l = 0, 0014 m jest długością próbki a B wartością natężenia pola magnetycznego. Ostatecznie zależnośc stałej Verteda od długości fali w nanometrach dla pomiaru w polu B 5 = 1.02 T można zapisać jako: V (hν) = 1, 51 10 13 exp( 0.0395 hν) (9) Przykładowo: dla fali o długości 640 nm stała Verdeta wynosi dla próbki trzeciej 156 ± 12 rad Tm. 15

Rysunek 17: Wartości przesunięcia fazowego dla pierwszej próbki dla 4 wartości pola względem pomiaru bez pola wraz z dopasowanymi krzywymi zależności przesunięcia w radianach od długości fali w nanometrach 16

3.2.2 próbka druga Rysunek 18: Absorbancja próbki drugiej log I0 I w funkcji długości fali Na wykresie 18 przedstawiono zależność absorbancji próbki pierwszej od długości fali. Z wykresu tego można odczytać, że druga próbka przepuszczała światło o długości fali większej niż 880 nm. Długość fali przeliczono na energię w elektronovoltach za pomocą wzoru (4). Otrzymano w ten sposób wartość przerwy energetycznej E g, która dla próbki drugiej wyniosła 1, 41 ± 0, 03 ev. Ze wzoru (5) obliczono zawartość manganu w pierwszej próbce: x = hc λ 1, 59 1, 39 0, 13 ± 0, 03 (10) Jak widać otrzymano wartość fizycznie błędną. Jest to prwdopopodobnie spowodowane dużym zużyciem mechanicznym próbki. W tym miejscu należy się zastanowić, czy otrzymane wartości przerwy energetycznej (a co za tym idzie zawartości manganu) nie powinny być przeskalowane w taki sposób, by druga próbka miała zerową zawartość manganu. Obserwacja skręcenia polaryzacji w polu magnetycznym pokazana na wykresie 19 wyraźnie sugeruje, że próbka druga ma zerwową zawartość manganu. Na wykresie 19 przedstawiono wartości przesunięcia fazowego dla drugiej próbki dla maksymalnej wartości pola względem pomiaru bez pola. 17

Rysunek 19: Wartości przesunięcia fazowego dla drugiej próbki dla maksymalnej wartości pola względem pomiaru bez pola 18

3.2.3 próbka trzecia Rysunek 20: Absorbancja próbki trzeciej log I0 I w funkcji długości fali Na wykresie 20 przedstawiono zależność absorbancji próbki pierwszej od długości fali. Z wykresu tego można odczytać, że trzecia próbka przepuszczała światło o długości fali większej niż 710 nm. Długość fali przeliczono na energię w elektronovoltach za pomocą wzoru (4). Otrzymano w ten sposób wartość przerwy energetycznej E g, która dla próbki trzeciej wyniosła 1, 75 ± 0, 03 ev. Ze wzoru (5) obliczono zawartość manganu w pierwszej próbce: x = hc λ 1, 59 1, 39 0, 12 ± 0, 03 (11) Na wykresie 21 przedstawiono wartości przesunięcia fazowego dla trzeciej próbki dla maksymalnej wartości pola względem pomiaru bez pola. W zakresie długości fal od 710 do 900 nm dopasowano krzywą zależności kąta przesunięcia fazowego (w radianach) od dłogości fali (w nanometrach) postaci θ(hν) = a + exp(b hν) (12) Otrzymano wartości parametrów a = 2, 44 10 10 oraz b = 0, 0365. Dopasowaną krzywą wraz z punktami pomiarowymi przedstawiono na wykresie 22. Stałą Verdeta dla tego zakresu długości fal można wyliczyć ze wzoru V (hν) = θ(hν) lb gdzie l = 0, 0005 m jest długością próbki a B = 1, 02 wartością natężenia pola magnetycznego. Ostatecznie zależnośc stałej Verteda od długości fali w nanometrach można zapisać jako: (13) V (hν) = 4, 78 10 12 exp( 0.0365 hν) (14) Przykładowo: dla fali o długości 720 nm stała Verdeta wynosi dla próbki trzeciej 184 ± 15 rad Tm. 19

Rysunek 21: Wartości przesunięcia fazowego dla trzeciej próbki dla maksymalnej wartości pola względem pomiaru bez pola Rysunek 22: Wartości przesunięcia fazowego dla trzeciej próbki dla maksymalnej wartości pola względem pomiaru bez pola wraz z dopasowaną krzywą zależności przesunięcia w radianach od długości fali w nanometrach 20

4 Podsumowanie Podczas doświadzenie zabadano trzy próbki. Jedna z nich była kryształem Cd 0,66 Mn 0,34 Te (oznaczona numerem 1), druga CdTe (oznaczona numerem 2) a trzecia Cd 0,87 Mn 0,13 Te (oznaczona numerem 3). Uzyskana ujemna zawartość manganu w próbce drugiej sugeruje, potrzebę przeskalowania uzyskanych wyników zawartości manganu o 0, 13 ± 0, 03. Po takiej operacji otrzymano następujące składy kryształów: 1. Próbka pierwsza: Cd 0,79 Mn 0,21 Te 2. Próbka druga: CdTe 3. Próbka trzecia: Cd 0,26 Mn 0,74 Te Zgodnie z oczekiwaniami nie zauważono efektu Faraday a w próbce nie zawierajacej manganu. Dla dwóch próbek zawieających mangan zaobserwowano wyraźnu efekt Faraday a, który powodował skręcenie polaryzacji światła spolaryzowanego liniowo gdy działano na próbkę polem magnetycznym. Dla obydwu próbek dopasowano krzywe do zależności skręcenia polaryzacji od długości fali i wyznaczono wzór na wielkość stałej Verdeta od długości fali. Dla próbki oznaczonej numerem 1 zależność Stałej Verdeta od długości fali w zaresie długości fal od 630 do 700 nm miała postać V (hν) = 1, 51 10 13 exp( 0.0395 hν) (15) Dla próbki oznaczonej numerem 3 zależność Stałej Verdeta od długości fali w zaresie długości fal od 710 do 900 nm miała postać V (hν) = 4, 78 10 12 exp( 0.0365 hν) (16) 21