WIELOZADANIOWY ZDALNIE STEROWANY POJAZD POMIAROWY TERMINUS



Podobne dokumenty
PRACA MAGISTERSKA AUTOMATYCZNE MIKROPOJAZDY W NADZORZE TRANSPORTU LĄDOWEGO

Laboratorium Komputerowe Systemy Pomiarowe

PROJECT OF FM TUNER WITH GESTURE CONTROL PROJEKT TUNERA FM STEROWANEGO GESTAMI

SETEBOS-2S. Centralka kontrolno-pomiarowa Ethernet/GSM/RS232/485/IO/TH z funkcjami sterowania automatyką. funkcjonalności.

Czym jest OnDynamic? OnDynamic dostarcza wartościowych danych w czasie rzeczywistym, 24/7 dni w tygodniu w zakresie: czasu przejazdu,

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek

Samochodowe systemy kontrolno dyspozytorskie GPS

MCAR Robot mobilny z procesorem AVR Atmega32

Modem radiowy MR10-GATEWAY-S

CENTRALA STERUJĄCA SMART CONTROL

Robot Mobilny Mobot-Explorer

SETEBOS Centralka kontrolno-pomiarowa

Moduł MUU020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu

P O L I T E C H N I K A W A R S Z A W S K A ZDALNIE STEROWANY GĄSIENICOWY POJAZD POMIAROWY

Czujniki podczerwieni do bezkontaktowego pomiaru temperatury. Czujniki stacjonarne.

Mobilny system pomiaru luminancji LMK - CCD

Moduł CNT020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

ASEM UBIQUITY PRZEGLĄD FUNKCJONALNOŚCI

Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych stosowanych we współczesnych pojazdach samochodowych Stworzenie nowego ćwiczenia laborat

SETEBOS-2S. Centralka kontrolno-pomiarowa Ethernet/GSM/RS232/485/IO/TH z funkcjami sterowania automatyką

RSD Uniwersalny rejestrator danych Zaprojektowany do pracy w przemyśle

Rozproszony system zbierania danych.

Politechnika Śląska Wydział Elektryczny Katedra Mechatroniki. Koncepcja przyłączania mikroinstalacji prosumenckich (gniazd) do laboratorium ilabepro

Tytuł: Instrukcja obsługi Modułu Komunikacji internetowej MKi-sm TK / 3001 / 016 / 002. Wersja wykonania : wersja oprogramowania v.1.

1. Wymagania funkcjonalne dla modułu pozycjonowania patroli zainstalowany moduł musi posiadać następującą funkcjonalność:

KARTA KATALOGOWA. Koncentrator komunikacyjny dla zespołów CZAZ ZEG-E EE426063

WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu. Jakub Stanisz

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2

Mają zaszczyt przedstawić. System kontroli dostępu i ewidencji czasu pracy

2.2 Opis części programowej

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

1. Opis urządzenia. 2. Zastosowanie. 3. Cechy urządzenia -3-

Inteligentny czujnik w strukturze sieci rozległej

Politechnika Wrocławska

GATHERING DATA SYSTEM FOR CONCRETE S SAMPLE DESTRUCTING RESEARCHES WITH USE OF LABVIEW PACKET

Gate.

kpt. Mirosław Matusik Brzeźnica, dnia roku

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

AEL - system zdalnego monitoringu zużycia energii elektrycznej. Sidus Novum, KBBS 2015, Marcin Nowakowski

Przetwarzanie energii elektrycznej w fotowoltaice lato 2015/16. dr inż. Łukasz Starzak

Załącznik 2. System kamer obserwacji z przodu pojazdu UGV. (Unmanned Ground Vehicle - Bezzałogowy Pojazd Naziemny) Krótka specyfikacja WP6.

WDROŻENIE SYSTEMU ZARZĄDZANIA RUCHEM ITS

WIZUALIZACJA I STEROWANIE ROBOTEM

Laboratorium LAB1. Moduł małej energetyki wiatrowej

Układ ENI-EBUS/ELTR/ZF/AVE

Biomonitoring system kontroli jakości wody

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki. Badanie silników skokowych. Temat ćwiczenia:

Urządzenie do programowania głowic eq-3

WZORU UŻYTKOWEGO PL Y1. POPLER SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Warszawa, PL BUP 12/

OSTER 2 Sterownik programowalny z wbudowanym modemem GPRS

System pomiaru paliwa

Załącznik nr 1 Do Umowy nr z dnia. . Wymagania techniczne sieci komputerowej.

RSD Uniwersalny rejestrator danych Zaprojektowany do pracy w przemyśle

WPROWADZENIE Mikrosterownik mikrokontrolery

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

CHŁOPCZYK Robot typu Line Follower

MODEMY ASTRAADA GSM ASTOR KATALOG SYSTEMÓW KOMUNIKACJI ASTRAADA GSM. AS30GSM101C Astraada GSM; Modem GSM/GPRS RB900 z RS232; Obsługa SMS

DigiPoint Karta katalogowa DS 5.00

Kod produktu: MP01105T

router wielu sieci pakietów

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Instalacja programu dreryk

MOBOT-RCR v2 miniaturowe moduły radiowe Bezprzewodowa transmisja UART

System NetMan NETCON 100 Inteligentna platforma dla automatyzacji stacji rozdzielczych średniego i niskiego napięcia

Moduł MUC020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu

Wersja podstawowa pozwala na kompletne zarządzanie siecią, za pomocą funkcji oferowanych przez program:

System satelitarnego pozycjonowania i nadzoru pojazdów, maszyn i urządzeń

Czym jest technologia Bluetooth?

Dr hab. inż. Marek Pawełczyk, prof. nzw. w Politechnice Śląskiej Koordynator Projektu POKL /10

precyzja pomiaru m e t ering solu t ion s Zintegrowany system odczytu i rozliczeń mediów MBUS Radio, MBUS Line

SENSORY i SIECI SENSOROWE

Wymagania dla kamer obwodowych pojazdu UGV. Krótka specyfikacja

AUTONOMOUS GUARDIAN ROBOT AUTONOMICZNY ROBOT WARTOWNIK

dokument DOK wersja 1.0

Układ ENI-EBUS/URSUS stanowi kompletny zespół urządzeń napędu i sterowania przeznaczony do autobusu EKOVOLT produkcji firmy URSUS..

1 DYNAMICZNA REDUKCJA MOCY W FALOWNIKACH FRONIUS SNAPINVERTER

SYSTEM ARANET KATALOG PRODUKTÓW

KOMPUTER. Zestawy komputerowe podstawowe wiadomości

Terminali GPRS S6 Strona 1 z 11. Terminal GPRS. Albatross S6. Instrukcja montażu wersja 4.2

Czujniki obiektowe Sterowniki przemysłowe

REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU INSTALACJA URZĄDZEŃ ELEKTRONICZNYCH. Ćwiczenie 6: WYKONANIE INSTALACJI monitoringu cyfrowego IP

Wymagania systemu komunikacji głosowej dla UGV (Unmanned Ground Vehicle - Krótka specyfikacja

Kod produktu: MP01611

Całodobowy monitoring bezprzewodowe czujniki temperatury, wilgotności, CO2, wartości prądowych i innych

Politechnika Gdańska

Bufor danych USB jednorazowego użytku EBI 330-T30/EBI 330-T85 Nr produktu

Agenda. Podstawowe informacje o IT Essentials Prezentacja systemu e- learning Akademii Cisco. nauczycieli Kolejne kroki na przyszłość Podsumowanie

ROBOT MOBILNY ZBIERAJĄCY INFORMACJE O POMIESZCZENIU

KATEDRA SYSTEMÓW MULTIMEDIALNYCH SEMINARIUM MULTIMEDIALNE SYSTEMY MEDYCZNE

ANALIZATOR JAKOŚCI ENERGII ELEKTRYCZNEJ SAFE, INTUITIVE AND FLEXIBLE ANALYSIS OF POWER QUALITY, AS WELL AS POWER AND ENERGY DEMAND

Research & Development Ultrasonic Technology / Fingerprint recognition

Załącznik nr 3 do SIWZ Potwierdzenie parametrów technicznych systemu rejestracji Parametry systemu nagrywania

Co się stanie, gdy połączymy szeregowo dwie żarówki?

Kod produktu: MP01611-ZK

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

WPW-1 ma 2 wejścia sygnalizacyjne służące do doprowadzenia informacji o stanie wyłącznika.

Transkrypt:

Wojciech Stępień Koło Naukowe KNEST Wydział Transportu Politechnika Warszawska Piotr Tomczuk, Krzysztof Stypułkowski Wydział Transportu Politechnika Warszawska WIELOZADANIOWY ZDALNIE STEROWANY POJAZD POMIAROWY TERMINUS Streszczenie: W artykule zaprezentowano zrealizowany w ramach Grantu Rektorskiego dla Studenckich Kół Naukowych projekt zdalnie sterowanego pojazdu gąsienicowego poruszającego się po zadanym przez operatora torze jazdy. Rejestrowane podczas przejazdu dane pomiarowe są przesyłane do komputera PC przy pomocy sieci bezprzewodowej. Terminus to platforma gąsienicowa wyposażona w podstawowe elementy zasilania, napędu i sterowania. Pojazd zaopatrzony jest również w bezprzewodową kamerę IP oraz ma możliwość podłączenia urządzeń peryferyjnych takich jak: miernik natężenia oświetlenia, odbiornik GPS, dalmierze ultradźwiękowe itd. Zaprezentowane rozwiązanie jest przykładem realizacji koncepcji robota mobilnego służącego do badania warunków środowiskowych. Elementem sterującym pojazdu jest płyta główna klasy mini-itx oraz autorskie oprogramowanie twórców konstrukcji. W publikacji przedstawiono zastosowane podzespoły oraz opisano sposób sterowania i komunikacji z pojazdem. Słowa kluczowe: pojazd pomiarowy, programowanie, telematyka, pomiar zdalny 1. WSTĘP W ostatnich latach można zauważyć wzrost zainteresowania robotami mobilnymi. Sytuacja ta jest spowodowana pojawieniem się nowych możliwości wykorzystania tego typu urządzeń w różnych gałęziach przemysłu i gospodarki [1]. Roboty mobilne można podzielić w zależności od: - konstrukcji robota (kołowy, gąsienicowy, latający, kroczący, pełzający, itd.) - przeznaczenia robota (obszar zastosowań) - możliwości praktycznego zastosowania (przemysłowe, domowe) 1

Ze względu na obszar zastosowań można dokonać podziału na roboty bojowe, interwencyjno-inspekcyjne (np. przeciwpożarowe, patrolujące), transportowe (np. transport wewnątrzzakładowy), osobiste i usługowe, medyczne i wiele innych. Powszechnie roboty mobilne są wykorzystywane do wykonywania zadań, które są dla człowieka zbyt niebezpieczne (np. transport ładunków wybuchowych), żmudne (np. transport ładunków ciężkich) lub tam gdzie wymagana jest duża precyzja oraz powtarzalność. 2. POJAZD POMIAROWY TERMINUS - PRZEZNACZENIE Zadaniem zdalnie sterowanego pojazdu pomiarowego Terminus jest pomiar wartości czynników środowiskowych zgodne z wytycznymi pomiarowymi. Pomiary mogą być wykonywane w pomieszczeniach zamkniętych lub w wyznaczonym terenie. Przykładowa wielkość która jest mierzona przez pojazd to natężenie oświetlenia. Rejestrowany jest także obraz z otoczenia robota za pomocą kamery. Możliwe jest przystosowanie pojazdu do pomiaru innych wielkości istotnych ze względu na charakter pracy wykonywanej w badanym obiekcie. Czujnik pomiarowy (luksomierz Lutron LX105 [2]) i kamera zostały umieszczone na bezprzewodowym pojeździe wolnobieżnym, rejestrującym i przekazującym w sposób ciągły zmierzoną wielkość do zdalnego odbiornika stacjonarnego komputera PC. Zadaniem pojazdu jest wykonanie serii pomiarów podczas przejazdu po zadanej trasie. Umiejscowienie przyrządów pomiarowych na pojeździe ma tę zaletę nad czujnikami zamocowanymi na stałe, że można dokonać pomiaru praktycznie w każdym punkcie pomieszczenia w sposób systematyczny i powtarzalny. Przeprowadzone systematycznie badanie umożliwia wyeliminowanie w sposób natychmiastowy ewentualnych odchyłek od przyjętych norm lub przepisów bezpieczeństwa oraz ciągłą kontrolę nad aktualną wartością mierzonego parametru. Ponadto pomiary wykonywane w ten sposób eliminują potrzebę korzystania z usług wykwalifikowanego personelu. Pojazd może on znaleźć zastosowanie w obiektach przemysłowych, gdzie ciągły nadzór nad pozornie błahymi parametrami byłby zbyt uciążliwy dla personelu technicznego. Kolejną zaletą takiego rozwiązania jest wykonanie pomiarów bez czynnego udziału człowieka w warunkach niebezpiecznych dla jego zdrowia i życia. 3. KONSTRUKCJA POJAZDU Pojazd pomiarowy wykonano samodzielnie z wykorzystaniem wiedzy i doświadczenia zdobytego podczas budowy prototypu. Zgodnie z założeniem skonstruowana została zdalnie sterowana platforma gąsienicowa wyposażona w podstawowe elementy zasilania, napędu, sterowania oraz pomiaru wielkości fizycznych. W fazie prototypu analizowano różne koncepcje sterowania pojazdem. Ze względu na wielozadaniowość i uniwersalność rozwiązania zdecydowano się na zastosowanie płyty głównej z rodziny mini-itx ALIX1.D [3], zaprezentowanej na rysunku 1. 2

Rys.1 Widok płyty głównej ALIX 1.D [3] oraz sposobu montażu w pojeździe Zastosowana płyta główna [2] wyposażona jest w procesor AMD Geode taktowany z częstotliwością 500 MHz. i pamięć SDRAM o pojemności 256 MB. Umożliwia pracę z takimi systemami operacyjnymi jak np. Linux (np. Debian.) oraz Windows (2000,XP). Ponadto płyta posiada szereg wejść/wyjść oraz uniwersalnych złącz (np. LPT, RS232, USB, PCI, port Ethernet itd.) umożliwiających współpracę z różnymi urządzeniami peryferyjnymi. Dzięki zastosowaniu karty Wi-Fi typu minipci firmy Wistron CM9 [4] możliwa stała się komunikacja bezprzewodowa z płytą ALIX. Karta w najnowszej wersji opartej na chipsecie Atheros 5004X/5213 pracuje we wszystkich trzech standardach 802.11a/b/g 2.400GHz-2.483GHz oraz 5.15GHz-5.85GHz. Do komunikacji wykorzystano anteny dookolne Gold Wireless SAO-24009 charakteryzuje się wzmocnieniem - 9dBi. Schemat ideowy głównej części sterującej pojazdu przedstawiono na rysunku 2. Rys.2. Schemat ideowy części sterującej pojazdu 3

Do napędu wykorzystano cztery komutatorowe silniki prądu stałego 24V typ:1.61.070.324 firmy Buhler Motor [4] ze zintegrowaną przekładnią planetarną. Napęd przekazywany jest za pomocą sprzęgieł kłowych bezpośrednio na koła gąsienic. Do napędu łańcuchów zastosowano koła łańcuchowe dla dwóch pojedynczych łańcuchów rolkowych, dzięki czemu uzyskano oczekiwaną sztywność i niewielką podatność na momenty skrętne. Gąsienice wykonano z dwóch przemysłowych łańcuchów rolkowych, zaopatrzonych w boczne zabieraki do których poprzecznie przymocowano płytki metalowo gumowe. Schemat blokowy układu sterowania silnikami robota przedstawiono na rysunku 3. Rys.3. Schemat blokowy układu sterowania czteroma silnikami DC Sygnały sterujące pracą driverów silników generowane są przez płytę główną ALIX1.D [3] poprzez port LPT wyposażony w optoizolację. Silniki zasilane są bezpośrednio poprzez dwa drivery L298N (lewy i prawy) napięciem dwóch akumulatorów żelowych 2x12V. Do zasilania pojazdu wybrano trzy akumulatory żelowe: 1x12V 7Ah - do zasilania płyty głównej i kamery WiFi oraz 2 x 12V, 12Ah do zasilania silników. Płyta główna ALIX1.D oraz kamera zasilana jest z akumulatora żelowego 7Ah 12V poprzez przetwornicę STEP-UP (rys.4), stabilizującą napięcie zasilania na poziomie 12V, niezależnie od obciążenia i napięcia na akumulatorze. Rys.4. Przetwornica DC/DC 12V 4

W projekcie zastosowano przetwornicę podwyższającą, dwu-fazową o bardzo małych szumach i tętnieniach prądu wejściowego i napięcia wyjściowego. Dzięki zastosowaniu dwóch dławików które pracują w przeciw fazie, prąd w nich jest o połowę mniejszy niż w konwencjonalnej przetwornicy i jest pobierany na przemian, co eliminuje przetężenia prądu pobieranego z akumulatora. Możliwa jest praca przetwornicy w zakresie napięć wejściowych 7-14V. Do transmisji obrazu ze względu na odporność na zakłócenia i możliwy do uzyskania zasięg zdecydowano się na zastosowanie kamery Wi-Fi. Zakładany zasięg kamery wynosi do 100m w terenie otwartym. W terenie zabudowanym lub budynku zasięg będzie ograniczony (na drodze eksperymentów ustalono, że do ok. 40-50m) i jest zależny od zastosowanej anteny. Wykorzystana w projekcie kamera to Edimax IC-7000Ptn [6] przedstawiona na rysunku 5. Rys.5. Kamera Edimax IC-7000PTn [5] W kamerze IC-7000PTn zastosowano mechaniczny obiektyw z funkcją obrotu wokół osi pionowej i poziomej ( ±355 w poziomie i ±120 w pionie), sterowany przez przeglądarkę internetową. Rozwiązanie pozwala na precyzyjne ustawienie pola widzenia oraz na śledzenie wnętrza pomieszczeń. Kamera obsługuje dwa tryby wideo: MJPEG oraz MPEG-4, co pozwala na optymalizację jakości obrazu i przepustowości połączenia internetowego. Do lokalizacji położenia oraz śledzenia pojazdu wykorzystano moduł GPS QSTARZ BT-Q1000P [7] podłączony do płyty głównej za pomocą złącza USB. Informacja o położeniu może być wyświetlona bezpośrednio na komputerze nadzorującym, oraz na bieżąco zapisana do pliku. Dzięki takiemu zabiegowi możliwa jest rejestracja trasy przejazdu pojazdu. Ze względu na możliwość uzyskania większego zasięgu przy jednoczesnej kontroli jakości sygnału zdecydowano się na stworzenie dedykowanej sieci bezprzewodowej. Sterowanie pojazdem oraz obserwacja otoczenia odbywa się za pomocą łącz bezprzewodowych z wykorzystaniem standardu 802.11g oraz routera LINKSYS WRT 54GL [8]. Router został wyposażony w antenę dookolną o wzmocnieniu - 12dB, dzięki czemu uzyskiwana jakość połączenia jest bardzo wysoka. Na rysunku 6 przedstawiono w pełni skonstruowany pojazd oraz zamontowaną płytę główną. 5

Rys.6. Zdalnie sterowany pojazd pomiarowy Terminus 4. OPROGRAMOWANIE Podczas realizacji projektu napisano program umożliwiający sterowanie pojazdem poprzez protokół TPC/IP oraz wizualizuję wyników pomiarów. Zdecydowano się na zastosowanie środowiska programistycznego Borland Delphi 2005 oraz języka Delphi (Object Pascal). Odbiór obrazu z kamery realizowany jest z użyciem oprogramowania producenta poprzez aplikację www. Program główny tworzą dwa niezależne bloki funkcjonalne, których zadaniem jest sterowanie pojazdem i wymiana danych (protokół TCP/IP) oraz transmisja szeregowa (standard RS232c). Sterowanie pojazdem odbywa się za pomocą portu LPT. Podstawą komunikacji między pojazdem a komputerem są tzw. sockety korzystające z protokołu TCP/IP. Zarówno komputer jak i pojazd mogą odgrywać rolę klienta lub serwera. W przypadku pojazdu Terminus to on jest serwerem. Po podłączeniu się do odpowiedniej sieci Wi-Fi oraz ustawieniu parametrów transmisji (numeru IP Hosta) nawiązywane jest połączenie między aplikacjami. Wszystkie zdarzenia rejestrowane są w oknie programu a następnie dopisywane do pliku zdarzeń po jego zamknięciu. Od tej chwili sterowanie odbywa się na zasadzie przesyłania odpowiednich komunikatów protokołem TCP/IP. Po odebraniu komunikatu jest on odpowiednio interpretowany. W zależności od treści komunikatu na port LPT wysłana zostaje wartość z zakresu (0-255) odczytana z pliku INI (rozwiązanie zastosowane w celu poprawy uniwersalności aplikacji bez potrzeby ponownego kompilowania programu głównego). W ten sposób wysterowany jest port LPT na płycie głównej pojazdu. Dalej sygnał podawany jest poprzez układ separacji galwanicznej i mostek L298N do silników pojazdu oraz oświetlacza kamery. Kolejną istotną częścią programu jest moduł do transmisji szeregowej ogrywający rolę terminala, podobnie jak w systemie Windows. Na bieżąco są odczytywane wartości z bufora portu RS232c (z miernika natężenia oświetlenia) oraz portu USB ( z odbiornika GPS). Aplikacja odpowiednio interpretuje przychodzące dane i wysyła przetworzone wyniki do klienta komputera nadzorującego PC. Na rysunku 7 zamieszczonym poniżej przedstawiono przykładowe zdjęcie programu: 6

Rys.7. Przykładowa prezentacja danych po połączeniu z klientem - prezentacja natężenia oświetlenia w przypadku przekroczenia ustalonej wcześniej granicy (w tym przypadku 300 lx) 5. PODSUMOWANIE Podsumowując zrealizowany w ramach przyznanych środków Grantu Rektorskiego dla Koła Naukowego Elektrotechniki w Systemach Transportowych opisany powyżej projekt można dojść do wniosku, że robotyka mobilna jest bardzo interesującą i dynamicznie rozwijającą się dziedziną nauki. Możliwe jest samodzielne tworzenie pojazdów o rozbudowanej funkcjonalności. Właściwie nieograniczone możliwości pojazdu pozwalają na szeroki zakres zastosowań od użytku amatorskiego po profesjonalne wykorzystania w przemyśle. Placówki naukowe mogą stosować tego typu pojazdy do badań, pracy nad algorytmami sterowania oraz nawigacji. Pojazd Terminus może znaleźć zastosowanie w zdalnym i w pełni mobilnym monitorowaniu obszarów magazynów lub hal produkcyjnych. Projekt wykonany przez członków Koła Naukowego KNEST może posłużyć jako inspiracja dla studentów Wydziału Transportu do zgłębiania wiedzy z zakresu elektroniki, informatyki, automatyki i telematyki które są integralną częścią nowoczesnych systemów transportowych. 7

Należy nadmienić, że trwają dalsze prace nad rozszerzeniem funkcjonalności pojazdu. Między innymi zostanie zamontowane ramię chwytaka o dwóch stopniach swobody oraz dodatkowe czujniki warunków środowiskowych. Planowana jest wymiana płyty głównej na jednostkę o większych możliwościach obliczeniowych dzięki czemu możliwe stanie się wykorzystanie pojazdu do realizacji projektów badawczych oraz realizacji prac inżynierskich i magisterskich. Bibliografia 1. Andrzejuk A., Trojnacki M., Szynkarczyk P.: Tendencje rozwoju mobilnych robotów lądowych, Pomiary Automatyka Robotyka, 6/2008. 2. www.lutron.com producent sprzętu pomiarowego. 3. www.pcengines.ch/alix.htm - dokumentacja płyty głównej ALIX1.D. 4. www.wistron.com dokumentacja modułu komunikacji. 5. www.buehlermotor.com dokumentacja silników. 6. www.edimax.pl dokumentacja kamery Wi-Fi. 7. www.qstarz.com dokumentacja modułu GPS. 8. www.linksysbycisco.com dokumentacja routera Wi-Fi. REMOTE CONTROLLED MULTI-TASK MEASUREMENT VEHICLE TERMINUS Abstract: The article presents a project realized within the framework of Vice Chancellor s Grant for Students Science Clubs of a remote controlled tracked vehicle moving along a track given by the operator. Measurement data registered during the movement is transmitted to a PC by means of a wireless network. Terminus is a tracked platform equipped with basic elements of power supply, drive and steering. The vehicle is also equipped with a wireless IP camera and has the possibility of connecting peripheral devices such as a luminous intensity meter, a GPS receiver, ultrasonic range-finders, etc. The solution presented is an example of realization of a mobile robot concept for testing environmental conditions. The element responsible for steering of the vehicle is a mini-itx motherboard as well as the software of the authors of the construction. The present publication presents the applied components and describes the method of steering and communicating with the vehicle. Keywords: measurement vehicle, programming, telematics, remote measurement 8