Dynamika relatywistyczna

Podobne dokumenty
Dynamika relatywistyczna

Dynamika relatywistyczna

Zderzenia relatywistyczne

Zderzenia relatywistyczne

Szczególna teoria względności

Zderzenia relatywistyczna

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych

Dynamika relatywistyczna

Elementy fizyki czastek elementarnych

Zderzenia relatywistyczne

Podstawy fizyki kwantowej i budowy materii

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 7. prof. dr hab. Aleksander Filip Żarnecki

Na tropach czastki Higgsa

Oddziaływania grawitacyjne. Efekt Dopplera. Photon Collider. Efekt Comptona. Odkrycie fotonu. Wykład XIX: Fizyka I (B+C) Foton

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 4. prof. dr hab. Aleksander Filip Żarnecki

Mechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 8. prof. dr hab. Aleksander Filip Żarnecki

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Dynamika relatywistyczna

Fizyka cząstek elementarnych i oddziaływań podstawowych

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Wszechświat cząstek elementarnych

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana

Wszechświat cząstek elementarnych

Mechanika relatywistyczna Wykład 13

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

Dynamika relatywistyczna

VI. 6 Rozpraszanie głębokonieelastyczne i kwarki

Mechanika relatywistyczna Wykład 15

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Atomowa budowa materii

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

czastki elementarne Czastki elementarne

Początek XX wieku. Dualizm korpuskularno - falowy

V.6 Pęd i energia przy prędkościach bliskich c

Wszechświat cząstek elementarnych (dla humanistów)

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW

Theory Polish (Poland)

Podstawy Fizyki Jądrowej

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Maria Krawczyk, Wydział Fizyki UW

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe

Maria Krawczyk, Wydział Fizyki UW 1.III Fizyka cząstek elementanych Odkrycia

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012

Światło fala, czy strumień cząstek?

Neutrina. Wstęp do Fizyki I (B+C) Wykład XXII:

Podstawowe własności jąder atomowych

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Wykład 1. Wszechświat cząstek elementarnych dla humanistów. Maria Krawczyk (IFT), Filip A. Żarnecki (IFD), Wydział Fizyki UW

Agnieszka Obłąkowska-Mucha

W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński

Wszechświat cząstek elementarnych

Akceleratory. Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

Cząstki elementarne i ich oddziaływania III

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Elementy Fizyki Czastek Elementarnych 1 / 2

III. EFEKT COMPTONA (1923)

Wszechświat cząstek elementarnych (dla humanistów)

Promieniowanie jonizujące

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

Dziwny jest ten świat: czastki elementarne

Oddziaływania fundamentalne

Wstęp do fizyki cząstek elementarnych

Perspektywy fizyki czastek elementarnych

Wszechświat czastek elementarnych

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników

Wykład 1. Wszechświat cząstek elementarnych dla humanistów. Maria Krawczyk (IFT), Filip A. Żarnecki (IFD), Wydział Fizyki UW

Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)

Promieniowanie jonizujące

WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:

Reakcje jądrowe. kanał wyjściowy

Ciemna strona Wszechświata

WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa

Fizyka 3. Konsultacje: p. 329, Mechatronika

Oddziaływanie cząstek z materią

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III

Zasada zachowania energii

Zasada zachowania energii

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki

Podstawy fizyki kwantowej i budowy materii

Ciemna strona Wszechświata

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Jak działają detektory. Julia Hoffman

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

Fizyka cząstek elementarnych

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

Podstawy fizyki subatomowej

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Neutrina. Fizyka I (B+C) Wykład XXVII:

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Transkrypt:

Dynamika relatywistyczna Fizyka I (Mechanika) Wykład IX: czastki elementarne akceleratory czastek rozpady czastek rozpraszanie nieelastyczne foton jako czastka: efekt Dopplera i efekt Comptona

Fermiony Świat czastek elementarnych świat codzienny zbudowany jest z 3 cegiełek (elektron oraz kwarki u i d) Nukleony składaja się z 3 kwarków: proton (uud), neutron(udd). Fizyka czastek znalazła już jednak 12 fundamentalnych cegiełek materii, fermionów (czastek o spinie 1/2) leptony kwarki pokolenie 1 e ν e d u elektron neutrino el. down up pokolenie 2 µ ν µ s c mion neutrino mionowe strange charm pokolenie 3 τ ν τ b t taon neutrino taonowe beauty top (bottom) (truth) ładunek [e] 1 0 1/3 +2/3 Wszystkie leptony obserwujemy jako czastki swobodne Kwarki sa zawsze uwięzione w hadronach (czastkach oddziałujacych silnie) A.F.Żarnecki Wykład IX 1

Świat czastek elementarnych Bozony Cegiełki materii oddziałuja ze soba poprzez wymianę nośników oddziaływań Nośnik przekazuje część energii i/lub pędu jednej czastki drugiej czastce oddziaływanie źródło nośnik moc grawitacyjne masa grawiton G 10 39 elektromagnetyczne ładunek foton γ 10 2 silne kolor gluony g 1 słabe ładunek słaby bozony W ±, Z 10 7 pośredniczace moc - przykładowe porównanie wielkości oddziaływań dla dwóch sasiaduj acych protonów A.F.Żarnecki Wykład IX 2

A.F.Żarnecki Wykład IX 3

γ g elektromagnetyczne silne W + Z 0 W - G slabe grawitacyjne A.F.Żarnecki Wykład IX 4

Akceleratory W 1919 roku Rutherford wskazał na korzyści z przyspieszania czastek. Pole elektrostatyczne (g. Cockrofta-Waltona, Van de Graaffa) ograniczone do 30 MV Akcelerator liniowy Idea: Gustav Ising 1924. Pierwsze urzadzenia: Rolf Wideroe 1927, Lawrence 1931. Czastka przechodzi przez kolejne kondensatory q>0 E Przy odpowiednim dobraniu długości kolejnych elementów i częstości napięcia zasilajacego, czastka trafia zawsze na pole przyspieszajace. zwielokrotnienie uzyskiwanych energii Częstość jest zazwyczaj stała. Długości kolejnych elementów rosna proporcjonalnie do prędkości czastki. U Dla E m, prędkość β 1: L=const. A.F.Żarnecki Wykład IX 5

Liniowy akcelerator protonów w ośrodku Fermilab (USA) A.F.Żarnecki Wykład IX 6

Wnęka rezonansowa Akceleratory W praktyce do przyspieszania czastek wykorzystujemy tzw. wnęki rezonansowe: Klistron Wewnatrz wnęki wytwarzana jest stojaca fala elektromagnetyczna. Długość fali/wnęki jest tak dobrana, że czastka zawsze trafia na pole przyspieszajace. Częstości rzędu 1 GHz - mikrofale. Wnęki rezonansowe pozwalaja uzyskiwać natężenia pola rzędu 10 MV/m dla uzyskania energii 1 GeV potrzebny jest akcelerator liniowy o długości 100 m A.F.Żarnecki Wykład IX 7

Wnęka rezonansowa A.F.Żarnecki Wykład IX 8

Akceleratory Akcelerator kołowy Zamiast używać wielu wnęk możemy wykorzystać pole magnetyczne do zapętlenia czastki. Schemat pogladowy: B Czastki moga przechodzić przez wnękę przyspieszajac a wiele razy... E Pierwszy tego typu akcelerator (cyklotron) zbudował w 1931 roku Ernest Lawrence U A.F.Żarnecki Wykład IX 9

Akceleratory Cyklotron Ernest Lawrence Schemat Pierwszy cyklotron A.F.Żarnecki Wykład IX 10

Akceleratory Akcelerator kołowy W praktyce akceleratory kołowe zbudowane sa z wielu powtarzajacych się segmentów: Każdy segment składa się z Schemat akceleratora: wnęk przyspieszajacych (A) magnesów zakrzywiajacych (B) układów ogniskujacych (F) F A B A.F.Żarnecki Wykład IX 11

LEP/LHC Akceleratory Największy zbudowany dotad akcelerator: LEP w CERN pod Genewa, obwód 27 km. Zderzał przeciwbieżne wiazki elektronów i pozytonów do energii 100 GeV. W tym samym tunelu zbudowano następnie LHC, który zderza przeciwbieżne wiazki protonów o energii 3.5 TeV (docelowo 7 TeV). Docelowo 2800 "paczek" po 10 11 protonów. Energia jednej paczki: 10 5 J Samochód osobowy jadacy ok. 60 km/h Całkowita energia wiazek: 6 10 8 J Energia pola magnetycznego: 10 10 J Airbus A380 lecacy z prędkościa 700 km/h. A.F.Żarnecki Wykład IX 12

LHC, CERN, Genewa A.F.Żarnecki Wykład IX 13

Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd czastki: p = m c γ β = m γ V β = V c Relatywistyczne wyrażenia na energię czastki: Ò ØÝÞÒ E Ò Ö k = m c 2 (γ 1) ÔÓÞÝÒ ÓÛ E Ò Ö 0 = m c 2 E = m c 2 γ ÓÛ Ø Ò Ö Dla dowolnego izolowanego układu obowiazuj a zawsze: i i E i = i p i = i γ i m i c 2 = const γ i m i Vi = const Þ Þ ÓÛ Ò Ò Ö Þ Þ ÓÛ Ò Ô Ù A.F.Żarnecki Wykład IX 14

Dynamika relatywistyczna Transformacja Zamiast rozważać niezależnie energię i pęd układu, wygodnie jest wprowadzić czterowektor energii-pędu: E = (E, c p) = (E, cp x, cp y, cp z ) Przy zmianie układu odniesienia, czterowektor energii-pędu podlega transformacji Lorentza identycznej z transformacja dla współrzędnych czasoprzestrzennych zdarzeń. E c p x c p y c p z = γ E + γ β c p,x γ β E + γ c p,x c p,y c p,z = γ γ β 0 0 γ β γ 0 0 0 0 1 0 0 0 0 1 E c p,x c p,y c p,z energia czas pęd położenie A.F.Żarnecki Wykład IX 15

Dynamika relatywistyczna Masa niezmiennicza Niezmiennik transformacji Lorenza, (nie zależy od wyboru układu odniesienia) M 2 c 4 = s = E 2 p 2 c 2 Dla dowolnego izolowanego układu fizycznego masa niezmiennicza jest zachowana (nie zmienia się w czasie). Wynika to z zasady zachowania energii i pędu. podstawowe pojęcie w analizie zderzeń relatywistycznych, zwłaszcza w procesach nieelastycznych (produkcja nowych czastek) Masa niezmiennicza jest tożsama z energia układu w układzie środka masy (P = 0). Dla zderzajacych się czastek mówimy o energii dostępnej w układzie środka masy. Dla pojedynczej czastki masa niezmiennicza jest tożsama z masa czastki (energia spoczynkowa). A.F.Żarnecki Wykład IX 16

Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak czastki zderzajace się. W szczególności: m 1 = m 1 i m 2 = m 2 W zderzeniach czastek wysokiej energii jest to jednak wyjatek (!) Zderzenia nieelastyczne W oddziaływaniach czastek elementarnych, zwłaszcza przy wysokiej energii, obserwujemy bardzo wiele reakcji, w których powstaja nowe czastki: Rozpady czastek: a b + c Produkcja pojedyńczej czastki (tzw. rezonansu ): a + b c Rozproszenie nieelastyczne dwóch czastek: a + b c + d jedna z czastek na końcu może być czastk a stanu poczatkowego Produkcja wielu czastek: a + b X gdzie X oznacza dowolny stan wieloczastkowy A.F.Żarnecki Wykład IX 17

Rozpady czastek Rozawżmy rozpad czastki o masie M na n czastek o masach m i (i = 1... n). Masa niezmiennicza przed rozpadem: M i = M. Masa niezmiennicza po rozpadzie: M 2 f = i = i 2 E i E 2 i + 2 i i p i 2 j>i E i E j i p 2 i 2 i j>i p i p j Dla dowolnej pary czasteh i, j mamy: Ei 2 = p2 i + m2 i E i E j = (p 2 i + m2 i )(p2 j + m2 j ) = (p i p j + m i m j ) 2 + (p i m j p j m i ) 2 Ostatecznie: M 2 f i p i p j + m i m j E i E j p i p j E i E j p i p j m i m j m 2 i + 2 i j>i m i m j = i 2 m i = s min A.F.Żarnecki Wykład IX 18

Rozpady czastek Warunek konieczny, aby mógł mieć miejsce rozpad: M i m i = s min Dla rozpadu dwuciałowego, w układzie czastki: p 1 = p 2 Jaka będzie wartość pędu produktów rozpadu: p = p 1 = p 2? M 2 = (E 1 + E 2 ) 2 (p 1 p 2 ) 2 = m 2 1 + m2 2 + 2 (p 2 + m 2 1 )(p2 + m 2 2 ) + 2p2 (M 2 m 2 1 m2 2 2p2 ) 2 = 4(p 2 + m 2 1 )(p2 + m 2 2 ) 4M 2 p 2 = (M 2 m 2 1 m2 2 )2 4m 2 1 m2 2 p = (M 2 (m 1 + m 2 ) 2 )(M 2 (m 1 m 2 ) 2 ) 2 M A.F.Żarnecki Wykład IX 19

Rozpady czastek Przypadek równych mas: m 1 = m 2 = m (M 2 4m 2 )M 2 p = = 2 M (M ) 2 m 2 E = M 2 2 W granicy, gdy jeden z produktów rozpadu jest bardzo lekki: m 1 m 2 M (M 2 m 2 2 p )2 = M 2 M 2 m2 2 E 1 2M m 2 2 2M - energia tracona na odrzut drugiego ciała Energie czastek po rozpadzie nie sa równe! Mierzac pęd (lub energię) jednego z produktów rozpadu, możemy wnioskować o masach pozostałych czastek. A.F.Żarnecki Wykład IX 20

Rozpady czastek Przykład Pion π + o masie m π = 140 MeV rozpada się na mion µ + (m µ = 106 MeV) i bezmasowe neutrino: Pędy produktów rozpadu: π + µ + + ν µ p = m2 π m 2 µ 2 m π 30 MeV Energie liczymy z definicji masy niezmienniczej: m 2 = E 2 p 2 E µ = E ν = Neutrino wynosi większość energii kinetycznej! p 2 + m 2 µ 110 MeV Eµ k = 4 MeV p 2 + m 2 ν = p = 30 MeV = Ek ν A.F.Żarnecki Wykład IX 21

Rozpady czastek Wszystkie czastki danego rodzaju (np. elektrony lub neutrony) sa identyczne. Nie maja też pamięci - ich własności nie zależa od czasu. Dla czastek nietrwałych oznacza to, że prawdopodobieństwo ich rozpadu w zadanym przedziale czasu jest zawsze takie samo. Rozważmy bardzo mały przedział czasu dt (znacznie mniejszy niż typowy czas rozpadu). Jeśli próbka zawiera N czastek to liczba oczekiwanych rozpadów musi być proporcjonalna do N i do dt: Całkujac to równanie otrzymujemy: dn = N(t + dt) N(t) = α N dt dn N = α dt ln N = α t + C N(t) = N(0) e αt ÔÖ ÛÓ ÖÓÞÔ Ù ÔÖÓÑ Ò ÓØÛ ÖÞ Ó A.F.Żarnecki Wykład IX 22

Rozpady czastek Prawdopodobieństwo rozpadu na jednostkę czasu (dla pojedynczej czastki): p(t) = α e αt Parametr α wiaże się ze średnim czasem życia czastki: τ = t = 0 t p(t)dt = 1 α p(t) = 1 τ e t/τ N(t) = N 0 e t/τ Jeśli czastka o masie m i średnim czasie życia τ (zawsze defniowanym w układzie czastki) ma w układzie obserwatora O energię E i pęd p, to obserwator zmierzy: N(t ) = N 0 e t γτ = N 0 e mt Eτ t = γ τ = E m τ Ö Ò ÖÓ ÛÓ Ó Ò λ = vt = β γ cτ = p m cτ A.F.Żarnecki Wykład IX 23

Przykład Rozpady czastek Jaki powinien być pęd mionu produkowanego w górnych warstwach atmosfery (h = 20 km), żeby mógł dolecieć do powierzchni Ziemi zanim się rozpadnie? Prawdopodobieństwo rozpadu w funkcji odległości: p(x) = 1 λ e x/λ λ = p m cτ Prawdopodobieństwo, że mion doleci do powierzchni Ziemi: P(x > h) = h p(x)dx = e h/λ jest formalnie niezerowe dla dowolnego pędu. Duże szanse dolecieć maja jednak tylko miony, dla których λ > h: p m cτ > h p > h cτ m Dla mionu: τ = 2.2 µs (cτ 660 m), m 100 MeV: p > h m 30 m = 3 GeV cτ A.F.Żarnecki Wykład IX 24

Zderzenia e + e Zderzenia relatywistyczne Przekrój czynny na produkcję hadronów w funkcji dostępnej energii: 10 7 ω φ J/ψ ψ(2s) σ(e + e _ qq hadrons) [pb] 10 6 10 5 10 4 10 3 10 2 ρ Z 1 10 10 2 s (GeV) A.F.Żarnecki Wykład IX 25

Zderzenia relatywistyczne Zderzenia e + e W całym zakresie zbadanych energii mamy niezerowy przekrój czynny na produkcję kwarków. Proces ten opisujeny jako anihilację e + e w wirtualny foton, który następnie rozpada sie na parę q q e e + γ q _ q Produkcja rezonansów Przy pewnych wartościach s obserwujemy wzrost produkcji kwarków o kilka rzędów wielkości. Jest to efekt rezonansowej produkcji czastek e e + J/ Ψ Aby w zderzeniu dwóch czastek powstała jedna, (np: e + e J/Ψ q q ) masa niezmiennicza zderzajacych się czastek musi być równa masie czastki która produkujemy ( s = m J/Ψ ) q _ q A.F.Żarnecki Wykład IX 26

Zderzenia relatywistyczne Produkcja rezonansów Produkcja bozonu Z w eksperymencie L3 (LEP) e + e Z q q Maksimum przekroju czynnego obserwujemy dla s = mz ale ma ono skończona szerokość: (rozkład Breita-Wignera) σ(s) M 2 Z Γ2 (s M 2 Z )2 + M 2 Z Γ2 Szerokość rezonansu wiaże się z czasem życia: Γ τ = h (zasada nieoznaczoności) A.F.Żarnecki Wykład IX 27

Zderzenia relatywistyczne Produkcja wielu czastek LEP 08/07/2001 Preliminary Aby w zderzeniu dwóch czastek powstały dwie lub więcej nowych czastek, np: 20 e + e W + W masa niezmiennicza zderzajacych się czastek musi być większa lub równa sumie mas pro- σ WW [pb] 15 10 dukowanych czastek: s m i 5 RacoonWW / YFSWW 1.14 no ZWW vertex (Gentle 2.1) only ν e exchange (Gentle 2.1) i Mierzony przekrój czynny e + e W + W s 2 mw 160 GeV 0 160 170 180 190 200 210 E cm [GeV] A.F.Żarnecki Wykład IX 28

Zderzenia relatywistyczne Energia dostępna Mase niezmiennicza zderzajacych się czastek s określamy też jako energię dostępna w układzie środka masy. Energia dostępna jest to część energii kinetycznej, która może zostać zamieniona na masę (energię spoczynkowa) nowych czastek. s mówi nam ile energii możemy zużyć na wyprodukowanie nowych czastek. Przykład Aby wyprodukować antyproton w reakcji p p p p p p musimy mieć s 4 mp liczymy wszystkie czastki w stanie końcowym, także czastki pierwotne A.F.Żarnecki Wykład IX 29

Zderzenia relatywistyczne Określona wartość energii dostępnej możemy uzyskać na rózne sposoby: Zderzenia z tarcza Czastka pocisk o energii E uderza w nieruchoma tarczę: Wiazki przeciwbieżne Zderzenia wiazek o energiach E 1 i E 2 : s = 2 E 1 m 2 + m 2 1 + m2 2 w granicy E 1 m 1 m 2 s = 2 E 1 E 2 + 2 p 1 p 2 + m 2 1 + m2 2 w granicy E 1 E 2 m 1 m 2 Przykład s 2 E 1 m 2 Wiazka protonów o energii 50 GeV ( 50 m p ) s 4 E 1 E 2 Dużo wyższe wartości!!! na tarczy wodorowej (protony): s 2Em p 10GeV 10 m p dwie wiazki przeciwbieżne: s 4E E = 2 E = 100GeV 100 m p A.F.Żarnecki Wykład IX 30

Energia progowa Zderzenia z tarcza Minimalna energia wiazki E min przy której możliwa jest dana reakcja. Minimalna masa niezmiennicza: W zderzeniach z nieruchoma tarcza: s min = minimalna energia całkowita pocisku: i 2 m i s min = 2 E min m 2 + m 2 1 + m2 2 E min = s min (m 2 1 + m2 2 ) = ( 2 m 2 minimalna energia kinetyczna pocisku: i m i ) 2 (m 2 1 + m2 2 ) 2 m 2 E k,min = E min E = ( i m i ) 2 (m 1 + m 2 ) 2 2 m 2 A.F.Żarnecki Wykład IX 31

Energia progowa Zderzenia z tarcza Zwiazek minimalnej energii kinetycznej pocisku z przyrostem masy: 2 m 2 E k,min = i 2 m i i 2 m i ÔÓÞ Ø ÓÛ energia kinetyczna pocisku jest zużywana na zwiększenie masy układu... Ó ÓÛ Przykład 1 Produkcja anty-protonów w reakcji pp ppp p i m i = 4m p M = 2m p E min = (4 m p) 2 (m 2 p + m2 p ) 2 m p = 7 m p E k,min = E min m p = 6 m p 5.63 GeV A.F.Żarnecki Wykład IX 32

Wiazki przeciwbieżne Energia progowa Dla wiazek przeciwbieżnych: dla uproszczenia przyjmujemy E 1 = E 2, m 1 = m 2 s min 4 E 1 E 2 = 4 E 2 min E min = 1 smin = 1 2 2 E k,min = 1 2 i m i ( i m i ) 2 = 1 2 i m i m i i energia rośnie liniowo z masa produkowanego stanu (na tarczy: kwadratowo) dużo niższe energie potrzebne do wytworzenia tego samego stanu Przykład 1 (c.d.) Produkcja anty-protonów w reakcji p p p p p p i m i = 4 m p Ó ÓÛ ÔÓÞ Ø ÓÛ E k,min = 1 2 [4m p 2m p ] = m p 0.94 GeV Ò Ø ÖÞÝ 5.63 GeV A.F.Żarnecki Wykład IX 33

Energia progowa Wiazki przeciwbieżne Przykład 2 Produkcja par bozonów W + W w zderzeniach elektron-pozyton: e + e W + W Gdybyśmy chcieli użyć pojedyńczej wiazki pozytonów i tarczy i m i = 2 m W E min = (2 m W) 2 (m 2 e + m 2 e) 2 m2 W 25 300 000 GeV 2 m e m e m W = 80.4 GeV m e = 0.000511 GeV Tak ogromnych energii nie jesteśmy w stanie wytworzyć! Dotychczas wiazki pozytonów E 100 GeV, projektowane E 1000 5000 GeV... Dla przeciwbieżnych wiazek elektron-pozyton: s 4 E 2 E min = 1 smin = 1 2 2 i 2 m i = 1 2 i m i = m W 80 GeV Takie energie to już nie problem... A.F.Żarnecki Wykład IX 34

Natura światła Foton Fotony to kwanty promieniowania elektromagnetycznego. Przenosza oddziaływania między czastkami naładowanymi. Maja naturę korpuskularno-falowa: fala elektromagnetyczna, opisana równaniami Maxwella c = 1 ǫ µ podlega interferencji, dyfrakcji, załamaniu czastka o ustalonej energii i pędzie, ale zerowej masie m γ 0 β 1 może zderzać się z innymi czastkami, być pochłaniana lub rozpraszana Im wyższa częstość (mniejsza długość fali) promieniowania, tym wyższa energia pojedyńczego fotonu wyraźniejsze efekty korpuskularne E γ = p γ c = h ν = hc λ λ ν = c Choć korpuskularna koncepcja Einsteina pozwalała na opis zjawiska fotoelektrycznego, foton bardzo długo nie był traktowany jako prawdziwa czastka... A.F.Żarnecki Wykład IX 35

Efekt Comptona Rozpraszanie fotonów W wyniku rozpraszania w materii, promieniowanie X stawało się mniej przenikliwe zmieniało długości fali Opis tego zjawiska zaproponował w 1923 roku A.H.Compton. Fotony promieniowania X rozpraszaja się na elektronach w atomie e γ e oddajac im część swojej energii. γ Relatywistyczne zderzenie dwóch ciał tak samo jak w przypadku czastek! h ν m Zasady zachowania: E : p : p : E h ν η Θ hν + m = hν + E hν = hν cos θ + pcos η 0 = hν sin θ psin η A.F.Żarnecki Wykład IX 36

Efekt Comptona Przekształcajac otrzymujemy: E = h(ν ν ) + m pcos η = h(ν ν cos θ) psin η = hν sin θ Podnoszac stronami do kwadratu i zestawiajac do masy elektronu: m 2 = E 2 p 2 = ( h(ν ν ) + m ) 2 h 2 ( ν ν cos θ ) 2 ( hν sin θ ) 2 = m 2 +h 2 ν 2 +h 2 ν 2 2h 2 νν + 2mh(ν ν ) h 2 ν 2 + 2h 2 νν cos θ h 2 ν 2 cos 2 θ h 2 ν 2 sin 2 θ m hν = hν (m + hν(1 cos θ)) hν = hν 1 + hν λ m (1 cos θ) = λ + h (1 cos θ) m c h m c = 2.43 10 12 m = 2.43 pm A.F.Żarnecki Wykład IX 37

Efekt Comptona Małe energie fotonów W granicy małych energii fotonu hν m hν = hν m m + hν(1 cos θ) hν foton rozprasza się bez straty energii. Odpowiada to klasycznemu zderzeniu pocisku, m 1, z dużo cięższa tarcza, m 2 m 1. Foton zachowuje energię, ale zmienia się wektor pędu (kierunek!) Przykład: odbicie światła widzialnego hν = 1.8 3.1eV (700 nm - 400 nm) Energia rozproszonego elektronu: E = hν hν + m = hν(hν + m)(1 cos θ) + m2 W granicy hν m: energia elektronu: hν(1 cos θ) + m E m pęd rozproszonego elektronu: p hν 2(1 cos θ) A.F.Żarnecki Wykład IX 38

Efekt Comptona Duże energie fotonów W granicy dużych energii fotonu hν m (przyjmujac cos θ 1, czyli θ 0) hν E m 1 cos θ 0 hν + m foton przekazuje spoczywajacemu elektronowi praktycznie cała swoja energię e γ e Odpowiada to klasycznemy zderzeniu ciał o równych masach (zakładajac zderzenie centralne i elastyczne) Dla hν m masę elektronu można pominać - elektron, tak jak foton, można traktować jako czastkę bezmasowa. γ A.F.Żarnecki Wykład IX 39

Efekt Comptona Rozpraszanie do tyłu W rozpraszaniu na spoczywajacym elektronie najniższa energię będzie miał foton rozproszony do tyłu (cos θ = 1): hν = hν m 2hν + m < hν To, że foton zawsze traci energię zwiazane jest jednak z wyborem układu odniesienia! (układ zwiazany z poczatkowym elektronem) Rozpraszanie na wiazce elektronów Możemy jednak rozważyć rozpraszanie fotonów o energii hν na przeciwbieżnej wiazce elektronów o energii E e m. e γ Transformacja Lorenza do układu elektronu: γ = E e m β 1 Energia fotonu w układzie elektronu: hν = γ(1 + β)hν 2E e m hν hν A.F.Żarnecki Wykład IX 40

Photon Collider Rozpraszanie na wiazce elektronów Przyjmijmy, że foton rozprasza się do tyłu (cos θ = 1). Energia rozproszonego fotonu w układzie elektronu: hν = hν m 2hν + m 2E e hν m 4E e hν + m 2 Wracajac do układu laboratoryjnego: (transformacja taka sama, bo pęd foton zmienił kierunek) hν 2E e m hν Otrzymujemy: hν E e 4E e hν 4E e hν + m 2 Wysoke energia wiazki, 4E e hν m 2 elektron może przekazać fotonowi większość swojej energii. e e Przykład: dla E e = 250GeV i hν = 1eV hν 200GeV γ γ A.F.Żarnecki Wykład IX 41

Projekt Fizyka wobec wyzwań XXI w. współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego