PARAMETRY PRACY TURBODOŁADOWANEGO SILNIKA ZI SAMOCHODU OSOBOWEGO W WARUNKACH NIESZCZELNOŚCI UKŁADU WYDECHOWEGO

Podobne dokumenty
ZESZYTY NAUKOWE POLITECHNIKI OPOLSKIEJ Seria: Mechanika z. 109 Nr kol. 367/2018

BADANIA POJAZDU EURO 5 PRZY PEŁNYM OBCIĄŻENIU SILNIKA

WPŁYW KĄTA WYPRZEDZENIA WTRYSKU NA JEDNOSTKOWE ZUŻYCIE PALIWA ORAZ NA EMISJĘ SUBSTANCJI TOKSYCZNYCH W SILNIKU ZS ZASILANYM OLEJEM RZEPAKOWYM

STOCHOWSKA WYDZIAŁ IN

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

WPŁYW PODAWANIA WODORU NA POZIOM ZADYMIENIA SPALIN SILNIKA SAMOCHODOWEGO

Wpływ składu mieszanki gazu syntetycznego zasilającego silnik o zapłonie iskrowym na toksyczność spalin

Wykaz ważniejszych oznaczeń i skrótów Wprowadzenie... 13

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.

SPOSÓB POMIARU EMISJI ZANIECZYSZCZEŃ GAZOWYCH ORAZ ZADYMIENIA SPALIN PODCZAS PRZEPROWADZANIA BADANIA TECHNICZNEGO POJAZDU

DŁUGODYSTANSOWY. Ekonomiczne rozwiązanie dla pokonujących długie trasy. Sterownik LPG/CNG do silników Diesel.

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych

KARTY POMIAROWE DO BADAŃ DROGOWYCH

KODY MIGOWE CITROEN (Sprawdzone na modelu Xantia 1.8i 8V 1994r.)

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników

Pozostałe systemy i diagnozy 5

Silniki ABZ/AEW/AKG/AKJ/AHC/AKH

Charakterystyki prędkościowe silników spalinowych

Analiza spalin silników o zapłonie iskrowym (2)

Wpływ rodzaju paliwa gazowego oraz warunków w procesu spalania na parametry pracy silnika spalinowego mchp

Silnik AHU. Jałowy bieg (ciepły silnik, temperatura płynu chłodzącego nie niższa niż 80 C. Numer 0 (dziesiętne wartości wskazań)

НАЦІОНАЛЬНИЙ ТРАНСПОРТНИЙ УНІВЕРСИТЕТ

2. OPIS OBIEKTU BADAŃ ORAZ WARUNKÓW TECHNICZNYCH BADAŃ

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Piotr Ignaciuk *, Leszek Gil **, Stefan Liśćak ***

ELASTYCZNOŚĆ SILNIKA ANDORIA 4CTI90

Właściwy silnik do każdego zastosowania _BlueEfficiencyPower_Polnisch_Schrift_in_Pfade.indd :55:33

Analiza spalin silników o zapłonie iskrowym (2)

Wydział Mechaniczny. INSTYTUT EKSPLOATACJI POJAZDÓW I MASZYN tel.

WPŁYW NASTAW REGULATORA POŁOŻENIA PRZEPUSTNICY SILNIKA ZI NA ZUŻYCIE PALIWA W CYKLACH JEZDNYCH

EKOLOGIA I OCHRONA ŚRODOWISKA W TRANSPORCIE LABORATORIUM Ćwiczenie 5. Temat: Ocena skuteczności działania katalitycznego układu oczyszczania spalin.

Kongres Innowacji Polskich KRAKÓW

1. Wprowadzenie 1.1. Krótka historia rozwoju silników spalinowych

Kłopotliwy EGR. Jak sprawdzić poprawność jego działania? [PORADNIK]

Zespól B-D Elektrotechniki

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

Silnik AFB AKN. Jałowy bieg (ciepły silnik, temperatura płynu chłodzącego nie niższa niż 80 C. Numer 0 (dziesiętne wartości wskazań)

ELASTYCZNOŚĆ WSPÓŁCZESNYCH SILNIKÓW O ZAPŁONIE ISKROWYM

Elektronika samochodowa (Kod: ES1C )

Biogas buses of Scania

WPŁYW DOŁADOWANIA SILNIKA O ZAPŁONIE ISKROWYM NA EMISJĘ ZWIĄZKÓW SZKODLIWYCH SPALIN Z POJAZDU W WARUNKACH RZECZYWISTEJ EKSPLOATACJI

Opisy kodów błędów.

Pytania na egzamin dyplomowy specjalność SiC

Silnik AKU. Jałowy bieg (ciepły silnik, temperatura płynu chłodzącego nie niższa niż 80 C). Numer 0 (dziesiętne wartości wskazań)

Silniki zasilane alternatywnymi źródłami energii

Silniki AJM ARL ATD AUY

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Identyfikacja samochodu

Spis treści. 1. Badanie układu samodiagnostyki w silniku benzynowym typu Struktura systemu sterowania silnikiem benzynowym typu

WPŁYW USTAWIENIA INSTALACJI GAZOWEJ NA PARAMETRY PRACY SILNIKA SPALINOWEGO O ZAPŁONIE ISKROWYM

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych

ISBN

BADANIA SAMOCHODU NAPĘDZANEGO SILNIKIEM FSI SYSTEMEM ELEKTRONICZNEGO STEROWANIA BEZPOŚREDNIM WTRYSKIEM BENZYNY

Schemat pojazdu Volkswagen Golf VII łatwiejsza naprawa dzięki cennym wskazówkom

Raport końcowy. Test km na LPG. Cel testu: Badanie wpływu LPG na elementy silnika wysokoprężnego.

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Bloki wartości mierzonych sterownika -J361-, silnik AEH, AKL

technik mechanik kwalifikacji M.18. Numer ewidencyjny w wykazie podręczników MEN: 56/2015 Od autorów 9 1. Wiadomości wstępne

Moment obrotowy i moc silnika a jego obciążenie (4)

WPŁYW TEMPERATURY ROZRUCHU SILNIKA NA CZAS PRACY BEZ UWZGLĘDNIENIA W STEROWANIU SYGNAŁU Z CZUJNIKA STĘŻENIA TLENU

I. Kontrola stanu technicznego układu wydechowego i poziomu hałasu zewnętrznego podczas postoju pojazdu. Kontrola organoleptyczna - I etap

Technika Samochodowa

Wpływ dodatku Panther na toksyczność spalin silnika ZI

Analiza wpływu rodzaju instalacji gazowej LPG stosowanych do zasilania silników ZI na emisję substancji szkodliwych

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Wpływ motoryzacji na jakość powietrza

STACJE KONTROLI POJAZDÓW W KONTEKŚCIE OBOWIĄZUJĄCYCH PRZEPISÓW. kwiecień maj czerwiec 2016 r.

Silniki AGP AGR AHF ALH AQM ASV

Rok akademicki: 2014/2015 Kod: STC TP-s Punkty ECTS: 3. Kierunek: Technologia Chemiczna Specjalność: Technologia paliw

WPŁYW SKŁADU MIESZANKI NA EMISJĘ SZKODLIWYCH SKŁADNIKÓW SPALIN PODCZAS ZASILANIA SILNIKA GAZEM ZIEMNYM

Wpływ rodzaju układu zasilania silnika o ZI na wskaźniki ekologiczne

ANALIZA ENERGOCHŁONNOŚCI RUCHU TROLEJBUSÓW

BADANIE WPŁYWU DODATKU PANTHER 2 NA TOKSYCZNOŚĆ SPALIN SILNIKA ZI

RESEARCH OF OXYGEN SENSOR SIGNALS IN THREE WAY CATALITIC CONVERTER FOR OBD II NEEDS

Bloki wartości mierzonych dla sterownika -J361-, silnik BFQ

Logistyka - nauka. Wpływ zastosowania paliwa z dodatkiem etanolu do zasilania silników spalinowych na skład spalin

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

WPŁYW STEROWANIA POŁOŻENIEM PRZEPUSTNICY NA EMISJĘ SUBSTANCJI SZKODLIWYCH

SYNTEZA I SYMULACJA STATYCZNA STEROWANIA Z CYKLU NA CYKL WTRYSKIEM PALIWA W SILNIKU GDI

Czyszczenie silnika benzynowego w samochodzie marki Fiat Punto 1.2

SAMOCHODY ZASILANE WODOREM

Analiza spalin w silniku o zapłonie iskrowym (3)

WYMOGI NORMY EMISJI SPALIN EURO 5 W ODNIESIENIU DO POJAZDÓW ZASILANYCH LPG

Kierunek: Mechanika i budowa maszyn

1. BADANIA DIAGNOSTYCZNE POJAZDU NA HAMOWNI PODWOZIOWEJ

Investigation of the combustion engine fuelled with hydrogen

SPIS TREŚCI. Przedmowa... 8

DEGA. Diesel and Gas Mixture. LPG Powietrze. Spaliny ON + LPG. tylko ON!! ON+LPG. Termopara spalin ON + LPG. Wykres mocy [KW]

STOCHOWSKA WYDZIAŁ IN

PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia

Mieszanka paliwowo-powietrzna i składniki spalin

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(97)/2014

1.5 Diesel 88 kw (120 KM) Parametry silników Pojemność (cm³)

INSTRUKCJE DO ZAJĘĆ LABORATORYJNYCH SILNIKI SPALINOWE I PALIWA

BADANIA STĘŻE Ń ZWIĄZKÓW SZKODLIWYCH SPALIN TURBINOWEGO SILNIKA ŚMIGŁOWEGO W USTALONYCH WARUNKACH EKSPLOATACYJNYCH

WYDZIAŁ MECHANICZNY POLITECHNIKI GDAŃSKIEJ KATEDRA SILNIKÓW SPALINOWYCH I SPRĘśAREK

Laboratorium z Konwersji Energii SILNIK SPALINOWY

Analiza kosztów eksploatacji pojazdów komunikacji miejskiej na przykładzie Miejskiego Przedsiębiorstwa Komunikacyjnego w Lublinie

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

SYSTEMY SYSTEM KONTR OLI TRAKCJI OLI ukła uk dy dy be zpiec zeńs zpiec zeńs a tw czyn czyn

Transkrypt:

Krystian HENNEK, Mariusz GRABA PARAMETRY PRACY TURBODOŁADOWANEGO SILNIKA ZI SAMOCHODU OSOBOWEGO W WARUNKACH NIESZCZELNOŚCI UKŁADU WYDECHOWEGO W artykule omówiony został wpływ nieszczelności układu wydechowego na parametry użytkowe oraz emisję substancji szkodliwych w spalinach turbodoładowanego silnika o zapłonie iskrowym samochodu osobowego. Dokonano analizy porównawczej wyników pomiarów uzyskanych na hamowni podwoziowej MAHA MSR500 w warunkach szczelności oraz sztucznego wytworzenia nieszczelności układu wydechowego w miejscu montażu szerokopasmowego czujnika stężenia tlenu w spalinach. Przedstawione dane odnoszą się między innymi do emisji toksycznych i nietoksycznych składników spalin, przebiegów mocy w układzie napędowym oraz chwilowych wartości współczynnika nadmiaru powietrza. W celu uzyskania danych wykonano szereg przejazdów pomiarowych według profilu prędkości cyklu jezdnego EUDC. WSTĘP Konstruktorzy silników spalinowych, od powstania pierwszych działających tego typu jednostek napędowych, starają się udoskonalać ich budowę. Początkowo głównymi celami ich prac było podwyższanie mocy oraz poprawa sprawności ogólnej silników. Po pewnym czasie zaczęto dodatkowo zwracać uwagę na aspekty ekologiczne, między innymi emisję substancji szkodliwych, ogólną ilość energii i materiałów zużywanych w procesie ich produkcji i inne. Bodźcami motywującymi tego rodzaju zabiegi były stopniowe zaostrzanie przepisów dotyczących emisji spalin oraz względy ekonomiczne. Doładowanie silników spalinowych jest jednym z rozwiązań łączących w sobie wysilenie oraz obniżenie szkodliwości tych maszyn dla otoczenia. Podawanie do komór spalania silnika powietrza pod ciśnieniem wyższym od atmosferycznego pozwala na powiększenie dawki paliwa ulegającej utlenieniu. Wynika to z powinności utrzymania stechiometrycznego składu mieszanki palnej. Wzrost ilość mieszanki paliwowo powietrznej powoduje powstanie sił gazowych o większej niż w przypadku silnika atmosferycznego energii, gwarantując przyrost momentu obrotowego generowanego przez silnik. Dzięki temu zahamowaniu uległ między innymi trend podwyższania mocy silnika przez zwiększenie jego objętości skokowej (a przez to również jego gabarytów). Doładowanie silników spalinowych o zapłonie iskrowym (ZI) z wykorzystaniem zespołu turbosprężarki to obecnie najczęściej stosowany sposób zwiększenia ich mocy i sprawności. Jako że tego typu silniki stosowane są powszechnie w motoryzacji od około 20 lat, część z nich zdolna była do pokonania znacznych przebiegów. W związku z tym istnieje wysokie prawdopodobieństwo, że ulegną awarii w postaci chociażby powstania nieszczelności w układzie wylotowym spalin. Takie uszkodzenie może mieć wpływ nie tylko na emisję toksycznych składników spalin, ale również na parametry pracy i właściwości użytkowe silnika. Stąd w pracy przedstawiono analizę porównawczą wpływu nieszczelności układu wylotowego na skład spalin emitowanych do atmosfery, wytwarzanych przez turbodoładowany silnik o zapłonie iskrowym (ZI). W badaniach zwrócono uwagę na wpływ nieszczelności na stężenie głównych toksycznych składników w spalinach. 1. BADANIA WŁASNE 1.1. Obiekt badań Do badań wykorzystano pojazd osobowy Volkswagen Passat (rysunek 1), wyposażony w turbodoładowany silnik o zapłonie iskrowym, ręcznie sterowaną stopniową skrzynię przekładniową oraz napędzaną przednią osią. W tabeli 1 przedstawiono ważniejsze informacje dotyczące jednostki napędowej tego pojazdu. Przebieg odczytany z licznika przebytej drogi wynosił w momencie rozpoczęcia testów około 410 tys. km. Warunki oraz sposób użytkowania tego pojazdu nie wywołały w czasie jego eksploatacji potrzeby dokonania naprawy głównej silnika ani jego wymiany. Do tego faktu przyczynić mogły się regularnie wykonywane przeglądy oraz naprawy bieżące pojazdu. Rys. 1. Pojazd osobowy VW Passat zamocowany na hamowni podwoziowej MAHA MSR 500 Tab. 1. Dane dotyczące silnika testowanego pojazdu osobowego VW Passat Pojemność skokowa, cm³ 1781 Sposób doładowania turbosprężarka (KKK K03) Ilość cylindrów / zaworów na cylinder / budowa układu 4 / 20 / DOHC rozrządu Moc maksymalna / prędkość obrotowa mocy maksymalnej, 150 (110) / 5700 PS (kw) / obr/min Moment obrotowy maksymalny / zakres prędkości obrotowej maksymalnego momentu obrotowego, Nm / 210 / 1750-4600 obr/min 6/2018 AUTOBUSY 463

1.2. Badanie na stanowisku dynamometrycznym Badania przeprowadzone zostały na jednorolkowej dwuosiowej hamowni podwoziowej 4x4 firmy MAHA MSR 500, na której wykonano szereg przejazdów według profilu prędkości syntetycznego cyklu EUDC (ang. Extra Urban Driving Cycle miejski cykl jezdny o podwyższonej prędkości maksymalnej). Zasymulowano nieszczelność w rejonie wejścia strumienia spalin do konwertera katalitycznego, a dokładniej w miejscu montażu szerokopasmowego czujnika stężenia resztkowego tlenu w spalinach. Podczas badań rejestrowano, a następnie analizowano takie parametry pracy silnika, jak: moc, stężenie substancji szkodliwych w spalinach oraz chwilowa wartość współczynnika nadmiaru powietrza. W wyniku symulacji nieszczelności uzyskano trzy warianty działania szerokopasmowej sondy lambda, zamontowanej pomiędzy zespołem turbosprężarki a katalizatorem spalin: 1 konfiguracja fabryczna, 2 szerokopasmowy czujnik tlenu odsunięty od głównej osi przepływu spalin w rurze wydechowej, szczelny układ wydechowy, 3 szerokopasmowy czujnik tlenu odsunięty od głównej osi przepływu spalin w rurze wydechowej i nieszczelność układu w miejscu montażu czujnika. Do pozyskania danych dotyczących składu spalin emitowanych przez testowany pojazd użyty został czterogazowy analizator spalin MAHA MGT5. Urządzenie to stanowi jeden z elementów wyposażenia hamowni MAHA. W trakcie testów silnik badanego pojazdu zasilany był komercyjnie dostępną benzyną bezołowiową o liczbie oktanowej 95. Po zakończeniu pomiarów w danych warunkach pracy silnika każdorazowo sprawdzano obecność błędów diagnostycznych, zapisanych w pamięci elektronicznego urządzenia sterującego pracą silnika. W warunkach wariantu 1 w pamięci sterownika nie zostały zapisane żadne błędy. Po przejazdach odpowiadających wariantom 2 i 3 zanotowano pojawienie się kodu usterki odpowiadającego awarii konwertera katalitycznego. Błąd ten każdorazowo usuwano z pamięci urządzenia, jednak jego pojawienie się mogło wpłynąć na wyniki prezentowanych badań. Rys. 2. Przebiegi mocy w układzie napędowym pojazdu w cyklu EUDC: 1 szczelny układ wydechowy; 2 czujnik tlenu odsunięty od osi przepływu spalin; 3 nieszczelny układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin Podobne trendy zauważyć można na wykresie siły napędowej (rysunek 3). Piki widoczne na krzywych wynikają z niedoświadczenia kierowcy i potrzeby jego zapoznania się miedzy innymi z reakcjami silnika na wymuszenia pochodzące od pedału przyspieszenia. 2. WYNIKI POMIARÓW ORAZ ICH ANALIZA 2.1. Parametry trakcyjne Na rysunku 2 przedstawiono przebiegi mocy wygenerowanej przez silnik pojazdu w trzech przejazdach testowych. Różnice w kształtach krzywych wynikają z zachowania kierowcy. Określony kształt profilu prędkości wymusza wytworzenie w układzie napędowym mocy na określonym poziomie. Jest to szczególnie istotne w procesie przyspieszania, gdzie kierujący pojazdem dobiera właściwe parametry pracy układu napędowego operując pedałem przyspieszenia oraz zmieniając przełożenia skrzyni przekładniowej. Biorąc pod uwagę zakres mocy, jaką silnik wytworzył w testach i przyrównując go do maksymalnej mocy silnika (tabela 1) zauważyć można, że w cyklu jezdnym wykorzystywano jedynie ułamek potencjału napędowego silnika. Wynika z tego, iż w warunkach częściowego obciążenia wprowadzone modyfikacje układu wydechowego nie spowodowały różnic w generowanej przez silnik mocy. Rys. 3. Przebiegi siły napędowej zmierzonej w ramach przejazdów w cyklu EUDC: 1 szczelny układ wydechowy; 2 czujnik tlenu odsunięty od osi przepływu spalin; 3 nieszczelny układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin Jeżeli dana modyfikacja faktycznie spowodowałaby zmniejszenie lub zwiększenie siły napędowej w danych ustalonych warunkach pracy, może to nie być widoczne na podanych wykresach. Przypuszczając wariant z obniżeniem parametrów trakcyjnych pojazdu, kierowca chcąc nadążać za kształtem cyklu jezdnego będzie uchylał pedał przyspieszenia w taki sposób, by wywołać powstanie wystarczającego zapasu siły napędowej (w procesie przyspieszania), lub utrzymanie prędkości jazdy. Innymi słowy będzie używał wyższego zakresu kątowego uchylenia pedału, niż miałoby to miejsce w przypadku fabrycznej konfiguracji układu wydechowego. W przypadku zwiększenia się siły napędowej, położenie pedału przyspieszenia będzie sterowane w sposób odwrotny, a więc w niższym zakresie uchylenia. Wynika z tego, że ewentualne różnice w mocy silnika (w zależności od ich wielkości) mogą być wyczuwalne przez kierowcę pojazdu. 464 AUTOBUSY 6/2018

2.2. Emisja substancji szkodliwych w spalinach I Wykres stężenia resztkowego tlenu w spalinach zamieszczono na rysunku 4. Odsunięcie szerokopasmowego czujnika tlenu od głównej osi przepływu spalin spowodowało obniżenie koncentracji O2 we wszystkich mierzonych stanach pracy silnika, poza fazami zwalniania, od około 120 do 135 sekundy oraz od około 355 do 365 sekundy pomiaru. W cyklu EUDC w fazach zwalniania silnik spalinowy wykorzystywany jest jako hamulec, przy czym istnieje możliwość zwiększenia intensywności procesu za pomocą klasycznych hamulców ciernych pojazdu. W czasie tzw. hamowania silnikiem do komór spalania nie jest podawane paliwo, a zasada pracy silnika przypomina pracę tłokowej sprężarki powietrza. Nie zachodzi wtedy proces spalania paliwa, w związku z czym po upłynięciu pewnego czasu skład spalin wyrównuje się ze składem powietrza (w przybliżeniu). Wprowadzenie nieszczelności w układzie wydechowym spowodowało wzrost stężenia tlenu w gazach wylotowych. Może to sugerować, iż do układu przedostała się pewna dodatkowa ilość tlenu z obszaru poza układem. W dalszej części artykułu zjawisko to zostanie dokładniej omówione. we wskazaniach szerokopasmowego czujnika zawartości tlenu w spalinach, lub z przejścia elektronicznego urządzenia sterującego pracą silnika w tryb awaryjnego sterowania składem mieszanki, związany z rozpoznaniem usterki przez sterownik silnika. Rys. 5. Przebiegi współczynnika nadmiaru powietrza określonego 2 czujnik tlenu odsunięty od osi przepływu spalin; 3 nieszczelny układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin Rys. 4. Przebiegi stężenia tlenu w spalinach zmierzonego w ramach Na rysunku 5 przedstawiono przebiegi współczynnika nadmiaru powietrza (λ), zmierzonego przez analizator składu spalin. Różnice w chwilowych wartościach współczynnika λ są bardzo małe. Zachowany jest jednak trend zauważalny na rysunku 5: najniżej przebiega krzywa odpowiadająca wprowadzeniu tulei dystansującej szerokopasmową sondę tlenu, a najwyżej krzywa odpowiadająca rozszczelnieniu układu wydechowego. Świadczy to o tym, że wprowadzenie tulei spowodowało wzbogacenie, a nieszczelność zubożenie mieszanki w stosunku do jej składu zmierzonego na w pełni sprawnym pojeździe. Emisja węglowodorów przedstawiona została na rysunku 6. Do grupy węglowodorów zaliczane są: paliwo, które nie uległo utlenieniu, lub uległo tylko częściowo, olej silnikowy, którego obecność w spalinach może wynikać z uszkodzenia, lub znacznego zużycia silnika. Najniższą emisję HC zmierzono podczas przejazdów pojazdem w fabrycznej konfiguracji układu wydechowego. Znaczne jej podwyższenie zanotowano zarówno w warunkach szczelnej i nieszczelnej tulei, przy czym najwyższy chwilowy wynik (około 135 cząsteczek/milion) uzyskano z nieszczelnym układem wylotowym. Wzrost emisji węglowodorów spowodowany może być zmianami parametrów mieszanki paliwowo-powietrznej, wynikającymi z różnic Rys. 6. Przebiegi stężenia węglowodorów w spalinach zmierzonego 2 czujnik tlenu odsunięty od osi przepływu spalin; 3 nieszczelny układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin Dwutlenek węgla jest jednym z produktów powstałych w wyniku całkowitego i zupełnego utlenienia węglowodorów wchodzących w skład konwencjonalnych paliw kopalnych. Wyniki jego emisji mogą więc służyć ocenie jakości procesu spalania. Krzywe stężenia CO2 w spalinach testowanego pojazdu zamieszczono na rysunku 7. Dostrzegalna jest na nim prawidłowość nieco inna od tej, która widoczna jest na rysunku 4. Najwyższą emisję dwutlenku węgla w ujęciu całkowitej objętości spalin zmierzono podczas pracy silnika w jego fabrycznej konfiguracji. Biorąc pod uwagę wyniki emisji węglowodorów świadczy to o tym, iż w tych warunkach paliwo podane do kolektora dolotowego silnika ulegało całkowitemu i zupełnemu utlenianiu w niemal całej swojej objętości. Krzywe 2 i 3 przebiegają w podobnej odległości poniżej krzywej 1, świadcząc o niższej emisji CO2 do atmosfery, a więc o pogorszeniu jakości procesu spalania, lub zmniejszeniu udziału CO2 w spalinach na 6/2018 AUTOBUSY 465

skutek przedostawania się tlenu z otoczenia do układu wydechowego (krzywa 3) pewną nieścisłość: pomimo tego, że wtryskiwacze paliwa otwierane były na taki sam okres czasu, a wzrostowi uległa ilość powietrza, współczynnik λ przyjmuje wartości zbliżone dla wszystkich krzywych. Powodem tego są najprawdopodobniej różnice w prędkości obrotowej silnika, od której zależy ile czynnika jest pobierane z atmosfery. Rys. 7. Przebiegi stężenia dwutlenku węgla zmierzonego w ramach Tlenek węgla jest produktem utleniania paliwa w atmosferze ubogiej w tlen. Jego wysokie stężenie w spalinach może być skutkiem niedostatecznej ilości powietrza (tlenu), lub zbyt dużej dawki paliwa w mieszance paliwowo-powietrznej, ale również efektywności działania katalitycznego dopalacza spalin. Na rysunku 8 przedstawiono wykres emisji CO. O ile krzywa 1 jest niemal współliniowa z osią x wykresu, to pozostałe krzywe sięgają wartości około 1,5% objętości (krzywa 3), a nawet około 3% objętości spalin (krzywa 2). Jest to kolejny dowód potwierdzający pogorszenie się jakości procesu spalania paliwa, lub efektywności działania katalizatora. 2.3. Parametry mieszanki paliwowo-powietrznej Na potrzeby przeprowadzenia analizy składu mieszanki paliwowo-powietrznej, w pracy zamieszczono wykresy czasu otwarcia wtryskiwaczy paliwa (rysunek 9), masowego strumienia powietrza w przewodzie dolotowym (rysunek 10) oraz napięcia elektrycznego sygnału szerokopasmowego czujnika stężenia tlenu resztkowego w spalinach (rysunek 11). Dane do ich wykonania pozyskano za pomocą testera diagnostycznego podłączonego do elektronicznego sterownika pracą silnika. Na podstawie krzywych zawartych na rysunku 9 można stwierdzić, iż różnice w przebiegach czasu otwarcia wtryskiwaczy, a więc w ilości zużywanego przez silnik paliwa, są jedynie nieznaczne. Główne rozbieżności widoczne są w momentach odpowiadających nagłym zmianom prędkości obrotowej silnika, towarzyszącym rozpoczynaniu jazdy samochodu na hamowni podwoziowej oraz zmianom przełożenia skrzyni przekładniowej. Wynikają one z niedokładności sterowania uchyleniem pedału przyspieszenia przez kierującego. Wartym uwagi jest fakt, iż czas podawania paliwa przez wtryskiwacze nie jest regulowany płynnie, lecz skokowo, co około 0,4ms. Na wykresie strumienia masowego powietrza (rysunek 10) najistotniejsze różnice widoczne są w okresach odpowiadających jeździe ze stałą prędkością, głównie pomiędzy 50 a 90 sekundą oraz 270 a 300 sekundą. Wynika z nich, że zarówno w warunkach szczelnego jak i nieszczelnego układu wydechowego z zamontowaną tuleją przepływ powietrza w układzie dolotowym silnika był nieco wyższy niż w przypadku niezmodyfikowanego układu wylotowego spalin. Odnosząc te wyniki do wykresów czasu otwarcia wtryskiwaczy oraz przebiegów współczynnika nadmiaru powietrza znajdujemy Rys. 8. Przebiegi stężenia tlenku węgla zmierzonego w ramach Rys. 9. Przebiegi czasu otwarcia wtryskiwaczy paliwa zmierzonego układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin Czujniki zawartości tlenu w spalinach pozwalają na kontrolowanie składu mieszanki palnej. Konstrukcje szerokopasmowe (inaczej: szerokopasmowe sondy lambda) stosowane są w nowoczesnych silnikach o zapłonie iskrowym i samoczynnym, w tym w silnikach turbodoładowanych. Sposób ich działania pozwala na stworzenie zamkniętej pętli sprzężenia zwrotnego w celu precyzyjnego kalkulowania składu mieszanki. Na rysunku 11 zamieszczono przebiegi sygnału pochodzącego z szerokopasmowej sondy. Porównując krzywą 1 z tą samą krzywą na rysunku 5 należy stwierdzić, iż sygnał o napięciu około 1,4V odpowiada λ=1, a więc mieszance paliwowo-powietrznej o składzie stechiometrycznym. Sygnał o napięciu wyższym od 1,4V wskazuje na mieszankę ubogą w paliwo, a sygnał o niższym napięciu na mieszankę bogatą w paliwo. 466 AUTOBUSY 6/2018

PODSUMOWANIE Z przeprowadzonej analizy wpływu nieszczelności w układzie pomiarowym czujnika tlenu układu wydechowego, można wskazać niejednoznaczny wpływ tej niesprawności na parametry trakcyjne oraz emisję substancji szkodliwych. W zakresie parametrów trakcyjnych nie odnotowano zmian w mocy silnika, co jest słuszne z założeniami. Ponieważ realizacja jazdy pojazdem według ustalonego profilu prędkości powinna odbywać się przy takim samym zapotrzebowaniu na moc w układzie napędowym. Jednak w zakresie parametrów emisyjnych zauważono znaczny wzrost emisji toksycznych składników spalin: HC i CO. Zmieniły się również parametry procesu spalania, a dokładniej składu mieszanki paliwowo powietrznej, ale tylko w określonych warunkach pracy silnika. Rys. 10. Przebiegi masowego strumienia powietrza dolotowego zmierzonego w ramach przejazdów w cyklu EUDC: 1 szczelny układ wydechowy; 2 czujnik tlenu odsunięty od osi przepływu spalin; 3 nieszczelny układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin BIBLIOGRAFIA 1. MYSŁOWSKI J.: Pojazdy samochodowe. Doładowanie silników. Wydawnictwa Komunikacji i Łączności, wydanie 1, Warszawa 2002, ISBN-83-206-1445-7; 2. MAMALA J.: Kompensacja niedostatku siły napędowej w procesie rozpędzania samochodu osobowego, zeszyt 290, Oficyna Wydawnicza Politechniki Opolskiej, Opole 2011, ISSN 1429 6063; 3. HENNEK K., KOŁODZIEJ S.: Wpływ profilu prędkości oraz ustawień regulatora położenia przepustnicy na zużycie paliwa w cyklach jezdnych. Autobusy. Technika, Eksploatacja, Systemy Transportowe, 6/2017, str. 729-732, ISSN 1509-5878, e-issn 2450-7725 4. BIENIEK A., GRABA M., HENNEK K., MAMALA J.: Analysis of fuel consumption of a spark ignition engine in the conditions of a variable load. MATEC Web of Conferences 118, 00036 (2017), DOI: 10.1051/matecconf/201711800036 Rys. 11. Przebiegi napięcia sygnału szerokopasmowego czujnika stężenia tlenu w spalinach zmierzonego w ramach przejazdów w cyklu EUDC: 1 szczelny układ wydechowy; 2 czujnik tlenu odsunięty od osi przepływu spalin; 3 nieszczelny układ wydechowy, czujnik tlenu odsunięty od osi przepływu spalin Krzywa 1, jako referencyjna krzywa przebiegu składu mieszanki, wykazuje się dużą stabilnością. Fluktuacje sygnału widoczne między 100 a 150 sekundą pomiaru świadczyć mogą o aktywnym w tym czasie procesie adaptacji składu mieszanki palnej. Krzywa 2 przyjmuje początkowo wartości odpowiadające mieszance stechiometrycznej. W czasie pomiędzy 100 a 170 sekundą sygnał sondy szerokopasmowej stabilizuje się chwilowo na poziomie około 1,3V, przy czym po około 200 sekundzie przyjmuje w przybliżeniu stałą wartość około 1,5V. Przebieg 3 od rozpoczęcia pomiaru do około 30 sekundy silnie fluktuował, uzyskując wartości szczytowe około 2,2 2,9 V. W tym czasie zmianie ulegała prędkość obrotowa silnika w związku z potrzebą rozpędzenia kół pojazdu do prędkości 70km/h. Od 100 do 170 sekundy napięcie sondy wynosiło około 1,8 V. Ten etap odpowiada jeździe z najniższą stałą prędkością w cyklu, wynoszącą 50km/h. Z powyższych wynika, iż przy niskiej prędkości obrotowej silnika, do przestrzeni, z której sonda pobiera spaliny, przedostawało się powietrze, rozcieńczając spaliny. To prawdopodobnie powodowało rozpoznanie usterki katalizatora przez sterownik silnika, zapisanie odpowiedniego kodu usterki w jego pamięci oraz rozpoczęcie awaryjnego trybu kontroli składu mieszanki. Operating parameters of a passenger vehicle turbocharged spark ignition engine in conditions of exhaust leakage simulation Paper discussed the influence of exhaust system leakage on the utility parameters and toxic combustion products emission of a turbocharged passenger car spark ignition engine. A comparative analysis of the data gathered in the research carried out using the MAHA MSR 500 single roller chassis dynamometer was conducted, where the exhaust system was sealed and leaking in the area of the wideband oxygen sensor mounting bracket. The presented data refers to among others: the emissions of harmful gasoline oxidation products (HC, CO), the courses of power generated by the engine and the momentary values of excess air ratio. The EUDC driving cycle was used in the research. Autorzy: mgr inż. Krystian HENNEK Politechnika Opolska, Wydział Mechaniczny, Katedra Pojazdów, e-mail: k.hennek@po.opole.pl dr inż. Mariusz GRABA Politechnika Opolska, Wydział Mechaniczny, Katedra Pojazdów, e-mail: m.graba@po.opole.pl JEL: L622 DOI: 10.24136/atest.2018.113 Data zgłoszenia: 2018.05.23 Data akceptacji: 2018.06.15 6/2018 AUTOBUSY 467