Seminarium IO. Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem. Michał Okulewicz
|
|
- Artur Kamiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 Seminarium IO Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem Michał Okulewicz
2 Plan prezentacji Przypomnienie Problem DVRP Algorytm PSO Podejścia DAPSO, MAPSO 2PSO, 2MPSO Wyniki Dane testowe 2/26
3 DVRP Pojazd Ładowność Magazyn Położenie Godziny otwarcia Zamówienie Położenie Wielkość Godzina zamówienia Czas wyładunku 3/26
4 DVRP Znalezienie sumarycznie najkrótszej trasy dla pojazdów Zrealizowanie każdego zamówienia w ciągu dnia roboczego Powrót pojazdów do magazynu przed jego zamknięciem Znalezienie f n oraz i j f : POJAZDY 2 ZAMÓWIENIA POJAZDY 4/26
5 PSO 1.P 0 := n losowych punktów z dziedziny funkcji 2.Oceń każdy z punktów z P k 3.Dla i := 1 do n Pk+1 [i] += a*(najlepszysąsiad(p[i])-p k [i]) + b*(najlepszy(p[i])-p k [i]) + c*(p k [i]-p k-1 [i]) 4.Jeżeli nie KONIEC wróć do 2. 5/26
6 MAPSO + 2-Opt Optymalizacja wieloma rojami Wektory prędkości i położenia cząstek składają się z liczb całkowitych x t, v t [0 ;n] m t PSO odpowiada tylko za przynależności zamówienia do pojazdu Trasa dla każdego z pojazdów jest następnie optymalizowana przy użyciu algorytmu 2-opt 6/26
7 2-phase PSO - kodowanie Pojazdom przydzielamy centrum (x,y) obszaru operacyjnego Ocena rozwiązania przydziału to suma odległości centrum obszaru operacyjnego od zajezdni (koszt utworzenia trasy) oraz suma odległości centrum obszaru operacyjnego od przydzielonych zamówień (szacunkowy koszt trasy) Klientom przydzielamy rangę decydującą o kolejności ich obsługiwania 7/26
8 2-phase PSO - kodowanie c.d. Zamówienia przydzielamy do najbliższego dostępnego pojazdu Niedostępny pojazd to taki, który ma bliską zeru rezerwę czasową i aktualnym kroku czasowym miał przydzielone więcej zamówień niż mógł zrealizować w ciągu dnia roboczego Optymalizację przydziału zamówień do pojazdów (położenia obszarów operacyjnych) dokonujemy niezależnie od optymalizacji tras poszczególnych pojazdów (również dokonywanych niezależnie) 8/26
9 2-phase PSO - algorytm 1. Wykorzystaj wstępne (być może puste) rozwiązanie w inicjalizacji cząstek dla PSO (w wersji wielorojowej następuje wymiana wstępnego rozwiązania pomiędzy instancjami problemu) 2. Dla zamówień znanych w chwili czasu t i uruchom optymalizację centrum obszarów operacyjnych (analiza skupień) 3. Przypisz zamówienia do dostępnych pojazdów 4. Dla przypisanych zamówień optymalizuj trasy dostępnych pojazdów (komiwojażer) 5. Odrzuć zamówienia, których realizacja jest niemożliwa ze względu na ograniczenie czasowe i wróć do 3. (lub przejdź do 6. jeżeli nie ma takich zamówień) 6. Ustal trasę do czasu nie mniejszego niż t i+2 dla pojazdów o rezerwie czasowej do zamknięcia magazynu nie mniejszej niż t i+3 t i i wróć do 1. 9/26
10 Porównanie wyników Nazwa 2MPSO Śr. 2MPSO Min. 2PSO Śr. 2PSO Min. MAPSO Śr. MAPSO Min. c50d 633,44 597,18 668,41 588,08 610,67 571,34 c75d 984,77 929, ,30 923,30 965,53 931,59 c100d 1056,45 976, ,05 996,40 973,01 953,79 c100bd 860,93 828,94 848,82 828,94 882,39 866,42 c120d 1138, , , , , ,49 c150d 1257,2 1164, , , , ,43 c199d 1506, , , , , ,97 f71d 341,97 305,54 356,77 315,79 296,76 287,51 f134d 13179, , , , , ,50 tai75ad 1951, , , , , ,38 tai75bd 1518, , , , , ,42 tai75cd 1676, , , , , ,10 tai75dd 1483, , , , , ,99 tai100ad 2442, , , , , ,86 tai100bd 2291, , , , , ,57 tai100cd 1599, , , , , ,40 tai100dd 1958, , , , , ,75 tai150ad 3824, , , , , ,24 tai150bd 3209, , , , , ,91 tai150cd 2874, , , , , ,01 tai150dd 3226, , , , , ,46 10/26
11 Porównanie wyników Nazwa Historia Śr. Historia Min. Bez historii Śr. Bez historii Min. Historia / Bez Historia / Bez c50 675,14 582,88 740,84 664,81 0,91 0,88 c ,16 912, , ,4 0,9 0,87 c ,48 996,4 1245, ,32 0,92 0,93 c100b 850,68 828,94 843,66 830,42 1,01 1 c , , ,5 1132,72 0,99 0,96 c , , , ,77 0,83 0,81 c , , , ,46 0,7 0,7 f71 356, ,82 361,89 0,83 0,87 f , , , ,4 0,84 0,9 tai75a 2142, , ,2 2293,31 0,8 0,82 tai75b 1568, , , ,57 0,85 0,91 tai75c 1811, , , ,97 0,85 0,85 tai75d 1586, , , ,83 0,88 0,97 tai100a 2707, , , ,34 0,79 0,76 tai100b 2510,6 2187, , ,56 0,8 0,91 tai100c 1672, , ,9 1680,62 0,82 0,93 tai100d 2220, ,7 2382, ,26 0,93 0,9 tai150a 4151, , , ,29 0,83 0,82 tai150b 3302, , , ,56 0,67 0,83 tai150c 2952, , , ,95 0,92 0,93 tai150d 3478, , ,7 3722,83 0,76 0,82 11/26
12 c100b 12/26
13 c100b 13/26
14 Analiza zależności efektów działania algorytmu od zadania Rozmiar zadania Liczba zamówień Ograniczenie dolne liczby tras (pojazdów) Rozkład zadań w przestrzeni Wyszukiwanie skupień za pomocą SOM Zróżnicowanie zadań Skośność rozkładu wielkości zamówień Odchylenie standardowe wielkości zamówień 14/26
15 Analiza efektów działania algorytmu - MAPSO 15/26
16 Analiza efektów działania algorytmu - 2MPSO 16/26
17 Analiza efektów działania algorytmu - 2PSO 17/26
18 c100b 2MPSO 1,01 1,05 MAPSO 1,06 1,08 18/26
19 c100b 2MPSO 1,04 1,09 MAPSO 1,17 1,24 19/26
20 c100b 2MPSO 1,11 1,18 MAPSO 1,12 1,16 20/26
21 c100b 2MPSO 1,26 1,41 MAPSO 1,19 1,23 21/26
22 c100b 2MPSO 1,05 1,09 MAPSO 1,02 1,04 22/26
23 c100b 2MPSO 1,17 1,22 MAPSO 1,06 1,13 23/26
24 Hipoteza zależności dla 2(M)PSO max clust.fact clust.fact S clust.fact, skewness skewness S skewness, need.vehicles need.vehicles S need.vehicles 24/26
25 Co dalej...? Wygenerowanie zbiorów testowych i dalsza analiza działania Modyfikacja algorytmu do pracy w sposób ciągły (możliwość dokładania nowych zamówień jak tylko się pojawią) Zaproponowanie kodowania przydziału zamówień do pojazdu, które będzie dopuszczało więcej przypadków przydziałów Zaimplementowanie obliczania funkcji kosztu w wydajny sposób 25/26
26 Literatura Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem, Khouadjia et al., 2010, Lecture Notes in Computer Science vol. 6234, pp A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests, Khouadjia et al., Applied Soft Computing 12 (2012) Benchmarki DVRP, PSO 2011, 26/26
Seminarium IO. Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz
Seminarium IO Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz 26.10.2012 Plan prezentacji Problem VRP+DR Algorytm PSO Podejścia MAPSO + 2-Opt 2-phase PSO Wyniki
Analiza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Algorytmy heurystyczne w UCB dla DVRP
Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy
Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz
Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW
Logistyka - nauka Tomasz AMBROZIAK *, Roland JACHIMOWSKI * ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW Streszczenie W artykule scharakteryzowano problematykę klasteryzacji punktów
O dwóch modyfikacjach algorytmu PSO
Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Seminarium: Inteligencja Obliczeniowa 24 listopada 2011 Plan prezentacji 1 Wprowadzenie 2 3 4 5 6 Definicja problemu Wprowadzenie Definicja
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Algorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r.
Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu Ireneusz Szcześniak Politechnika Śląska 20 czerwca 2002 r. 2 Plan prezentacji Wprowadzenie Prezentacja trójwymiarowych sieci
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 2 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
PSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak
PSO Rój cząsteczek - Particle Swarm Optimization Michał Szopiak Inspiracje biologiczne Algorytm PSO wywodzą się z obserwacji gróp zwierzą tworzony przez członków ptasich stad, czy ławic ryb, który umożliwia
Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,
Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
SYSTEMY OPERACYJNE LABORATORIUM 2014/2015
1 SYSTEMY OPERACYJNE LABORATORIUM 2014/2015 ZASADY OCENIANIA ZADAŃ PROGRAMISTYCZNYCH: Zadania laboratoryjne polegają na symulacji i badaniu własności algorytmów/mechanizmów stosowanych w systemach operacyjnych.
Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani
Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012
Rój cząsteczek. Particle Swarm Optimization. Adam Grycner. 18 maja Instytut Informatyki Uniwersytetu Wrocławskiego
Rój cząsteczek Particle Swarm Optimization Adam Grycner Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2011 Adam Grycner Rój cząsteczek 1 / 38 Praca Kennedy ego i Eberhart a Praca Kennedy ego
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków
Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków Algorytmy 1. Metoda pierwsza wzory Gaussa - dla każdego punktu mnożymy współrzędną przez różnicę drugich współrzędnych punktu następnego
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Risk-Aware Project Scheduling. SimpleUCT
Risk-Aware Project Scheduling SimpleUCT DEFINICJA ZAGADNIENIA Resource-Constrained Project Scheduling (RCPS) Risk-Aware Project Scheduling (RAPS) 1 tryb wykonywania działań Czas trwania zadań jako zmienna
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu
APIO. W7 SPECYFIKACJA (UŻYCIA) DOSTĘPU DO DANYCH I SPOSOBU ICH PRZETWARZANIA 1. METODA CRUD 2. LOGIKA FUNKCJI
APIO. W7 SPECYFIKACJA (UŻYCIA) DOSTĘPU DO DANYCH I SPOSOBU ICH PRZETWARZANIA 1. METODA CRUD 2. LOGIKA FUNKCJI dr inż. Grażyna Hołodnik-Janczura W8/K4 CO SIĘ MOŻE DZIAĆ PODCZAS WYKONYWANIA BIZNESOWEJ FUNKCJI
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
ASPEKT PRZYDZIAŁU ODBIORCÓW W PROBLEMIE INTEGRACJI HIERARCHICZNEGO SYSTEMU DYSTRYBUCJI
Tomasz Ambroziak Politechnika Warszawska, Wydział Transportu Roland Jachimowski Politechnika Warszawska, Wydział Transportu ASPEKT PRZYDZIAŁU ODBIORCÓW W PROBLEMIE INTEGRACJI HIERARCHICZNEGO SYSTEMU DYSTRYBUCJI
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Techniki optymalizacji
Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji
Algorytm świetlika charakterystyka, własności aplikacyjne i usprawnienia
Algorytm świetlika charakterystyka, własności aplikacyjne i usprawnienia Szymon Łukasik Instytut Badań Systemowych PAN Katedra Automatyki i Technik Informacyjnych Politechniki Krakowskiej Wprowadzenie
Zastosowanie algorytmów heurystycznych do rozwiązywania problemu układania tras pojazdów
Roland Jachimowski 1 Wydział Transportu, Politechnika Warszawska Zastosowanie algorytmów heurystycznych do rozwiązywania problemu układania tras pojazdów 1. WPROWADZENIE Szybki rozwój wymiany handlowej,
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Modelowanie matematyczne a eksperyment
Modelowanie matematyczne a eksperyment Budowanie modeli w środowisku Hildegard Urban-Woldron Ogólnopolska konferencja, 28.10. 2011, Warszawa Plan Budowanie modelu w środowisku Równania i wartości Uruchomienie
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Optymalizacja wież stalowych
Optymalizacja wież stalowych W przypadku wież stalowych jednym z najistotniejszych elementów jest ustalenie obciążenia wiatrem. Generalnie jest to zagadnienie skomplikowane, gdyż wiąże się z koniecznością
Techniki optymalizacji
Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
mgr Anna Bernaciak Wyższa Szkoła Logistyki Badania operacyjne II Zagadnienie komiwojażera Zadanie 1 Rozwiązanie zadania 1. Krok i to minimalny
mgr nna ernaciak adania operacyjne II Zadanie 1 Pan Jan Tomkowski znany poznański mechanik ma naprawić uszkodzony sprzęt należący do osób zamieszkujących różne podpoznańskie miejscowości (,, i ), a następnie
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.
Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
UONET+ - moduł Zastępstwa
UONET+ - moduł Zastępstwa Algorytm wyznaczania liczby godzin ponadwymiarowych nauczyciela W systemie UONET+ można rozliczać godziny ponadwymiarowe nauczycieli na dwa sposoby: z całego okresu lub w podziale
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Część 2. Teoretyczne i praktyczne aspekty wybranych metod analiz ilościowych w ekonomii i zarządzaniu
Spis treści Część 1 Analiza procedur wyznaczania i wykorzystania rozwiązań uogólnionych wybranej klasy nieliniowych modeli optymalizacyjnych we wspomaganiu procesów decyzyjnych (Jerzy Mika) Wprowadzenie.
Zaprojektować i zaimplementować algorytm realizujący następujące zadanie.
Lista 1 Utworzenie tablicy jest równoznaczne z alokacją pamięci na elementy tablicy (utworzeniem dynamicznej tablicy). W zadaniach należy pamiętać o zwolnieniu zasobów przydzielonych na stercie. Zabronione
SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH
SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH Rozwiązujemy układ z macierzą trójdiagonalną. Założymy dla prostoty opisu, że macierz ma stałe współczynniki, to znaczy, że na głównej diagonali
7. Identyfikacja defektów badanego obiektu
7. Identyfikacja defektów badanego obiektu Pierwszym krokiem na drodze do identyfikacji defektów było przygotowanie tzw. odcisku palca poszczególnych defektów. W tym celu został napisany program Gaussian
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Informatyka w logistyce przedsiębiorstw wykład 5
Informatyka w logistyce przedsiębiorstw wykład 5 1. Charakterystyka i funkcje systemu klasy WMS 2. Funkcje systemu WMS 3. Elementy (moduły) systemu WMS 3.1. Operacje magazynowe 3.2. Transport i spedycja
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA Wydział Matematyki i Nauk Informacyjnych ROZPRAWA DOKTORSKA mgr inż. Michał Okulewicz Zastosowanie populacyjnych metaheurystyk uwzględniających rozkład danych problemu do rozwiązywania
Model przydziału zasobów do zadań w przedsiębiorstwie transportowym
Mariusz Izdebski 1, Marianna Jacyna 2 Wydział Transportu Politechniki Warszawskiej Model przydziału zasobów do zadań w przedsiębiorstwie transportowym 1. WPROWADZENIE Decyzja przydziału zadań do posiadanych
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów
Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Andrzej Jaszkiewicz, Przemysław Wesołek 3 grudnia 2013 Kontekst problemu Firma dystrybucyjna Kilka statystyk (wiedza z danych miesięcznych)
Serwis NaviExpert Biznes. Instrukcja obsługi
Serwis NaviExpert Biznes Instrukcja obsługi Spis Treści 1. Wprowadzenie 2. Przeglądanie mapy.. 3. Wyszukiwanie punktów 4. Planowanie i optymalizacja trasy.. 5. Edycja planu trasy. 6. Przesyłanie trasy
Przestrzeń algorytmów klastrowania
20 listopada 2008 Plan prezentacji 1 Podstawowe pojęcia Przykłady algorytmów klastrowania 2 Odległość algorytmów klastrowania Odległość podziałów 3 Dane wejściowe Eksperymenty Praca źródłowa Podstawowe
Ewolucja Różnicowa Differential Evolution
Ewolucja Różnicowa Differential Evolution Obliczenia z wykorzystaniem metod sztucznej inteligencji Arkadiusz Kalinowski Szczecin, 2016 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie 1 / 22 Plan
Algorytmy mrówkowe w dynamicznych problemach transportowych
y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów
Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów.
Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów. 1 Wprowadzenie Do tej pory nie rozważaliśmy odpowiedzi na pytanie, Po co uruchamiam algorytm ewolucyjny Kilka możliwych odpowiedzi:
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
UWAGI O TESTACH JARQUE A-BERA
PRZEGLĄD STATYSTYCZNY R. LVII ZESZYT 4 010 CZESŁAW DOMAŃSKI UWAGI O TESTACH JARQUE A-BERA 1. MIARY SKOŚNOŚCI I KURTOZY W literaturze statystycznej prezentuje się wiele miar skośności i spłaszczenia (kurtozy).
if (wyrażenie ) instrukcja
if (wyrażenie ) instrukcja Jeśli wartość wyrażenia jest różna od zera, to jest wykonywana instrukcja, jeśli wartość wyrażenia jest równa 0, to dana instrukcja nie jest wykonywana Wyrażenie testowe podajemy
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski
Algorytm FIREFLY Michał Romanowicz Piotr Wasilewski Struktura prezentacji 1. Twórca algorytmu 2. Inspiracja w przyrodzie 3. Algorytm 4. Zastosowania algorytmu 5. Krytyka algorytmu 6. Porównanie z PSO Twórca
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Metoda UCT w stochastycznych problemach transportowych
Metoda UCT w stochastycznych problemach transportowych mgr inż. Maciej Świechowski promotor: prof. Jacek Mańdziuk Seminarium Metody Inteligencji Obliczeniowej 25.06.2015 Plan prezentacji Krótkie przypomnienie
Laboratorium technik optymalizacji
Laboratorium technik optymalizacji Marek Kubiak 1 Opis zajęć Zakres zajęć laboratoryjnych jest podzielony na 2 części: realizację algorytmu przeszukiwania lokalnego i wizualizacji jego działania dla zadanego
Sprzedaż online. Piotr Sankowski Uniwersytet Warszawski Warszawa p. 1/40
Sprzedaż online Piotr Sankowski Uniwersytet Warszawski Warszawa 18.04.2013 - p. 1/40 Plan wykładu Problem skojarzeń online Algorytm zachłanny Algorytm losowo rankujacy Dolne ograniczenie Problem aukcji
Sterowanie wykonaniem produkcji
STEROWANIE WYKONANIEM PRODUKCJI (Production Activity Control - PAC) Sterowanie wykonaniem produkcji (SWP) stanowi najniŝszy, wykonawczy poziom systemu zarządzania produkcją, łączący wyŝsze poziomy operatywnego
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
ALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
Tomasz Niedzielski a,b, Wiesław Kosek a
STATYSTYCZNA ISTOTNOŚĆ GLOBALNEGO TRENDU W ZMIANACH POZIOMU OCEANU OBSERWOWANYCH ZA POMOCA SATELITÓW ALTIMETRYCZNYCH TOPEX/POSEIDON I JASON-1 Tomasz Niedzielski a,b, Wiesław Kosek a a Centrum Badań Kosmicznych
Optymalizacja wielokryterialna
Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny