Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2013/2014
|
|
- Ryszard Czerwiński
- 9 lat temu
- Przeglądów:
Transkrypt
1 Propozycje przedmiotów do wyboru oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2013/2014
2 Spis treści 1. EKONOMETRIA EKONOMIA MATEMATYCZNA MATEMATYKA RYNKÓW FINANSOWYCH MODELOWANIE GIER ROZRYWKOWYCH MODELE SKOŃCZONYCH RYNKÓW FINANSOWYCH STATYSTYKA FINANSOWA SZACOWANIE RYZYKA UKŁADY DYNAMICZNE NA MIARACH WSTĘP DO MATEMATYKI UBEZPIECZEŃ WSTĘP DO TEORII OPTYMALIZACJI WYBRANE ZAGADNIENIA TEORII OPTYMALIZACJI
3 1. EKONOMETRIA (EKO-IS-07) Specjalność F+M Poziom 6 Status W Modelowanie ekonometryczne: pojęcie modelu ekonometrycznego, klasyfikacja zmiennych, klasyfikacja modeli. Jednorównaniowy model ekonometryczny: dobór zmiennych objaśniających: metoda Hellwiga, estymacja metodą najmniejszych kwadratów (MNK), miary dopasowania, nieliniowy model ekonometryczny, modele ze zmiennymi zerojedynkowymi. Weryfikacja modelu ekonometrycznego: istotność zmiennych, liniowość modelu, autokorelacja składników losowych, heteroskedastyczność składników losowych. Zasady prognozowania ekonometrycznego: założenia i reguły prognozowania, prognoza nieobciążona z modelu jednorównaniowego, ex ante oraz ex post błędy prognozy. Wstęp do prognozowania na podstawie szeregów czasowych: stacjonarność szeregów czasowych, test Dickeya Fullera, szeregi ARIMA, prognozowanie adaptacyjne: metoda wyrównywania wykładniczego, metodologia Boxa Jenkinsa. poznanie i zrozumienie metod badań prawidłowości społeczno-ekonomicznych, umiejętność estymowania parametrów liniowej funkcji regresji, weryfikowanie zbudowanych modeli ekonometrycznych na podstawie testów statystycznych, poznanie własności szeregów czasowych, umiejętność prognozowania szeregów czasowych metodami wygładzania wykładniczego, średnich ruchomych, ARIMA. 1. Kukuła K. (red.), Wprowadzenie do ekonometrii w przykładach i zadaniach, PWN, Welfe A., Ekonometria, PWE, wyd. 3, Welfe A. (red.), Ekonometria. Zbiór zadań, PWE, wyd. 2, Charemza W. W., Deadman D.F., Nowa ekonometria, PWE, Warszawa Greene, W.H. Econometric Analysis, Prentice Hall, Domański C., Nieklasyczne metody statystyczne, PWE, dr Sebastian Sitarz.
4 2. EKONOMIA MATEMATYCZNA (EMT-IS-07) Specjalność F Poziom 5 Status W Teoria popytu: relacja preferencji konsumenta, funkcja użyteczności, funkcja popytu. Teoria produkcji: przestrzeń produkcyjna, funkcja produkcji, przedsiębiorstwo w warunkach monopolu. Równowaga konkurencyjna: model rynku Arrowa-Hurwicza, równowaga ogólna, model Walrasa-Patinkina, model gospodarki konkurencyjnej Arrowa-Debrego-McKenziego, równowaga konkurencyjna i optimum Pareta. poznanie i zrozumienie sposobów matematycznego modelowania zjawisk ekonomicznych; umiejętność rozwiązywania zadań poszukujących optymalnego koszyka konsumenta; umiejętność rozwiązywania zadań poszukujących optymalnego planu produkcji; umiejętność wyznaczanie cen równowagi w różnych modelach równowagi. 1. Chiang A.G., Podstawy Ekonomii Matematycznej, PWN, Warszawa Dowling E.T., Introduction to Mathematical Economics, McGraw-Hill Professional, Panek E., Elementy ekonomii matematycznej. Statyka, PWN, Warszawa Panek E., Elementy ekonomii matematycznej. Równowaga i wzrost, PWN, Warszawa Varian H. R., Mikroekonomia, PWN, Warszawa, prof. UŚ, dr hab. Andrzej Nowak.
5 3. MATEMATYKA RYNKÓW FINANSOWYCH (MRF-IS-13) Specjalność F+M Poziom 6 Status W Wprowadzenie do środowiska obliczeniowego R. Rynki finansowe. Instrumenty pochodne: swapy, futures, opcje. Wzór Blacka-Scholesa. Strategie opcyjne. Arbitraż. Model dwumianowy. Portfel papierów wartościowych. Przedmiot ma na celu zaznajomienie studentów z współczesnym stanem rynków finansowych, występujących na nich instrumentów oraz podstawowymi metodami matematycznymi służącymi do ich modelowania. Na zajęciach student powinien posiąść umiejętność rozwiązywania praktycznych problemów z pomocą arkusza kalkulacyjnego i środowiska obliczeniowego R. 1. P. Biecek, Przewodnik po pakiecie R, GiS Dokumentacja on-line środowiska R: 3. P. Jaworski, J. Micał, Modelowanie matematyczne w finansach i ubezpieczeniach, Poltext J. Jakubowski, Modelowanie rynków finansowych, Script J. Hull, Kontrakty terminowe i opcje, WIG-Press A. Weron, R. Weron, Inżynieria finansowa, WNT M. Capiński, T. Zastawniak, Mathematics for Finance, Springer-Verlag dr Rafał Kucharski.
6 4. MODELOWANIE GIER ROZRYWKOWYCH (MGR-IS-11) Specjalność M Poziom 6 Status W Wymagania wstępne: algebra liniowa; rachunek prawdopodobieństwa A lub B Wprowadzenie i rozwinięcie pojęć teorii gier. Modelowanie matematyczne gier rozrywkowych w zakresie niezbędnym (unikanie skomplikowanych obliczeń) do racjonalnego podejmowania decyzji. Rozwiązywanie zadań brydżowych, w tym podejmowanie decyzji w oparciu o rachunek prawdopodobieństwa. Własności symboli Newtona na przykładzie dowodu postulatu Bertranda. Algorytmy stosowane do zadań o uzupełnianiu kwadratów łacińskich, w rozwiazywaniu sudoku oraz kolorowaniu grafów (problem Dinitza). Modelowanie zadań rozrywkowych przy pomocy teorii grafów. Zapoznanie się z matematycznymi problemami występującymi w grach rozrywkowych. 1. M. Aigner oraz G. M. Ziegler, Dowody z Ksiegi, PWN J. Mioduszewski, Wykłady z topologii Topologia przestrzeni euklidesowych, Wydanictwo Uniwersytetu Śląskiego Problemy brydżowe na podstawie miesięcznika Brydż. 4. Problemy brydżowe na podstawie miesięcznika Świat brydża. 5. Opracowania z różnych stron internetowych. prof. Szymon Plewik.
7 5. MODELE SKOŃCZONYCH RYNKÓW FINANSOWYCH (MRF-IS-13) Specjalność F+M Poziom 5 Status W Ogólny model rynku skończonego, strategia dominująca, prawo jednej ceny, arbitraż, rynki zupełne i niezupełne. Równoważna miara martyngałowa, fundamentalne twierdzenia matematyki finansowej. Interpretacja geometryczna arbitrażu i równoważnej miary martyngałowej. Lemat Farkasa, konstrukcja równoważnej miary martyngałowej w modelu jednookresowym. Podstawowe instrumenty pochodne. Wycena i zabezpieczenie instrumentów finansowych. Problem optymalnej konsumpcji i inwestycji. Model dwumianowy. znajomość podstawowych instrumentów pochodnych i zasad wyceny arbitrażowej instrumentów finansowych, umiejętność budowania i analizy modeli w przypadku skończonej przestrzeni probabilistycznej (przestrzeni stanów). 1. M.Capiński, T.Zastawniak, Mathematics for Finance, Springer-Verlag R.J.Elliott, P.E.Kopp, Mathematics of Financial Markets, Springer J.Jakubowski, Modelowanie rynków finansowych, SCRIPT P.Kliber, Metody ograniczania ryzyka na rynku instrumentów pochodnych, Wydawnictwo AE w Poznaniu M.Musiela, M.Rutkowski, Martingale Methods in Financial Modelling,Springer S.R.Pliska, Wprowadzenie do matematyki finansowej, modele z czasem dyskretnym, (Introduction to Mathematical Finance. Discrete Time Models), WNT M.Podgórska, J.Klimkowska, Matematyka finansowa, PWN S.E.Shreve, Stochastic Calculus for Finance I. The Binomial Asset Pricing Model, Springer prace M.Fritelli. dr Maria Górnioczek.
8 6. STATYSTYKA FINANSOWA (SFN-IS-13) Specjalność F Poziom 6 Status W Dane finansowe - statystyczne metody analizy. 2. Modele rynków finansowych. 3. Statystyczne modelowanie wybranych procesów finansowych. 4. Finansowe szeregi czasowe - modele liniowe i nieliniowe. 5. Testy służące identyfikacji szeregów czasowych. 6. Prognozowanie na podstawie szeregów czasowych wybranych procesów finansowych. 7. Analiza portfelowa - stopa zwrotu, ryzyko inwestycji, portfel papierów wartościowych. 8. Rynek finansowy - model Markowitza. 9. Statystyczna analiza ryzyka portfela. 10. Metody optymalizacji portfela. 11. Portfel Markowitza. 12. Miary ryzyka rynkowego. 13. Dynamiczne modelowanie wybranych wskaźników finansowych rynku za pomocą różnych modeli autoregresyjnych. 14. Wykorzystanie pakietów statystycznych do analizy aktualnych procesów finansowych. Zapoznanie studentów z najnowszymi metodami statystyki finansowej oraz nabycie umiejętności stosowania jej w rozwiązywaniu aktualnych problemów na rynku finansowym. Doskonalenie znajomości komputerowych pakietów statystycznych za pomocą których dokonywane są statystyczne analizy finansowe. 1. Nowak E., Matematyka i statystyka finansowa, W-wa, Weron A., Weron R., Inżynieria finansowa, PWN, W-wa, Jajuga K., Jajuga T., Jak inwestować w papiery wartościowe, PWN, W-wa, Tarczyński W., Rynki kapitałowe, W-wa, Nowak E., Prognozowanie gospodarcze, W-wa, Jajuga K., Metody ekonometryczne i statystyczne w analizie rynku kapitałowego, PWE, Wrocław, Jackson M., Staunton M., Zaawansowane modele finansowe z wykorzystaniem Excela i VBA, Gliwice. dr Irena Wistuba.
9 7. SZACOWANIE RYZYKA (SZR-IS-09) Specjalność F Poziom 6 Status W 11.2 Metody statystyczne ułatwiające podejmowanie decyzji; Analiza relacji pomiędzy zjawiskami; Zależności przyczynowo skutkowe między zdarzeniami, metody ich wykrywania; Rozsądne decyzje w grach hazardowych; Podejmowanie decyzji zgodnie z oszacowaniami prawdopodobieństwa wydarzeń; Jak grać, aby nie przegrać zbyt wiele oraz jak zwiększać szansę na wygraną; Weryfikowanie oraz testowanie (ćwiczenia) zasad poprawnego myślenia. Zapoznanie się z metodami matematycznymi stosowanymi w cytowanej literaturze. 1. G. Gigerrenzer, How to know when numbers deceive you, Simon and Schuster, New York (2002). 2. B. Frey, Statistics Hacks: Tips & Tools for Measuring the World and Beating the Odds, Tłumaczenie: D. Biskup, T. Misiorek 75 sposobów na statystykę. Jak zmierzyć świat i wygrać z prawdopodobieństwem prof. Szymon Plewik.
10 8. UKŁADY DYNAMICZNE NA MIARACH (UDM-IS-10) Specjalność M Poziom 5 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code Miary: podstawowe pojęcia i fakty. Twierdzenie Riesza- Skorochoda, słaba zbieżność ciągów miar, Twierdzenie Aleksandrowa, metryki w przestrzeni miar. 2. Operatory Markowa: podstawowe pojęcia i ich własności, operatory Fellera, operatory przejścia (Ciąg deterministyczny z losowym warunkiem początkowym, Układ z niezależnymi zaburzeniami losowymi, Iterowany układ funkcyjny z prawdopodobieństwami zależnymi od położenia). 3. Stabilność operatorów Markowa: twierdzenia o istnieniu miary niezmienniczej i asymptotycznej stabilności operatorów Markowa na miarach. 4. Zastosowania: Iterowane układy funkcyjne, Równania z zaburzeniami poissonowskimi. Znajomość teorii operatorów Markowa na miarach. Poznanie warunków gwarantujących istnienie regularnych operatorów Markowa oraz związków pomiędzy operatorem Markowa, operatorem do niego dualnym i funkcja przejścia. Umiejętność wyznaczenia operatora przejścia. Zapoznanie się z kryteriami asymptotycznej stabilności operatorów Markowa. : 1. M. F. Barnsley, S. G. Demko, J. H. Elton i J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré 24 (1988), A. Lasota, Układy dynamiczne na miarach, Wydawnictwo Uniwersytutu Śląskiego(2008). 3. A. Lasota i M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, A. Lasota i J. Myjak, Markov operators and fractals, Bull. Polish Acad. Sci. Math. 45 (1997), A. Lasota i J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam , T. Szarek, Invariant measures for nonexpansive Markov operators on Polish spaces,dissertationes Math R. Zaharopol, Invariant Probabilities of Markov-feller operators and their supports, Birkh auser Verlag, dr hab. Katarzyna Horbacz.
11 9. WSTĘP DO MATEMATYKI UBEZPIECZEŃ (WMU-IS-07) Specjalność F Poziom 5 Status W 11.2 Elementy modelu demograficznego, tablice trwania życia. Ubezpieczenia na życie i dożycie. Renty życiowe. Składki i rezerwy składek netto. Składki i rezerwy brutto. Ubezpieczenia grupowe. Zastosowanie równań funkcyjnych w zagadnieniach modelu demograficznego. Znajomość tablic trwania życia, obliczanie składek jednorazowych dla różnych ubezpieczeń na życie, opanowanie rachunku rent życiowych, obliczanie składek i rezerw netto, opanowanie podstawowych wariantów ubezpieczeń grupowych. 1. N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, C. J. Nesbitt, Actuarial Mathematics, The Society of Actuaries, Itasca, Ill., H. U. Gerber, Life insurance mathematics, Springer Verlag, M. Skałba, Matematyka w ubezpieczeniach, WNT, A. Weron, R. Weron, Inżynieria finansowa, WNT, prof. dr hab. Maciej Sablik.
12 10. WSTĘP DO TEORII OPTYMALIZACJI (WTO-IS-09) Specjalność F+M Poziom 5 Status W Klasyfikacja i przykłady zadań optymalizacyjnych. Programowanie liniowe: metoda simpleks, teoria dualności, wybrane zagadnienia postoptymalizacyjne: analiza wrażliwości, parametryczne programowanie liniowe. Zagadnienie transportowe. Programowanie wypukłe, twierdzenie Kuhna-Tuckera. Elementy teorii gier. Podstawowe metody numeryczne optymalizacji. graficzne ilustrowanie zadań optymalizacyjnych w R 2. rozwiązywanie zadań optymalizacji liniowej metodą simpleks analizowanie wrażliwości rozwiązań optymalnych zadań programowania liniowego rozwiązywanie zadań optymalizacji wypukłej bez ograniczeń i z ograniczeniami rozwiązywanie metodami iteracyjnymi wybranych zadań optymalizacji nieliniowej 1. Grabowski W., Programowanie matematyczne, PWE, Findeisen W., Szymanowski J., Wierzbicki A., Teoria i metody obliczeniowe optymalizacji, PWN Martos B., Programowanie nieliniowe: teoria i metody, PWN Zangwill W. I., Programowanie nieliniowe, WNT, dr Sebastian Sitarz.
13 11. WYBRANE ZAGADNIENIA TEORII OPTYMALIZACJI (WZO-IS-10) Specjalność F+M Poziom 6 Status W Podstawowe własności zbiorów i funkcji wypukłych. Programowanie nieliniowe; warunki Kuhna-Tuckera. Programowanie dynamiczne. Wstęp do teorii gier: gry dwuosobowe o sumie zerowej, gry n-osobowe niekooperacyjne, punkt równowagi w sensie Nasha, gry kooperacyjne, zastosowania ekonomiczne. rozwiązywanie zadań programowania wypukłego, zapoznanie się z metodą programowania dynamicznego, rozwiązywanie gier macierzowych, zapoznanie się z zastosowaniami teorii gier w ekonomii matematycznej. 1. W. Grabowski, Programowanie matematyczne, PWE, J. Franklin, Methods of Mathematical Economics, Springer, dr hab. prof UŚ. Andrzej Nowak.
Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)
Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2017/2018 (semestr zimowy) Spis
Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Wstęp do matematyki ubezpieczeń..............................
Przedmioty specjalistyczne do wyboru. oferowane na stacjonarnych studiach I stopnia na rok akademicki 2012/2013
Przedmioty specjalistyczne do wyboru oferowane na stacjonarnych studiach I stopnia na rok akademicki 2012/2013 Spis treści 1. EKONOMETRIA....................................... 3 2. EKONOMIA MATEMATYCZNA..............................
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2018/2019 (semestr zimowy) Spis
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2014/2015
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2014/2015 Przedmioty do wyboru oferowane na semestr VI - letni (III rok) Prowadzący Przedmiot
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr VI - letni (III rok) Prowadzący Przedmiot
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2019/2020 (semestr zimowy) Spis
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. Arytmetyka........................................... 3 2. Inżynieria
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ
Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2017/2018. studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2017/2018 studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na studiach Intermath)
Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2018/2019 Spis treści 1. Analiza portfelowa
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Uczelnia Łazarskiego. Sylabus. 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu
Uczelnia Łazarskiego Sylabus 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu 3. Język wykładowy Język polski 4. Status przedmiotu podstawowy do wyboru Języki X kierunkowy specjalistyczny Inne 5. Cel
Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. ANALIZA PORTFELOWA I RYNKI KAPITAŁOWE................... 3 2. ELEMENTY
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)
MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA. 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na
LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA
Załącznik nr 2 do zarządzenia nr 165 Rektora Uniwersytetu Śląskiego w Katowicach z dnia 26 października 2012 r. LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA
Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r. Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe
Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe 1 Opis zakładanych efektów kształcenia na studiach podyplomowych
Teoria opcji SYLABUS
Teoria opcji nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Opis Nazwa przedmiotu Teoria opcji Kod przedmiotu 0600-FS2-2TO Nazwa jednostki prowadzącej Wydział Matematyki
Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi metodami i technikami analizy finansowej na podstawie nowoczesnych instrumentów finansowych
EKONOMETRIA I SYLABUS
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. EKONOMETRIA I SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom
Matematyka finansowa i ubezpieczeniowa Kod przedmiotu
Matematyka finansowa i ubezpieczeniowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka finansowa i ubezpieczeniowa Kod przedmiotu 11.5-WK-IiEP-MFU-W-S14_pNadGenD94HY Wydział Kierunek Wydział
Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV
bbbbkarta MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN1-0184 Ekonometria Econometrics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie
Poznań, 01.10.2015 r. Dr Eliza Buszkowska Adiunkt w Katedrze Nauk Ekonomicznych MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu
Ekonometria_FIRJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
SYLABUS PRZEDMIOTU rok akademicki 2012/2013
SYLABUS PRZEDMIOTU rok akademicki 2012/2013 Elementy składowe sylabusu Opis Nazwa przedmiotu Kod przedmiotu Nazwa kierunku Nazwa jednostki prowadzącej kierunek Język przedmiotu Charakterystyka przedmiotu
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
przedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Teoria grafów (IiE+MAT) Prowadzący: prof. dr hab. Mieczysław Borowiecki (1) Grafy na sferze i na
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (II rok) Prowadzący Przedmiot
3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS
148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W, 2L, 1C PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, laboratorium Metody optymalizacji w ekonomii
Ekonometria i prognozowanie Econometrics and prediction
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Ekonometria i prognozowanie Econometrics and prediction A. USYTUOWANIE
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ
INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ dr hab. Czesław Bagiński, prof. PB Kierownik KIT dr hab. Wiktor Dańko, prof. PB dr hab. Piotr Grzeszczuk, prof. PB dr Ryszard Mazurek dr Jolanta Koszelew
Z-EKO-184 Ekonometria Econometrics. Ekonomia I stopień Ogólnoakademicki. Studia stacjonarne Wszystkie Katedra Matematyki Dr hab. Artur Maciąg.
KARTA MODUŁU / KARTA PRZEDMIOTU Z-EKO-184 Ekonometria Econometrics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Literatura. Statystyka i demografia
ZESTAWIENIE zagadnień i literatury do egzaminu doktorskiego z przedmiotów kierunkowych III Wydziałowej Komisji ds. Przewodów Doktorskich na Wydziale Ekonomiczno-Socjologicznym Uniwersytetu Łódzkiego Ekonometria
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7.
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Ekonometria_EkonJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
Ekonomia II stopień ogólnoakademicki. stacjonarne wszystkie Katedra Matematyki Dr hab. Artur Maciąg. podstawowy. obowiązkowy polski.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-500 Nazwa modułu Ekonometria i prognozowanie procesów ekonomicznych Nazwa modułu w języku angielskim Econometrics and forecasting economics proceses Obowiązuje
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO
Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim
1.1. Zajęcia w ramach przedmiotu są prowadzone w oparciu o Regulamin Studiów obowiązujący na Uniwersytecie Przyrodniczym oraz niniejszy regulamin.
EKONOMETRIA dr inż.. ALEKSANDRA ŁUCZAK Uniwersytet Przyrodniczy w Poznaniu Katedra Finansów w i Rachunkowości ci Zakład Metod Ilościowych Collegium Maximum,, pokój j 617 Tel. (61) 8466091 luczak@up.poznan.pl
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI
Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE
Teoria opcji 2015/2016
Teoria opcji 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Teoria opcji Kod przedmiotu 0600-FS2-2TO Nazwa jednostki Wydział Matematyki i
METODY ILOŚCIOWE W ZARZĄDZANIU
1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy
Zagadnienia na egzamin dyplomowy na kierunku Informatyka i Ekonometria (1 stopień studiów)
Zagadnienia na egzamin dyplomowy na kierunku Informatyka i Ekonometria (1 stopień studiów) 1. Systemowe i niesystemowe metody estymacji parametrów. Wady i zalety tych podejść b. 06IE 1A_W07 - opanował
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
1.1.1 Statystyka matematyczna i badania operacyjne
1.1.1 Statystyka matematyczna i badania operacyjne I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE (MODULE) Kod przedmiotu: STATYSTYKA MATEMATYCZNA I BADANIA OPERACYJNE P5 Wydział Zamiejscowy w Ostrowie
BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
Systemy wspomagania decyzji Kod przedmiotu
Systemy wspomagania decyzji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Systemy wspomagania decyzji Kod przedmiotu 06.9-WM-ZIP-D-06_15W_pNadGenG0LFU Wydział Kierunek Wydział Mechaniczny Zarządzanie
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr 3/5 Specjalność Bez specjalności Kod katedry/zakładu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Metoda Kaczmarza, jej modyfikacje i zastosowania inżynierskie (IiE+MAT) Prowadzący: prof. dr hab.
UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA
KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2011/2012 Zatwierdzono:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,
Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0
Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia
Prognozowanie gospodarcze - opis przedmiotu
Prognozowanie gospodarcze - opis przedmiotu Informacje ogólne Nazwa przedmiotu Prognozowanie gospodarcze Kod przedmiotu 11.9-WZ-EkoP-PrG-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
. Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa przedmiotu Teoria ryzyka w bankowości (2) Nazwa jednostki prowadzącej przedmiot Wydział Matematyczno - Przyrodniczy
Katedra Demografii i Statystki Ekonomicznej
Katedra Demografii i Statystki Ekonomicznej Wydział Informatyki i Komunikacji http://www.ue.katowice.pl/jednostki/katedry/katedry-wiik/ Skład osobowy Katedry Pracownicy: prof. zw. dr hab. Grażyna Trzpiot
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Wybrane aspekty ubezpieczeń i reasekuracji Nazwa w języku angielskim: Selected Aspects Of Insurance And Reinsurance Kierunek
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:
EKONOMIA MENEDŻERSKA
oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie
NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A
NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
Z-LOG-120I Badania Operacyjne Operations Research
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-LOG-10I Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU W
PRZEWODNIK PO PRZEDMIOCIE. stacjonarne. II stopnia. ogólnoakademicki. podstawowy WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
PRZEWODNIK PO PRZEDMIOCIE
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Minima programowe - WYDZIAŁ NAUK EKONOMICZNYCH UW
Minima programowe - WYDZIAŁ NAUK EKONOMICZNYCH UW Minimum programowe dla studentów MISH od roku akad. 2007/08 Zajęcia dla wszystkich specjalizacji Mikroekonomia I 30 4 I 1 Makroekonomia I 60 6 I 2 Mikroekonomia
Z-ZIP-120z Badania Operacyjne Operations Research. Stacjonarne Wszystkie Katedra Matematyki dr Monika Skóra
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-120z Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU
Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych
Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych
Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF
Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania
Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Badania
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI
(pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I