Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2014/2015
|
|
- Zbigniew Wilk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2014/2015 Przedmioty do wyboru oferowane na semestr VI - letni (III rok) Prowadzący Przedmiot Specjalność Limity Wykłady monograficzne dr hab. A. Czogała Arytmetyka F,M,T 24 dr B. Rothkegel Algebra dwuliniowa F,M,T 24 dr M. Ślęczka Wstęp do informatyki kwantowej F,M,T 24 Przedmioty specjalistyczne dr D. Bruckner Wprowadzenie do relacyjnych baz danych F,M,T 22 dr hab. K. Horbacz Układy dynamiczne na miarach M,T 22 dr S. Sitarz Ekonometria F,T 16 dr I. Wistuba Statystyka finansowa F,T 16 W kolumnie Specjalność symbole F, M, T oznaczają, że dany przedmiot adresowany jest do studentów specjalności odpowiednio: matematyka w finansach i ekonomii, modelowanie matematyczne, teoretyczna
2 Opisy przedmiotów do wyboru wykłady monograficzne oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2014/2015
3 Spis treści 1. Algebra dwuliniowa Arytmetyka Wstęp do informatyki kwantowej
4 1. Algebra dwuliniowa (03-MO1S-14-WMon-ADwu) Specjalność F+M+T Poziom 6 Status W L. godz. tyg. 2 W + 2 K L. pkt. 6 Socr. Code Przestrzenie dwuliniowe: bazy i macierze przestrzeni dwuliniowych, izometrie, przestrzenie nieosobliwe, ortogonalne dopełnienie, diagonalizacja, przestrzenie dwuliniowe symetryczne a formy kwadratowe. Sumy i iloczyny przestrzeni dwuliniowych: sumy proste ortogonalne przestrzeni dwuliniowych, iloczyn tensorowy przestrzeni wektorowych, iloczyn tensorowy przestrzeni dwuliniowych, suma prosta ortogonalna i iloczyn tensorowy form kwadratowych. Twierdzenia Witta: symetrie przestrzeni dwuliniowych, twierdzenie Witta o przedłużaniu izometrii, twierdzenie Witta o skracaniu, zmiany dwójkowe w bazach ortogonalnych, twierdzenie Witta o zmianach dwójkowych. Rozkład Witta: przestrzenie hiberboliczne i metaboliczne, istnienie i jednoznaczność rozkładu Witta, wskaźnik izotropowości przestrzeni. Pierścień Witta: klasy podobieństwa przestrzeni symetrycznych, grupa Witta, pierścień Witta, ideał fundamentalny, wyróżnik i kwadrat ideału fundamentalnego, pierścień Witta form kwadratowych. Formy Pfistera: własności multyplikatywne form Pfistera, indeks Pfistera ciała nierzeczywistego. Równoważność Witta: równoważność ciał ze względu na formy kwadratowe, równoważność Witta ciał. Literatura 1. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading K. Szymiczek, Wykłady z algebry dwuliniowej, Wydawnictwo UŚ, Katowice K. Szymiczek, Bilinear algebra. An introduction to the algebraic theory of quadratic forms, Algebra, Logic and Applications Series, Vol. 7, Gordon and Breach Prowadzący: dr Beata Rothkegel.
5 2. Arytmetyka (03-MO1S-14-WMon-Aryt) Specjalność F+M+T Poziom 6 Status W L. godz. tyg. 2 W + 2 K L. pkt. 6 Socr. Code Efekty kształcenia: Konstrukcje i własności podstawowych zbiorów liczbowych; arytmetyczne własności pierścienia liczb całkowitych (rozkład na czynniki, NWD, NWW, algorytm Euklidesa, kongruencje); liczby pierwsze i ich rozmieszczenie; podstawowe funkcje arytmetyczne; pierścienie reszt modulo m; reszty kwadratowe i prawo wzajemności; ułamki łańcuchowe i ich zastosowania; liczby algebraiczne i przestępne; równania diofantyczne (stopnia pierwszego, równanie Pitagorasa, Wielkie Twierdzenie Fermata); wybrane zastosowania poznanych narzędzi arytmetycznych (arytmetyka modularna, systemy kryptograficzne). Efekty kształcenia: Ogólna wiedza na temat metod i technik stosowanych w arytmetyce i teorii liczb; umiejętność wykorzystywania narzędzi matematycznych i zasad logiki w omawianych treściach wykładu, umiejętność stosowania poznanych narzędzi arytmetycznych w innych działach matematyki, umiejętność stawiania i analizowania problemów oraz prezentowania wykorzystywanych technik badawczych, umiejętność dostrzegania analogii w ramach prezentowanych pojęć i faktów arytmetycznych oraz z pojęciami i faktami innych z działów matematyki. Literatura 1. G.H. Hardy, E.M. Wright, An Introduction to the theory of numbers, Clarendon Press Oxford, N. Koblitz, Wykład z teorii liczb i kryptografii, Wyd. Naukowo-Techniczne, Warszawa W. Marzantowicz, P. Zarzycki, Elementy teorii liczb, PWN W.Sierpiński, Arytmetyka teoretyczna, PWN Warszawa W.Sierpiński, (A. Schincel ed.), Elementary Theory of Numbers, PWN Warszawa, North-Holland Amsterdam, Prowadzący: dr hab. Alfred Czogała.
6 3. Wstęp do informatyki kwantowej (03-MO1S-14-WMon-WIKw) Specjalność F+M+T Poziom 6 Status W L. godz. tyg. 2 W + 2 L L. pkt. 6 Socr. Code Celem wykładu jest wprowadzenie do matematycznych podstaw teorii informacji kwantowej. Ta dynamicznie rozwijająca się dziedzina bada w jaki sposób zastosowanie zjawisk kwantowych może zostać użyte do szybszego przetwarzania informacji. Najsłynniejszym przykładem jest kwantowy algorytm Shora, który dokonuje rozkładu liczby na czynniki pierwsze z szybkością niedostępną dla jakiegokolwiek znanego algorytmu na komputery klasyczne. Wykład nie zakłada znajomości mechaniki kwantowej. Zagadnienia: Podstawy mechaniki kwantowej: stany czyste i mieszane, obserwable, ewolucja czasowa układu kwantowego. Jednostka informacji kwantowej - kubit. Złożone układy kwantowe, splątanie kwantowe. Teleportacja kwantowa. Bramki i obwody kwantowe. Algorytmy kwantowe: Deutscha, Shora i Grovera. Literatura 1. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press M. Le Bellac, Wstęp do informatyki kwantowej, PWN S. Barnett, Quantum Information, Oxford University Press Prowadzący: dr Maciej Ślęczka.
7 Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2014/2015
8 Spis treści 1. Ekonometria Statystyka finansowa Układy dynamiczne na miarach Wprowadzenie do relacyjnych baz danych
9 1. Ekonometria (03-MO1S-14-MSpe-Eko) Specjalność F+T Poziom 6 Status W L. godz. tyg. 2 W + 2 L L. pkt. 6 Socr. Code Modelowanie ekonometryczne: pojęcie modelu ekonometrycznego, klasyfikacja zmiennych, klasyfikacja modeli. Jednorównaniowy model ekonometryczny: dobór zmiennych objaśniających: metoda Hellwiga, estymacja metodą najmniejszych kwadratów (MNK), miary dopasowania, nieliniowy model ekonometryczny, modele ze zmiennymi zerojedynkowymi. Weryfikacja modelu ekonometrycznego: istotność zmiennych, liniowość modelu, autokorelacja składników losowych, heteroskedastyczność składników losowych. Zasady prognozowania ekonometrycznego: założenia i reguły prognozowania, prognoza nieobciążona z modelu jednorównaniowego, ex ante oraz ex post błędy prognozy. Wstęp do prognozowania na podstawie szeregów czasowych: stacjonarność szeregów czasowych, test Dickeya Fullera, szeregi ARIMA, prognozowanie adaptacyjne: metoda wyrównywania wykładniczego, metodologia Boxa Jenkinsa. Efekty kształcenia: poznanie i zrozumienie metod badań prawidłowości społeczno-ekonomicznych, umiejętność estymowania parametrów liniowej funkcji regresji, weryfikowanie zbudowanych modeli ekonometrycznych na podstawie testów statystycznych, poznanie własności szeregów czasowych, umiejętność prognozowania szeregów czasowych metodami wygładzania wykładniczego, średnich ruchomych, ARIMA. Literatura 1. Kukuła K. (red.), Wprowadzenie do ekonometrii w przykładach i zadaniach, PWN, Welfe A., Ekonometria, PWE, wyd. 3, Welfe A. (red.), Ekonometria. Zbiór zadań, PWE, wyd. 2, Charemza W. W., Deadman D.F., Nowa ekonometria, PWE, Warszawa Greene, W.H. Econometric Analysis, Prentice Hall, Domański C., Nieklasyczne metody statystyczne, PWE, Prowadzący: dr Sebastian Sitarz.
10 2. Statystyka finansowa (03-MO1S-14-MSpe-SFin) Specjalność F+T Poziom 6 Status W L. godz. tyg. 2 W + 2 L L. pkt. 6 Socr. Code 1. Dane finansowe - statystyczne metody analizy. 2. Modele rynków finansowych. 3. Statystyczne modelowanie wybranych procesów finansowych. 4. Finansowe szeregi czasowe - modele liniowe i nieliniowe. 5. Testy służące identyfikacji szeregów czasowych. 6. Prognozowanie na podstawie szeregów czasowych wybranych procesów finansowych. 7. Analiza portfelowa - stopa zwrotu, ryzyko inwestycji, portfel papierów wartościowych. 8. Rynek finansowy - model Markowitza. 9. Statystyczna analiza ryzyka portfela. 10. Metody optymalizacji portfela. 11. Portfel Markowitza. 12. Miary ryzyka rynkowego. 13. Dynamiczne modelowanie wybranych wskaźników finansowych rynku za pomocą różnych modeli autoregresyjnych. 14. Wykorzystanie pakietów statystycznych do analizy aktualnych procesów finansowych. Efekty kształcenia: Zapoznanie studentów z najnowszymi metodami statystyki finansowej oraz nabycie umiejętności stosowania jej w rozwiązywaniu aktualnych problemów na rynku finansowym. Doskonalenie znajomości komputerowych pakietów statystycznych za pomocą których dokonywane są statystyczne analizy finansowe. Literatura 1. Nowak E., Matematyka i statystyka finansowa, W-wa, Weron A., Weron R., Inżynieria finansowa, PWN, W-wa, Jajuga K., Jajuga T., Jak inwestować w papiery wartościowe, PWN, W-wa, Tarczyński W., Rynki kapitałowe, W-wa, Nowak E., Prognozowanie gospodarcze, W-wa, Jajuga K., Metody ekonometryczne i statystyczne w analizie rynku kapitałowego, PWE, Wrocław, Jackson M., Staunton M., Zaawansowane modele finansowe z wykorzystaniem Excela i VBA, Gliwice. Prowadzący: dr Irena Wistuba.
11 3. Układy dynamiczne na miarach (03-MO1S-14-MSpe-UDMia) Specjalność M+T Poziom 6 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code 1. Miary: podstawowe pojęcia i fakty. Twierdzenie Riesza- Skorochoda, słaba zbieżność ciągów miar, Twierdzenie Aleksandrowa, metryki w przestrzeni miar. 2. Operatory Markowa: podstawowe pojęcia i ich własności, operatory Fellera, operatory przejścia (Ciąg deterministyczny z losowym warunkiem początkowym, Układ z niezależnymi zaburzeniami losowymi, Iterowany układ funkcyjny z prawdopodobieństwami zależnymi od położenia). 3. Stabilność operatorów Markowa: twierdzenia o istnieniu miary niezmienniczej i asymptotycznej stabilności operatorów Markowa na miarach. 4. Zastosowania: Iterowane układy funkcyjne, Równania z zaburzeniami poissonowskimi. Efekty kształcenia: Znajomość teorii operatorów Markowa na miarach. Poznanie warunków gwarantujących istnienie regularnych operatorów Markowa oraz związków pomiędzy operatorem Markowa, operatorem do niego dualnym i funkcja przejścia. Umiejętność wyznaczenia operatora przejścia. Zapoznanie się z kryteriami asymptotycznej stabilności operatorów Markowa. Literatura: 1. M. F. Barnsley, S. G. Demko, J. H. Elton i J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré 24 (1988), A. Lasota, Układy dynamiczne na miarach, Wydawnictwo Uniwersytutu Śląskiego(2008). 3. A. Lasota i M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, A. Lasota i J. Myjak, Markov operators and fractals, Bull. Polish Acad. Sci. Math. 45 (1997), A. Lasota i J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam , T. Szarek, Invariant measures for nonexpansive Markov operators on Polish spaces,dissertationes Math R. Zaharopol, Invariant Probabilities of Markov-feller operators and their supports, Birkh auser Verlag, Prowadzący: dr hab. Katarzyna Horbacz.
12 4. Wprowadzenie do relacyjnych baz danych (03-MO1S-14-MSpe-WRBDa) Specjalność F+M+T Poziom 6 Status W L. godz. tyg. 2 W + 2 L L. pkt. 6 Socr. Code Wykład ma na celu przekazanie studentom podstawowych wiadomości z zakresu funkcjonowania, projektowania i implementacji relacyjnych baz danych z użyciem języka SQL, na przykładzie wybranego systemu zarządzania bazą danych. Pojęcie bazy danych, system zarządzania bazą danych (DBMS), przykłady DMBS. Struktura i zadania DBMS. Relacyjny model danych. Algebra relacji. Operacje teoriomnogościowe w zastosowaniu do relacji. Operacje rzutowania, selekcji, iloczynu kartezjańskiego, złączenia. Integralność danych. Pojęcie klucza głównego, klucza obcego. Zależności funkcyjne. Dekompozycja schematów relacyjnych. Normalizacja bazy danych: pierwsza, druga, trzecia postać normalna. Postać normalna Boyce a-codda. Zależności wielowartościowe. Czwarta postać normalna. Język SQL. Definiowanie struktury bazy danych w SQL z wykorzystaniem poleceń DDL i DCL języka takich jak: CREATE, ALTER, DROP. Definiowanie tabel, implementacja ograniczeń i więzów referencyjnych. Wprowadzanie i aktualizacja danych w tablicach, podstawowe polecenia DML: INSERT, UPDATE, DELETE. Zapytania w języku SQL, polecenie SELECT. Operacje teoriomnogościowe, złączenia naturalne i zewnętrzne w języku SQL. Zagnieżdżanie zapytań, podzapytania. Eliminowanie duplikatów. Grupowanie danych, funkcje agregujące języka SQL. Zapytania funkcjonalne. Kontrola dostępu do bazy danych, definiowanie użytkowników i nadawanie uprawnień. Współbieżny dostęp do bazy danych, mechanizm blokad i transakcji. Przykłady zanurzenia języka SQL w językach programowania i aplikacjach. Język QBE. Efekty kształcenia: Student zna i rozumie pojęcie relacyjnego modelu danych. Potrafi zaprojektować bazę danych w modelu relacyjnym. Rozumie potrzebę normalizacji i potrafi ją przeprowadzić. Student potrafi utworzyć bazę danych, zdefiniować jej strukturę, wstawiać i modyfikować dane z użyciem języka SQL. Potrafi implementować zapytania w języku SQL z użyciem złączeń naturalnych oraz zewnętrznych. Rozumie istotę zapytań grupujących i potrafi korzystać z funkcji agregujących. Zdaje sobie sprawę z istoty integralności bazy danych i umie definiować więzy referencyjne. Student ma wiedzę na temat mechanizmu zarządzania transakcjami w bazach danych. Literatura 1. H. Garcia-Molina, J. D. Ullman, J. Widom: Systemy baz danych. Pełny wykład, WNT Warszawa C. J. Date: Wprowadzenie do systemów baz danych, WNT Warszawa T. Pankowski: Podstawy baz danych, PWN, Warszawa R. Vieira: SQL Server Programowanie. Od podstaw, Helion Gliwice Prowadzący: dr Damian Brückner.
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla III roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr VI - letni (III rok) Prowadzący Przedmiot
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (II rok) Prowadzący Przedmiot
Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Wstęp do matematyki ubezpieczeń..............................
Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2013/2014 Spis treści 1. EKONOMETRIA....................................... 3 2. EKONOMIA
Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. Arytmetyka........................................... 3 2. Inżynieria
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Bazy danych Database Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, laboratorium Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień: 2W, 2L Semestr: III Liczba
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium BAZY DANYCH Databases Forma studiów: Stacjonarne
K1A_W11, K1A_W18. Egzamin. wykonanie ćwiczenia lab., sprawdzian po zakończeniu ćwiczeń, egzamin, K1A_W11, K1A_W18 KARTA PRZEDMIOTU
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego: 2014/2015 4. Forma kształcenia: studia pierwszego stopnia 5. Forma
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Grupa kursów: Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZĄRZADZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Wprowadzenie do SQL Nazwa w języku angielskim: Introduction to SQL Kierunek studiów (jeśli dotyczy): Zarządzanie
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA. 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: Bda 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana
forma studiów: studia stacjonarne Liczba godzin/tydzień: 1, 0, 2, 0, 0
Nazwa przedmiotu: Relacyjne Bazy Danych Relational Databases Kierunek: Zarządzanie i Inżynieria Produkcji Kod przedmiotu: ZIP.GD5.03 Rodzaj przedmiotu: Przedmiot Specjalnościowy na kierunku ZIP dla specjalności
KARTA PRZEDMIOTU. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Ogólne umiejętności posługiwania się komputerem
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: Nazwa w języku angielskim: Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Zagadnienia na egzamin dyplomowy Matematyka
INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.
Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
METODY ILOŚCIOWE W ZARZĄDZANIU
1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy
Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV
bbbbkarta MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN1-0184 Ekonometria Econometrics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
KARTA PRZEDMIOTU 1,5 1,5
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim BAZY DANYCH Nazwa w języku angielskim DATABASE SYSTEMS Kierunek studiów (jeśli dotyczy): INŻYNIERIA
przedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
Literatura. Statystyka i demografia
ZESTAWIENIE zagadnień i literatury do egzaminu doktorskiego z przedmiotów kierunkowych III Wydziałowej Komisji ds. Przewodów Doktorskich na Wydziale Ekonomiczno-Socjologicznym Uniwersytetu Łódzkiego Ekonometria
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 204/5 Nazwa Bazy danych Nazwa jednostki prowadzącej przedmiot Wydział Matematyczno - Przyrodniczy Kod Studia Kierunek studiów Poziom
EKONOMETRIA I SYLABUS
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. EKONOMETRIA I SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom
Egzamin / zaliczenie na ocenę* 0,5 0,5
Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Technologia przetwarzania danych Nazwa w języku angielskim: Data processing technology Kierunek studiów
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE ------------------------------------------------------------------------------------------------- WIEDZA AG1_W01
I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy
1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim
Z-EKO-184 Ekonometria Econometrics. Ekonomia I stopień Ogólnoakademicki. Studia stacjonarne Wszystkie Katedra Matematyki Dr hab. Artur Maciąg.
KARTA MODUŁU / KARTA PRZEDMIOTU Z-EKO-184 Ekonometria Econometrics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA Ma podstawową wiedzę o charakterze nauk ekonomicznych oraz ich miejscu w AG1_W01 systemie nauk społecznych i w relacjach do innych nauk. Ma wiedzę o sposobach
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
1.1.1 Statystyka matematyczna i badania operacyjne
1.1.1 Statystyka matematyczna i badania operacyjne I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE (MODULE) Kod przedmiotu: STATYSTYKA MATEMATYCZNA I BADANIA OPERACYJNE P5 Wydział Zamiejscowy w Ostrowie
Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Uczelnia Łazarskiego. Sylabus. 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu
Uczelnia Łazarskiego Sylabus 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu 3. Język wykładowy Język polski 4. Status przedmiotu podstawowy do wyboru Języki X kierunkowy specjalistyczny Inne 5. Cel
SZKOLENIE: Administrator baz danych. Cel szkolenia
SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej A (03-M01S-12-WALGA)
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
Ekonometria i prognozowanie Econometrics and prediction
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Ekonometria i prognozowanie Econometrics and prediction A. USYTUOWANIE
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TECHNOLOGIA INFORMACYJNA 2. Kod przedmiotu: Ot 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka
Semestr Wykład Ćwiczenie Laboratorium Projekt Seminarium Łącznie. V 30 30 60 Forma zaliczenia Liczba punktów ECTS
KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Tryb/Poziom studiów: Profil studiów Jednostka prowadząca: Bazy danych Databases edukacja techniczno-informatyczna stacjonarne
Podstawowe wiadomości z zakresu: architektury sprzętowo-programowej komputerów, dowolnych języków programowania, algebry
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Z-LOG-120I Badania Operacyjne Operations Research
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-LOG-10I Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU W
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Prognozowanie gospodarcze - opis przedmiotu
Prognozowanie gospodarcze - opis przedmiotu Informacje ogólne Nazwa przedmiotu Prognozowanie gospodarcze Kod przedmiotu 11.9-WZ-EkoP-PrG-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Ekonomia II stopień ogólnoakademicki. stacjonarne wszystkie Katedra Matematyki Dr hab. Artur Maciąg. podstawowy. obowiązkowy polski.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-500 Nazwa modułu Ekonometria i prognozowanie procesów ekonomicznych Nazwa modułu w języku angielskim Econometrics and forecasting economics proceses Obowiązuje
1. Informacje ogólne. 2. Opis zajęć dydaktycznych i pracy studenta. wykład
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do algebry i teorii liczb (03-MO1S-12-WATL) Nazwa wariantu modułu (opcjonalnie):
Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie
Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów)
Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów) 1. Topologie sieci komputerowych a. 06IE_2A_W02 - jest w stanie zdefiniować problem decyzyjny, analizować źródła
Z-ID-103 Algebra liniowa Linear Algebra
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-0 Algebra liniowa Linear Algebra Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/06 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS Symbol kierunkowego efektu kształcenia Efekty kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA K1_W01 K1_W02
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2018/2019 Spis treści 1. Analiza portfelowa
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Z-ZIP-120z Badania Operacyjne Operations Research. Stacjonarne Wszystkie Katedra Matematyki dr Monika Skóra
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-120z Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma
Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): -
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TECHNOLOGIA INFORMACYJNA 2. Kod przedmiotu: Ot 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)
Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH
Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)
MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na
Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE
PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH
Załącznik nr 1 do Zarządzenia Rektora nr 1/01 z 11 stycznia 01 r. PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH NAZWA WYDZIAŁU: Zarządzania i Ekonomii NAZWA KIERUNKU: Informatyka i Ekonometria POZIOM
Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA
Załącznik nr 11 do Uchwały nr 236 Rady WMiI z dnia 31 marca 2015 roku Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Profil kształcenia: ogólnoakademicki Forma studiów: stacjonarne Forma kształcenia/poziom
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I
Informatyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Bazy danych 1 Nazwa modułu w języku angielskim Databases 1 Obowiązuje od roku
Oracle11g: Wprowadzenie do SQL
Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom
Ekonometria_FIRJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi metodami i technikami analizy finansowej na podstawie nowoczesnych instrumentów finansowych
Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015
Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2011/2012 Zatwierdzono:
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
ćwiczenia Katedra Rozwoju Regionalnego i Metod Ilościowych
Kod Nazwa Powszechne rozumienie statystyki- umiejętność odczytywania wskaźników Wersja Wydział Kierunek Specjalność Specjalizacja/kier. dyplomowania Poziom (studiów) Forma prowadzenia studiów Przynależność
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr 3/5 Specjalność Bez specjalności Kod katedry/zakładu
Z-LOG-1003 Logika Logics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOG-100 Logika Logics Obowiązuje od roku akademickiego 2012/201 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Ekonometria_EkonJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej B (03-MO1S-12-WALGB)
Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF
Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI
(pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 6 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ADMINISTROWANIE INTERNETOWYMI SERWERAMI BAZ DANYCH Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Programowanie aplikacji internetowych Rodzaj zajęć: wykład,
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia I stopnia
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia I stopnia Przedmiot: Bazy danych Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM 1 S 0 5 64-4 _1 Rok: III Semestr: 5 Forma studiów: