Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
|
|
- Stefan Morawski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2019/2020 (semestr zimowy)
2 Spis treści 1. ALGORYTMY I STRUKTURY DANYCH MODELE SKOŃCZONYCH RYNKÓW FINANSOWYCH TEORIA GIER I JEJ ZASTOSOWANIA WSTĘP DO MATEMATYKI UBEZPIECZEŃ
3 1. ALGORYTMY I STRUKTURY DANYCH () Specjalność I Poziom 5 Status W 1. Elementy analizy algorytmów. Koszty realizacji algorytmów. Rozmiar danych, złożoność czasowa i pamięciowa. Typy złożoności: konieczna, wystarczająca, średnia. Notacja asymptotyczna ( duże O, Θ, Ω ), rzędy wielkości funkcji. 2. Algorytmy rekurencyjne. Przykłady algorytmów rekurencyjnych (jednoczesne wyszukiwanie minimum i maksimum w ciągu, wieże Hanoi). Rozwiązywanie równań rekurencyjnych na potrzeby analizy algorytmów rekurencyjnych. Algorytmy oparte na metodzie dziel i zwyciężaj. 3. Sortowanie. Analiza wybranych algorytmów: sortowanie przez wstawianie, przez wybór, przez scalanie, przez kopcowanie, szybkie. Model drzew decyzyjnych i twierdzenie o dolnym ograniczeniu na czas działania dowolnego algorytmu sortującego za pomocą porównań. Sortowanie w czasie liniowym. 4. Abstrakcyjne struktury danych. Stosy, kolejki FIFO, kolejki priorytetowe, słowniki. Metody implementacji powyższych struktur (kopce binarne, drzewa poszukiwań binarnych) i ich zastosowania. 5. Algorytmy zachłanne. Zasada działania algorytmów zachłannych, przykłady (kodowanie Huffmana, algorytm Kruskala). 6. Programowanie dynamiczne. Przykłady (obliczanie liczb Fibonacciego, problem mnożenia ciągu macierzy, problem najdłuższego wspólnego podciągu). 1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest i C. Stein, Wprowadzenie do algorytmów, PWN, Warszawa A.V. Aho, J.E. Hopcroft i J.D. Ullman, Algorytmy i struktury danych, Wydawnictwo Helion, Warszawa M. Sysło, Algorytmy, WSiP, Warszawa dr Rafał Tyrala.
4 2. MODELE SKOŃCZONYCH RYNKÓW FINANSOWYCH () Specjalność F Poziom 5 Status W Ogólny model rynku skończonego, strategia dominująca, prawo jednej ceny, arbitraż, rynki zupełne i niezupełne. Równoważna miara martyngałowa, fundamentalne twierdzenia matematyki finansowej. Interpretacja geometryczna arbitrażu i równoważnej miary martyngałowej. Lemat Farkasa, konstrukcja równoważnej miary martyngałowej w modelu jednookresowym. Podstawowe instrumenty pochodne. Wycena i zabezpieczenie instrumentów finansowych. Problem optymalnej konsumpcji i inwestycji. Model dwumianowy. Efekty kształcenia: znajomość podstawowych instrumentów pochodnych i zasad wyceny arbitrażowej instrumentów finansowych, umiejętność budowania i analizy modeli w przypadku skończonej przestrzeni probabilistycznej (przestrzeni stanów). 1. M.Capiński, T.Zastawniak, Mathematics for Finance, Springer-Verlag R.J.Elliott, P.E.Kopp, Mathematics of Financial Markets, Springer J.Jakubowski, Modelowanie rynków finansowych, SCRIPT P.Kliber, Metody ograniczania ryzyka na rynku instrumentów pochodnych, Wydawnictwo AE w Poznaniu M.Musiela, M.Rutkowski, Martingale Methods in Financial Modelling,Springer S.R.Pliska, Wprowadzenie do matematyki finansowej, modele z czasem dyskretnym, (Introduction to Mathematical Finance. Discrete Time Models), WNT M.Podgórska, J.Klimkowska, Matematyka finansowa, PWN S.E.Shreve, Stochastic Calculus for Finance I. The Binomial Asset Pricing Model, Springer prace M.Fritelli. dr Maria Górnioczek.
5 3. TEORIA GIER I JEJ ZASTOSOWANIA () Specjalność F Poziom 5 Status W Przedmiot obejmuje następujący zakres tematów: 1. Przykłady gier, charakterystyczne cechy gier, podstawowe parametry gier; 2. Konstrukcje gier w postaci normalnej, stany równowagi; 3. Relacja dominacji strategii, eliminacja strategii zdominowanych; 4. Drzewa gry, postać normalna drzewa gry, zbiory informacyjne; 5. Twierdzenie von Neumanna, algorytm Kuhna, 6. Twierdzenie o minimaksie, twierdzenie Nasha; 7. Programowanie liniowe a istnienie punktów siodłowych; 8. Równowagi wg Stackelberga; 9. Gry kooperacyjne, arbitraż Nasha; 10. Imputacje, rdzeń gry, stabilność wg von Neumanna-Morgensterna; 11. Wartość Shapleya 12. Strategie ewolucyjnie stabilne (ESS); model elementarny Maynarda Smitha; 13. Zbiory przetargowe; Twierdzenie Aumanna- Maschlera. 1. Ernest Płonka, Wykłady z teorii gier, Wydawnictwo Politechniki Śląskiej 2. Marcin Malawski, Andrzej Wieczorek, Honorata Sosnowska, Konkurencja i kooperacja. Teoria gier w ekonomii i naukach społecznych, Wydawnictwo Naukowe PWN 3. Philip D. Straffin, Teoria gier, Wydawnictwo Naukowe Scholar dr Anna Brzeska.
6 4. WSTĘP DO MATEMATYKI UBEZPIECZEŃ () Specjalność F Poziom 5 Status W Moduł ma na celu wykształcenie umiejętności swobodnego posługiwania się podstawowymi pojęciami i narzędziami z zakresu matematyki ubezpieczeń na życie. Przewiduje się realizację następujących treści: 1. Elementy teorii użyteczności: funkcja użyteczności, zawieralność kontraktów ubezpieczeniowych. 2. Elementy modelu demograficznego: oczekiwany przyszły czas życia, hipotezy agregacyjne i interpolacyjne, tablice trwania życia. 3. Ubezpieczenia na życie: podstawowe rodzaje ubezpieczeń płatnych dyskretnie i w sposób ciągły, jednorazowe składki netto, funkcje komutacyjne, wzory rekurencyjne. 4. Renty życiowe: podstawowe rodzaje rent płatnych dyskretnie i w sposób ciągły, jednorazowe składki netto rent, związek składki renty z odpowiednim ubezpieczeniem, wzory rekurencyjne, funkcję komutacyjne. 5. Składki i rezerwy netto: całkowita strata ubezpieczyciela, równanie wartości dla składki netto, rezerwa składki, twierdzenie Hattendorffa. 6. Składki brutto: rodzaje kosztów, równanie wartości dla składki brutto. 7. Szkodliwości wielorakie: czas i przyczyny wyjścia ze statusu, wieloopcyjne tablice szkodowości. 8. Ubezpieczenia na wiele opcji: przykłady ubezpieczeń wieloopcyjnych. 1. B. Błaszczyszyn, T.Rolski Podstawy matematyki ubezpieczeń na życie, WNT Warszawa, 2004; 2. H.U. Gerber Life insurance mathematics, Springer Verlag, Stanisław Wieteska, Zbiór zadań z matematyki aktuarialnej renty i ubezpieczenia życiowe, Wyd. Uniwersytetu Łódzkiego dr Andrzej Olbryś.
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2018/2019 (semestr zimowy) Spis
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2017/2018 (semestr zimowy) Spis
Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)
Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH
Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Wstęp do matematyki ubezpieczeń..............................
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na
koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu
Algorytmy i struktury danych.
Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010
1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2017/2018. studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2017/2018 studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na studiach Intermath)
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2019/2020 (semestr zimowy) studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2019/2020 (semestr zimowy) studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Teoria gier w ekonomii - opis przedmiotu
Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka A (03-MO1S-12-InfoA) 1. Informacje ogólne koordynator modułu
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Nazwa przedmiotu. pierwsza
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu Teoria gier UTH/I/O/MT//C/ST/1(i)/ 6L /C1B.6a Game theory Język wykładowy polski Wersja przedmiotu
Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2
Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:
KARTA PRZEDMIOTU. Forma zajęć Miejsce realizacji Termin realizacji
KARTA PRZEDMIOTU Kod przedmiotu MUZ_M w języku polskim Matematyka ubezpieczeń na życie Nazwa przedmiotu w języku angielskim Mathematics of life insurance USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek
KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques
KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół
Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Matematyka ubezpieczeń na życie Life Insurance
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algorytmy i Struktury Danych Nazwa w języku angielskim : Algorithms adn Data Structures Kierunek studiów
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i
IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Algorytmy i struktury danych Metody programowania Języki i paradygmaty programowania Nazwa jednostki prowadzącej przedmiot Instytut Matematyki
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Przedmiot/y Algorytmy i metody Algorytmy i struktury danych Metody Języki i paradygmaty Nazwa jednostki prowadzącej przedmiot
Algorytmy i struktury danych
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy PODSTAWY INFORMATYKI Fundamentals of computer science
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
Matematyka finansowa i ubezpieczeniowa Kod przedmiotu
Matematyka finansowa i ubezpieczeniowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka finansowa i ubezpieczeniowa Kod przedmiotu 11.5-WK-IiEP-MFU-W-S14_pNadGenD94HY Wydział Kierunek Wydział
Metody aktuarialne - opis przedmiotu
Metody aktuarialne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody aktuarialne Kod przedmiotu 11.5-WK-MATP-MA-W-S14_pNadGenEJ6TV Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii
Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2
Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, 2012 Spis treści Przedmowa XIII Część I Podstawy Wprowadzenie 2 1. Rola algorytmów w obliczeniach 4 1.1. Algorytmy 4 1.2. Algorytmy
WYDZIAŁ MATEMATYKI KARTA KURSU/GRUPY KURSÓW UBEZPIECZENIA ŻYCIOWE
WYDZIAŁ MATEMATYKI KARTA KURSU/GRUPY KURSÓW UBEZPIECZENIA ŻYCIOWE Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli dotyczy): MATEMATYKA FINANSOWA I UBEZPIECZENIOWA Stopień studiów i forma:
OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie
Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw
Teoria opcji SYLABUS
Teoria opcji nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Opis Nazwa przedmiotu Teoria opcji Kod przedmiotu 0600-FS2-2TO Nazwa jednostki prowadzącej Wydział Matematyki
Projektowanie i Analiza Algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma
S Y L A B U S. język polski. Forma zaliczenia laboratorium 10 ZO 2 4 wykład 6 ZO Razem 16 2
S Y L A B U S Nazwa programu kształcenia: WNEiZ-IiE-O-I-N-7/8Z-IO Nazwa przedmiotu: algorytmy i struktury danych (SPECJALNOŚCI / SPECJALIZACJE / MODUŁY SPECJALNOŚCIOWE) Kod przedmiotu:.wwaij_n Nazwa jednostki
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2018/2019 Spis treści 1. Analiza portfelowa
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr I
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/1013
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Informatyka Profil: Ogólnoakademicki
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Kierunek: Informatyka. Przedmiot:
Kierunek: Informatyka Przedmiot: ALGORYTMY I Z LOŻONOŚĆ Czas trwania: Przedmiot: Jezyk wyk ladowy: semestr III obowiazkowy polski Rodzaj zaj eć Wyk lad Laboratorium Prowadzacy Prof. dr hab. Wojciech Penczek
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Algorytmy i programowanie Algorithms and Programming Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: kierunkowy Poziom studiów: studia I stopnia forma studiów: studia
SYLABUS PRZEDMIOTU rok akademicki 2012/2013
SYLABUS PRZEDMIOTU rok akademicki 2012/2013 Elementy składowe sylabusu Opis Nazwa przedmiotu Kod przedmiotu Nazwa kierunku Nazwa jednostki prowadzącej kierunek Język przedmiotu Charakterystyka przedmiotu
Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. Arytmetyka........................................... 3 2. Inżynieria
MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie
Poznań, 01.10.2015 r. Dr Eliza Buszkowska Adiunkt w Katedrze Nauk Ekonomicznych MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Grafy i sieci w informatyce - opis przedmiotu
Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki
INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ
INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ dr hab. Czesław Bagiński, prof. PB Kierownik KIT dr hab. Wiktor Dańko, prof. PB dr hab. Piotr Grzeszczuk, prof. PB dr Ryszard Mazurek dr Jolanta Koszelew
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (II rok) Prowadzący Przedmiot
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Wybrane aspekty ubezpieczeń i reasekuracji Nazwa w języku angielskim: Selected Aspects Of Insurance And Reinsurance Kierunek
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010.
01.10.009r. 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 009/010 Kierunek: INFORMATYKA AiSD/NSMW Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW Tryb studiów: NIESTACJONARNE
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr I
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/1013
Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147
Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW Nazwa w języku polskim: UBEZPIECZENIA ŻYCIOWE Nazwa w języku angielskim: LIFE INSURANCE Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność
TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00
Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Systemy wspomagania decyzji Kod przedmiotu
Systemy wspomagania decyzji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Systemy wspomagania decyzji Kod przedmiotu 06.9-WM-ZIP-D-06_15W_pNadGenG0LFU Wydział Kierunek Wydział Mechaniczny Zarządzanie
Język programowania C C Programming Language. ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA
KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka obliczeniowa Computational Mathematics Kod Punktacja ECTS* 2 Koordynator dr Zbigniew Leśniak Zespół dydaktyczny: dr Magdalena Piszczek Opis kursu (cele kształcenia)
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka (03-MO1N-12-Info) 1. Informacje ogólne koordynator modułu
E-1EZ1-03-s2. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-1EZ1-03-s2 Nazwa modułu Informatyka 2 Nazwa modułu w języku angielskim Computer science 2 Obowiązuje od roku akademickiego 2012/2013 (aktualizacja 2017/2018)
Teoria opcji 2015/2016
Teoria opcji 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Teoria opcji Kod przedmiotu 0600-FS2-2TO Nazwa jednostki Wydział Matematyki i
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Podstawy Informatyki Information Technology. Inżynieria Środowiska I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Podstawy
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Programowania 2 Nazwa modułu w języku angielskim Introduction to
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Informatyki Nazwa modułu w języku angielskim The fundamentals of
Instytut Ekonomiczny 9 kierunek studiów
Kod przedmiotu: PLPILA02-IEEKO-L-2s1-2012IWBIAS Pozycja planu: D1 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Algorytmy i struktury 2 Rodzaj przedmiotu Specjalnościowy /Obowiązkowy 3
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Programowania 1 Nazwa modułu w języku angielskim Introduction to
ALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH wykład 1 wprowadzenie, struktury sterujace, projektowanie algorytmów dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych UZ p. 425 A2 tel.
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2011/2012 Zatwierdzono:
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining