PODSTAWY OPTYKI. Prof. dr hab. inż. Andrzej Kołodziejczyk Gmach Fizyki, pokój 135b

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY OPTYKI. Prof. dr hab. inż. Andrzej Kołodziejczyk Gmach Fizyki, pokój 135b"

Transkrypt

1 PODSTAWY OPTYKI Pr. dr hab. nż. Andrej Kłdejck Gmach Fk pkój 35b

2 Plan Wkładu ) Równana Mawella równane alwe dskusja jeg rwąań; śwatł jak ala elektrmagnetcna pdstawwe wr. ) Plaracja śwatła 3) Element ptk ntegrwanej. 4) Element ptk gemetrcnej nstrumentalnej; dskusja najważnejsch elementów nstrumentów ptcnch. 5) Drakcja śwatła: - wór drakcjn Smmerelda. - drakcja Fresnela Fraunhera. - rdelcść braującch elementów ptcnch. - element ptk drakcjnej 6) Wąk bedrakcjne jawsk sambrawana. 7) Kherencja ntererencja śwatła. 8) Hlgraa ptcna. 9) Interermetra ptcna e scególnm uwględnenem nterermetru Mchelsna jeg astswań.

3 Lteratura d Wkładu ) Eugene Hecht Optcs (jest plske tłumacene)!!!!!!!!!!!!! ) R. W. Dtchburn Lght 3) Rbert Guenther -- Mdern Optcs 4) Jack D. Gaskll Lnear sstems Furer transrms and Optcs (drakcja + użtecne wr matematcne) 5) Danel Malacara Optcal shp testng (uklad nterermetrcne) 6) Jseph W. Gdman Intrductn t Furer Optcs (drakcja + użtecne wr matematcne)!!!!!!!!!!!!!!!!! W jęku plskm: 7) Jan Petkewc Optka alwa 8) Jan Petkewc Optka ntegrwana 9) J. R. Meer-Arendt Wstęp d Optk 3 3

4 ZALICZENIE Dwa klkwa na perwsej gdne wkładu (wkład 7-8 ra statn). Obecnść na klkwach bwąkwa. Ddatkw punktwana aktwnść na ćwcenach. Obecnść na ćwcenach bwąkwa. Dgrwka w sesj dla sób które ne alcł. OPRÓCZ TEGO NIE MA POPRAWY OCEN!!! 4 4

5 5 5

6 PARABOLA Krwa równdległa d adaneg punktu (gnsk parabl) adanej prstej (kerwnca parabl). 6 6

7 DDO l l l cnst l 4 l cnst' OF 7 7

8 8 8

9 9 9

10 0 0

11

12 SA SC CP SA PA s R R s s ra PA s s s s s Rs Rs

13 SA s R R s s ra PA s s s s s Rs Rs R s s równane analgcne d równana scewk. R R - gnskwa wercadła wklęsłeg. 3 3

14 4 4

15 5 5

16 s s 0 s s M T s s 6 6

17 7 7

18 8 8

19 9 9

20 UKŁAD OPTYCZNY OKA Schemat praweg ka (wdk gór) 0 0

21

22 a M M a u α tgα u L a u d ; d L

23 3 3 L d M u a D L-l s s s s s s s D L-l L d M (A) L d D d LD L d M l 0 (B) ra 0 D d M d L l (C) D d M L!!!!!!!!!!!!!!!!!!!

24 M d D 50 mm mm k 4 4

25 50 mm M dd mm k L MT b 60mm 50mm M mk MT M dd b k 5 00 X M 5 0 X M X MT mk 5 5

26 d d b b u M ; D b Dk b k u k Dk D 6 6

27 7 7

28 k 0 M b k 8 8

29 M u b k D D b k 9 9

30 30 30

31 3 3

32 3 3

33 33 33

34 (*) UP ep kr U k r r cs n n r r r k r ds 34 34

35 U P ep kr U k r r cs n r ds U P r k r epkr U cs n r. U cs n r ds r ds 35 35

36 n U r P U ep kr U r cs n cs A R d r 0 U A ep kr d r r ds ds r. dd 36 36

37 U Zamana mennch całkwana: A R d 0 ep kr d r r. d ; d R. Całkwane p φ daje r r rdr π. Dalej całkujem pre cęśc: U A u' e e u k kr kr d ep kr r v r v' r 3 A d r kr u' e dr kr e u k kr e kr d v r v' r kr e kr kr kr e e dr 3 kr k r d A d d k d e r kr dr 37 37

38 U U I A kr e kr d kr kr e e dr 3 kr k r A kd kd e e... d d A kd A k R U e e. d R U I R d gde d I A

39 39 39 R I U I gde A I k Ae U R I I I R I.

40 40 40

41 CIEKAWOSTKA: brawane na metalwej kulce. - Duża głęba strśc brawana. - Anala struktur pla wkół plamk mże służć d badana aberracj padająceg rntu alweg (jeg dchlena d sercnśc lub płaskśc) lub d kntrl jakśc ser kół tp. 4 4

42 4 4

43 43 43

44 U P ep kr U r cs n r ds PP r. n r cs r 44 44

45 45 45 r... 8 b b b b b r cs cs ep ds r kr U P U ds b b b b k U ep. / k b r

46 U P ep k 05m U ep k ep kb 8 kb 8 kb (*) 4 ma dd 4 ma 4cm cm

47 sn 4 cs 8 ep kb

48 3 4 ma 48 48

49 49 49 dd k U k P U ep ep. 0 ; 0 0 d R d d dd d d k A U R 0 0 ep ep

50 50 50 d dt t d d k A U R ep ep 0 0 = = R R R k A dt t k A R ep ep ep ep ep ep 0 = = sn ep ep A I R R k A. sn 4 R I U I ma 4 n R N n n R I I n R N n n R I mn 0

51 5 5 ma 4 n R N n n R I I n R N n n R I mn 0 N n n R I I ma 4 N n n R I mn 0.

52 R n d n n n 4 n λ R n n n N n. 5 5

53 53 53

54 54 54

55 I k 4N I. AN ep 55 55

56 56 56

57 U ep k k k k ep U dd ep ep U ep k ep k (*) k k ep U dd ep

58 Transrmata Furera unkcj U mennch. U U )ep dd F Transrmata dwrtna Furera ma pstać: (. F F( )ep d d U Transrmata Furera transrmata dwrtna różną sę jedne nakam w wrażenu wkładncm. Mówm że unkcje U F twrą parę transrmat: F U U( )ep F ep d dd d 58 58

59 Warunk stnena transrmat Furera dla unkcj dwuwmarwej U(): ) Funkcja U() mus bć bewględne całkwalna na całej płascźne () : U ) dd (. ) Funkcja U() mus psadać skńcną lcbę ekstremów w każdm grancnm prstkące na płascźne (). 3) Funkcja U() ne mże meć necągłśc neskńcnch. Zwkle unkcje które psują realne jawska cne psadają transrmatę Furera. Dalej ne będem sę ajmwać pwżsm grancenam

60 k ma. cm 05m ma >>00π m>600 m (KATASTROFA!!!) R R 60 60

61 6 6

62 U P U U ep kr k r r cs n P U ep kr r cs n r dd r dd 6 6

63 63 63 R R dd k U k P U ep ep R F k k U ep ep U F

64 64 64 r kr S ep. r... 8 b b b b b b r ep ep ep ep k cnst k k k S

65 U S ep k ep ep cnst ep k ep ep k U k k k k k ep ep dd 65 65

66 66 66 dd k k U k U ep ep ep F k k U ep ep U F F cnst U I

67 U ep k d k d ep F

68 U ep k d k d ep F

69 69 69 / / 0 / / a a a a a rect a a a a a a a a a a a d a rect snc sn ep ep ep ep / / / / gde de sn snc - unkcja sncus.

70 rect -gnskwa scewk; a rect a a a a. a snc a snca 70 70

71 I snc a snc a snc snc a a. 7 7

72 7 7

73 73 73

74 74 74

75 ' s s r 06s R r ' 06s s 0 6s R s R 75 75

76 76 76

77 77 77

78 06 s R 06 sn 06. NA 06 n nna

79 79 79

80 U A' k k A' ep U( )ep mam: d d. dd (*) U Ak k ep k k A' A k k. dk dk 80 80

81 U Ak k ep k k =0: Ak k ep k k ; >0: Ak k ep k k k k U k k k gde 0 Ak k ep k k k dk dk k k k. ep k k k dk dk. 8 8

82 8 8 dk dk k k k k k k A k U ep ep 0. k k k k k k 0 k k k k k k A ep

83 cnst ep k k k ep k k A k k ep k k dk dk gde k k k A k dk dk k k cnst k k k cnst ep

84 U Ak k ep k k U k k cs k k sn Ak k ep k k 0 A epk cs sn d dk dkdk. dk 84 84

85 J U A epk r cs d ' A 0 ep epcs d 0 0 k r cs ' d ' AJ k r rędu. Psada perwastk: 405; 550; 8654; - unkcja Bessela perwseg rdaju erweg

86 J n n epn cs teg rędu. J 0 epcs d 0 d rędu. Psada perwastk: 405; 550; 8654; - unkcja Bessela perwseg rdaju n- - unkcja Bessela perwseg rdaju erweg 86 86

87 87 87 r J r k J U k k R R sn sn sn sn. sn sn r r

88 88 88

89 89 89

90 90 90 ; ep 0 k k k k k r k J U r k J U r k BJ r k AJ U 0 r k BJ r k AJ U ep ep k k k r k BJ r k AJ U ep ep 0 cnstu U N n n ep

91 9 9

Optyka Fourierowska. Wykład 4 Soczewka

Optyka Fourierowska. Wykład 4 Soczewka Optka Frrwska Wkła 4 Scwka Scwka Scwka awra ptcn gęsts matrał w którm prękść awa jst mnjsa nż prękść w pwtr Grbść scwk jst mlwana (mnna) tak ab skać amrną mlację a Scwka cnka Scwka cnka jst scharaktrwana

Bardziej szczegółowo

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u

Bardziej szczegółowo

Ą ć ć ć ć Ź Ź ź ź Ę Ł Ń Ą ź Ł Ę Ę Ń Ń Ź Ź ć Ę Ę Ś ź ć ć ć ć Ź ź ć ć ć ć ć ć ć ć ć Ź ć ć ć ć ć Ź ć ć Ć ć Ę Ą Ś Ń Ń ź Ń Ź ź ć ć ć Ą Ą ć ź ź ć Ę ć ź Ą ć Ń Ę Ę Ę Ę ć Ą Ę ć ź Ó ć ć Ń Ę Ń Ń ć Ś Ą Ę ć Ś ć Ń

Bardziej szczegółowo

123456 782923456 6 22336 46466 6 6 6 783863658386 6 6 6 6 4!"! 468983#84636434$4636 6 6 6 %&6 '5626 ()68'546 6 6 &6 6 82845469234548*+6 %6 6 6 %6 '56268'546"'844$$6 %6 6 6 %&6 '5626 ()68'546,6 6 6 6 -*386

Bardziej szczegółowo

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne. Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o

Bardziej szczegółowo

Optyka Fourierowska. Wykład 1 Analiza sygnałów i układów dwuwymiarowych

Optyka Fourierowska. Wykład 1 Analiza sygnałów i układów dwuwymiarowych Optka Forierowska Wkład Analiza sgnałów i kładów dwwmiarowch Literatra K. Gniadek Optka Forierowska K. Gniadek Optczne przetwarzanie inormacji J.W. Goodman Introdction to Forier Optics O. K. Erso Diraction

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

Ą ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć

Bardziej szczegółowo

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV

A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV Audi A4 B6 - sprężyny przód E0 411 105 BA żółty niebieski różowy 3 E0 411 105 BB żółty niebieski różowy różowy 4 E0 411 105 BC żółty zielony różowy 5 E0 411 105 BD żółty zielony różowy różowy 6 E0 411

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. Drgania i fale ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera

Bardziej szczegółowo

Zintegrowany analizator widma. (c) Sergiusz Patela Zintegrowany Analizator Widma 1

Zintegrowany analizator widma. (c) Sergiusz Patela Zintegrowany Analizator Widma 1 Zintegrowan analizator widma (c) Sergiusz Patela 998-003 Zintegrowan Analizator Widma Drakcja Bragga i Ramana-Natha ugięt sinθ B λ o ΛN e Eektwność oddziałwania: η sin η0 Gdzie: η P akust p 0. ijkl (c)

Bardziej szczegółowo

q (s, z) = ( ) (λ T) ρc = q

q (s, z) = ( ) (λ T) ρc = q M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,

Mazurskie Centrum Kongresowo-Wypoczynkowe Zamek - Ryn Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax , R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Załącznik nr 1 do Wzoru umowy znak sprawy:gcs.dzpi Strona 1 z 11

Załącznik nr 1 do Wzoru umowy znak sprawy:gcs.dzpi Strona 1 z 11 S z c z e g ó ł o w y o p i s i s z a c o w a n y z a k r e s i l o c i o w y m a t e r i a ł ó w e l e k t r y c z n y c h L p N A Z W A A R T Y K U Ł U O P I S I l o j e d n o s t k a m i a r y C e n

Bardziej szczegółowo

O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z

Bardziej szczegółowo

#$%&"!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$

#$%&!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$ M NM O *+ 62-3B6 8 -C 6-B7 6 * *+5 2 B9 A: 6:!"#$% '!"#$%' ()* +,-. $/0(1()*$ +,!' + -.+ -/ (* +,!' + - / +,!'0!" $(1 234.56789: $(1 ;. *; ' +,!' 1 $% )# ?@ABCDE!6 9: $(1 FGH IJ!" $/0(1 IJKL

Bardziej szczegółowo

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE .. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć

Bardziej szczegółowo

str. 4 GL 040E str. 4 EK 200A EK 200A str. 7 ER 05TE str. 7 LHR 15 ES LH 22EN str. 5 KS 260EPNS str. 13 HE 501 str. 10 HTE 300 str. 10 HE 901 str.

str. 4 GL 040E str. 4 EK 200A EK 200A str. 7 ER 05TE str. 7 LHR 15 ES LH 22EN str. 5 KS 260EPNS str. 13 HE 501 str. 10 HTE 300 str. 10 HE 901 str. Zastosowanie maszyn Przygotowanie pod³o a Ciêcie metalu Szlifowanie metalu Szybkie usuwanie pow³ok Szlif wykoñczeniowy Szlif zgrubny Szlif drobny Szlif wykoñczeniowy Przygotowanie do polerowania Polerowanie

Bardziej szczegółowo

ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę

Bardziej szczegółowo

WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.)

WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.) WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH (12.10.2018 R.) 100 metrów stylem zmiennym dziewcząt 1 WB X LO 1:25,52 17 2 KK I LO 1:25,77 15 3 MZ II LO 1:28,70 14 4 AP III LO 1:30,81 13

Bardziej szczegółowo

! "#$%&' # ()*+,--,./ 0# ! "#9 :;# F >?DE GHIJKL4MNO J P Q RSTUV WXY 4MNO J ZUV 4M 4B[\]^#4_>4_`a bc 1 J 4M4_ (J4_ S4M K ]^+O J ]^

! #$%&' # ()*+,--,./ 0# ! #9 :;# F >?DE GHIJKL4MNO J P Q RSTUV WXY 4MNO J ZUV 4M 4B[\]^#4_>4_`a bc 1 J 4M4_ (J4_ S4M K ]^+O J ]^ ! "#$%&' # ()*+,--,./ 0#1 23456 78! "#9 :;# ?@ABCDE F >?DEGHIJKL4MNOJP QRSTUV WXY 4MNOJZUV 4M 4B[\]^#4_>4_`a bc 1J 4M4_(J4_S4M K ]^+OJ ]^ #`a bc0 ^ 0 2E J 4_4_ # K 4B4M J# 4 \ 2 4_4_ J# 2E O JY NT 4_

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:

= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać: Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost

Bardziej szczegółowo

poszczególnych modeli samochodów marki Opel z dnia 31.01.2013. skrzyni biegów

poszczególnych modeli samochodów marki Opel z dnia 31.01.2013. skrzyni biegów 1 Opel D1JOI AAAA Ampera X30F 150 KM (elektryczny) AT 34.10.21-36.00 benzyna 1398 1,2 27 2 Opel H-B AE11 Agila 1.0 ECOTEC 68 KM MT5 34.10.21-33.00 benzyna 996 4,6 4,7 106 109 3 Opel H-B AF11 Agila 1.2

Bardziej szczegółowo

F u l l H D, I P S D, I P F u l l H D, I P 5 M P,

F u l l H D, I P S D, I P F u l l H D, I P 5 M P, Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 02 02 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f Z a b e z p i e c z e n i e m a s o w e j i m p r e z y s p o r t

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

! " #$% & '! " # ( ) ; 678 )* <=>! 2? *+ 1 (%!" # $ % & '!# & ' ' *+! "#$ $%! $& " $ ' ' ($ $. #$ $ #. $ " # 2 # $ " $ / " $ #. $ $ -.. / -/. $ -.. #.

!  #$% & '!  # ( ) ; 678 )* <=>! 2? *+ 1 (%! # $ % & '!# & ' ' *+! #$ $%! $&  $ ' ' ($ $. #$ $ #. $  # 2 # $  $ /  $ #. $ $ -.. / -/. $ -.. #. ! " #$% & '! " # ( ) ; 678 )* ! 2? *+ 1 (%!" # $ % & '!# & ' ' *+! "#$ $%! $& " $ ' ' ($ $. #$ $ #. $ " # 2 # $ " $ / " $ #. $ $ -.. / -/. $ -.. #. # $ " $ #. 3. $ $ $ -.. " #$.$ # )#& $ # # # " - $..!"#$%&'

Bardziej szczegółowo

Zanim zapytasz prawnika

Zanim zapytasz prawnika 2 Zanim zapytasz prawnika 1 Zanim zapytasz prawnika Poradnik dla Klientów Biur Porad Prawnych i Informacji Obywatelskiej Pod redakcją Grzegorza Ilnickiego Fundacja Familijny Poznań Poznań 2012 3 N i n

Bardziej szczegółowo

Projekt silnika bezszczotkowego z magnesami trwałymi

Projekt silnika bezszczotkowego z magnesami trwałymi Projekt silnika bezszczotkowego z magnesami trwałymi dr inż. Michał Michna michna@pg.gda.pl 01-10-16 1. Dane znamionowe moc znamionowa P n : 10kW napięcie znamionowe U n : 400V prędkość znamionowa n n

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

M P A P S - 50 X 100

M P A P S - 50 X 100 ul. Hauke Bosaka 15, 25-217 Kielce; e-mail: marketing@obreiup.com.pl MP seria Jak zamawiać? M P A P S - 50 X 100 M: Marani A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Średnica x Skok

Bardziej szczegółowo

G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u

Bardziej szczegółowo

Ą Ą Ą Ą Ą Ą Ą Ą Ł Ó Ę Ń Ą Ą Ę Ł Ę Ś Ś Ś Ś Ł Ą Ż Ś Ź Ł Ó Ł Ą Ł Ę Ł Ą Ą Ą Ą Ą Ą Ą ĄĄ Ą Ś Ć Ą Ę Ę Ć Ł Ł Ś Ź Ź Ó ĆŚ Ż Ł Ś Ś Ź Ź Ó Ę Ę Ę Ó Ś Ź Ą Ę Ą Ś Ę Ł Ś Ł Ś Ś Ń Ś Ę Ę Ż Ż Ó Ś Ą Ć Ą Ź Ń Ś Ś Ś Ć Ł Ś

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 4 52 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e p o m i a r ó w i n s t a l a c j i e l e k t r y c

Bardziej szczegółowo

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce

Bardziej szczegółowo

ż ź ż Ś Ź Ś Ś ń ń Ś ń Ś Ś ż Ś Ś ż ćś ż ż ż Ł ć ć ć Ść ń Ś ż ż Ś ż ń Ź Ś ż ż ć Ś Ś Ś Ś Ś Ś Ś ź ż ń Ę ż ć Ś Ś ć ż Ś Ś ż ż ć Ś Ś ć Ś Ś ćś Ś Ś ń ż ń Ś ż ć ć Ć Ś ń Ź ń ć ć ć Ść ń ń Ś Ś ż ĘĄ Ś ż ć ć Ś ć ń ć

Bardziej szczegółowo

WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego.... (tytuł zadania publicznego) w okresie od... do...

WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego.... (tytuł zadania publicznego) w okresie od... do... Złąn nr 3 WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) wnn dn publneg... (uł dn publneg) w rese d... d... reślneg w umwe nr... wrej w dnu pmęd... (nw Zleendw)... (nw Zleenbr/(-ów), sedb, nr Krjweg Rejesru

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

ż ń ęą ą ąą ą ą ń ą ż ń ż ń ęą ą ą ą ą ń ę ę ę ż ń ęą ą ą ą ą ń ą ą ą ą ź ń ż ń ęą ą ą ą ą ń ą ą ą ą ź ń ż ń ęą ą ą ą ą ń ą ą ą ą ź ń o o o o o o o ż ń ęą ą ą ą ź ś ść ż ś ść ń ę ą ą ę ą ą ż ń ęą

Bardziej szczegółowo

S: Magnes na tłoku. Amortyzacja P: pneumatyczna regulowana

S: Magnes na tłoku. Amortyzacja P: pneumatyczna regulowana Siłowniki zgodne z ISO 15552 seria MK Jak zamawiać? M K A P S 50 x 100 M: Marani K: Zgodne z ISO 15552, tuleja kształtowa (Mickey-mouse) A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Amortyzacja

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki

Bardziej szczegółowo

Sprężyny naciągowe z drutu o przekroju okrągłym

Sprężyny naciągowe z drutu o przekroju okrągłym Sprężyny naciągowe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp

Bardziej szczegółowo

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC 4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.

Bardziej szczegółowo

Siłowniki kompaktowe P1J. Siłowniki w obudowach skróconych P1M. Wymiary (mm), Dane eksploatacyjne

Siłowniki kompaktowe P1J. Siłowniki w obudowach skróconych P1M. Wymiary (mm), Dane eksploatacyjne Siłowniki kompaktowe P1J Kołnierz, F1 Łapa A + slagl. B + slagl. C + slagl. Końcówka widełkowa ze sworzniem Końcówka oczkowa wahliwa Kołek gwintowany cylindra mm mm mm mm mm mm mm mm 12 25,4 18 38 46,0

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Zestawienie samochodów osobowych Opel zawierające informacje o zużyciu paliwa i emisji CO 2

Zestawienie samochodów osobowych Opel zawierające informacje o zużyciu paliwa i emisji CO 2 Zestawienie samochodów osobowych Opel zawierające informacje o zużyciu paliwa i emisji CO 2 Pojazdy pogrupowane według typu paliwa, uszeregowane według wielkości poszczególnych modeli samochodów marki

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Instytut Cybernetyki Technicznej

Politechnika Wrocławska Wydział Elektroniki Instytut Cybernetyki Technicznej Politechnika Wrocławska Wydział Elektroniki Instytut Cybernetyki Technicznej Systemy mikroprocesorowe w automatyce Prędkościomierz rowerowy w oparciu o MC68HC05J1A Opracował: Grzegorz Pietkiewicz Elektronika,

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

2014-01-10. kierowniczych i samodzielnych.

2014-01-10. kierowniczych i samodzielnych. Podział pracy dokonanie wyboru specjalizacji dla wszystkich pracowników. Stanowisko organizacyjne stanowisko pracy wyznaczone w celu realizacji poszczególnych zadań przedsiębiorstwa. Stanowiska łączone

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O K R E L A N I E S I M I N I O W Y C H P O D C Z A S C H O D U N A P O D S T A W I E S Y G N A W s E M G E u g e n u s z w

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

Załącznik Nr 1 do Uchwały Nr... Rady Miasta Mysłowice z dnia... 2014r.

Załącznik Nr 1 do Uchwały Nr... Rady Miasta Mysłowice z dnia... 2014r. Załącznik Nr 1 do Uchwały Nr... Rady Miasta Mysłowice z dnia... 2014r. Id: 6C07650B-F062-48EA-BACD-FBE0A98EFD5B. Projekt Strona 2 z 71 !!"#$%&#! '()&*)+$$#"*&$%&#,# $%&#! -!&%&*&$%&#,. /"#*&#$%&#!0 /"#$$*&$$#"0"

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

Cennik skupu tuszy i tonerów. Ważny od 17 lipca 2017

Cennik skupu tuszy i tonerów. Ważny od 17 lipca 2017 Cennik skupu tuszy i tonerów. Ważny od 17 lipca 2017 Nazwa symbol tonera oryginał Hewlett Packard Hewlett Packard LJ 5/6P 5MC/5MP/5MV 6MP/6PSE C3903A 0,50 zł Hewlett Packard LJ C3909A 5Si 0,75 zł Hewlett

Bardziej szczegółowo

S: Magnes na tłoku. Amortyzacja. pneumatyczna regulowana

S: Magnes na tłoku. Amortyzacja. pneumatyczna regulowana ul. Hauke Bosaka 15, 25-217 Kielce; e-mail: obreiup@obreiup.com.pl Jak zamawiać? M K A P S - 50 X 100 M: Marani A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Średnica x Skok P: Zgodne z

Bardziej szczegółowo

1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S

1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S 1TEH Wychowawca: mgr Aleksandra Kozimor 1 8:00-8:45 SK BHP-1/2 201 OE org-1/2 305 OE tpw-1/2 305 KK j.p 214 AM his 114 KA DzP-2/2 214 OW dzi-2/2 114 KA DzP-2/2 214 2 8:55-9:40 KK j.p 210 OE org-1/2 305

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

YRAŻENIA ALGEBRAICZNE

YRAŻENIA ALGEBRAICZNE 72 15. 15. WYR YRAŻENIA ALGEBRAICZNE WITAMY LITERKI Wyrażenie arytmetyczne to liczby połączone znakami działań, np. 3+27 : 5 lub 459 121+15 3 Wyrażenie algebraiczne to liczby wraz z literami połączone

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Władcy Skandynawii opracował

Władcy Skandynawii opracował W Ł~ D C Y S K~ N D Y N~ W I I K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 1 K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 2 Władcy Skandynawii G E N E~ L O G I~ K R Ó L Ó W D~ N O R

Bardziej szczegółowo

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka

Bardziej szczegółowo

ż Ę ń Ś ó ź ó ń Ę ó ó ź ó Ń ó ó ż ż ó ż ń ó ć ń ź ó ó ó Ę Ę ó ź ó ó Ł Ł Ą Ś ó ń ó ń ó Ł Ł ó ó ó ń Ś Ń ń ń ó ó Ś ó ć ó Ą Ą ń ć ć ó ż ó ć Ł ó ń ó ó ż ó ó ć ż ż Ą ż ń ó Śó ó ó ó ć ć ć ń ó ć Ś ć ó ó ż ó ó

Bardziej szczegółowo

Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj

Bardziej szczegółowo

Modulatory i detektory. Modulacja. Modulacja i detekcja

Modulatory i detektory. Modulacja. Modulacja i detekcja Modulator i detektor Modulacja Przekształcenie sgnału informacjnego do postaci dogodnej do transmisji w kanale telekomunikacjnm Polega na zmianie, któregoś z parametrów fali nośnej (amplitud, częstotliwości,

Bardziej szczegółowo