PODSTAWY OPTYKI. Prof. dr hab. inż. Andrzej Kołodziejczyk Gmach Fizyki, pokój 135b
|
|
- Wojciech Mazurkiewicz
- 7 lat temu
- Przeglądów:
Transkrypt
1 PODSTAWY OPTYKI Pr. dr hab. nż. Andrej Kłdejck Gmach Fk pkój 35b
2 Plan Wkładu ) Równana Mawella równane alwe dskusja jeg rwąań; śwatł jak ala elektrmagnetcna pdstawwe wr. ) Plaracja śwatła 3) Element ptk ntegrwanej. 4) Element ptk gemetrcnej nstrumentalnej; dskusja najważnejsch elementów nstrumentów ptcnch. 5) Drakcja śwatła: - wór drakcjn Smmerelda. - drakcja Fresnela Fraunhera. - rdelcść braującch elementów ptcnch. - element ptk drakcjnej 6) Wąk bedrakcjne jawsk sambrawana. 7) Kherencja ntererencja śwatła. 8) Hlgraa ptcna. 9) Interermetra ptcna e scególnm uwględnenem nterermetru Mchelsna jeg astswań.
3 Lteratura d Wkładu ) Eugene Hecht Optcs (jest plske tłumacene)!!!!!!!!!!!!! ) R. W. Dtchburn Lght 3) Rbert Guenther -- Mdern Optcs 4) Jack D. Gaskll Lnear sstems Furer transrms and Optcs (drakcja + użtecne wr matematcne) 5) Danel Malacara Optcal shp testng (uklad nterermetrcne) 6) Jseph W. Gdman Intrductn t Furer Optcs (drakcja + użtecne wr matematcne)!!!!!!!!!!!!!!!!! W jęku plskm: 7) Jan Petkewc Optka alwa 8) Jan Petkewc Optka ntegrwana 9) J. R. Meer-Arendt Wstęp d Optk 3 3
4 ZALICZENIE Dwa klkwa na perwsej gdne wkładu (wkład 7-8 ra statn). Obecnść na klkwach bwąkwa. Ddatkw punktwana aktwnść na ćwcenach. Obecnść na ćwcenach bwąkwa. Dgrwka w sesj dla sób które ne alcł. OPRÓCZ TEGO NIE MA POPRAWY OCEN!!! 4 4
5 5 5
6 PARABOLA Krwa równdległa d adaneg punktu (gnsk parabl) adanej prstej (kerwnca parabl). 6 6
7 DDO l l l cnst l 4 l cnst' OF 7 7
8 8 8
9 9 9
10 0 0
11
12 SA SC CP SA PA s R R s s ra PA s s s s s Rs Rs
13 SA s R R s s ra PA s s s s s Rs Rs R s s równane analgcne d równana scewk. R R - gnskwa wercadła wklęsłeg. 3 3
14 4 4
15 5 5
16 s s 0 s s M T s s 6 6
17 7 7
18 8 8
19 9 9
20 UKŁAD OPTYCZNY OKA Schemat praweg ka (wdk gór) 0 0
21
22 a M M a u α tgα u L a u d ; d L
23 3 3 L d M u a D L-l s s s s s s s D L-l L d M (A) L d D d LD L d M l 0 (B) ra 0 D d M d L l (C) D d M L!!!!!!!!!!!!!!!!!!!
24 M d D 50 mm mm k 4 4
25 50 mm M dd mm k L MT b 60mm 50mm M mk MT M dd b k 5 00 X M 5 0 X M X MT mk 5 5
26 d d b b u M ; D b Dk b k u k Dk D 6 6
27 7 7
28 k 0 M b k 8 8
29 M u b k D D b k 9 9
30 30 30
31 3 3
32 3 3
33 33 33
34 (*) UP ep kr U k r r cs n n r r r k r ds 34 34
35 U P ep kr U k r r cs n r ds U P r k r epkr U cs n r. U cs n r ds r ds 35 35
36 n U r P U ep kr U r cs n cs A R d r 0 U A ep kr d r r ds ds r. dd 36 36
37 U Zamana mennch całkwana: A R d 0 ep kr d r r. d ; d R. Całkwane p φ daje r r rdr π. Dalej całkujem pre cęśc: U A u' e e u k kr kr d ep kr r v r v' r 3 A d r kr u' e dr kr e u k kr e kr d v r v' r kr e kr kr kr e e dr 3 kr k r d A d d k d e r kr dr 37 37
38 U U I A kr e kr d kr kr e e dr 3 kr k r A kd kd e e... d d A kd A k R U e e. d R U I R d gde d I A
39 39 39 R I U I gde A I k Ae U R I I I R I.
40 40 40
41 CIEKAWOSTKA: brawane na metalwej kulce. - Duża głęba strśc brawana. - Anala struktur pla wkół plamk mże służć d badana aberracj padająceg rntu alweg (jeg dchlena d sercnśc lub płaskśc) lub d kntrl jakśc ser kół tp. 4 4
42 4 4
43 43 43
44 U P ep kr U r cs n r ds PP r. n r cs r 44 44
45 45 45 r... 8 b b b b b r cs cs ep ds r kr U P U ds b b b b k U ep. / k b r
46 U P ep k 05m U ep k ep kb 8 kb 8 kb (*) 4 ma dd 4 ma 4cm cm
47 sn 4 cs 8 ep kb
48 3 4 ma 48 48
49 49 49 dd k U k P U ep ep. 0 ; 0 0 d R d d dd d d k A U R 0 0 ep ep
50 50 50 d dt t d d k A U R ep ep 0 0 = = R R R k A dt t k A R ep ep ep ep ep ep 0 = = sn ep ep A I R R k A. sn 4 R I U I ma 4 n R N n n R I I n R N n n R I mn 0
51 5 5 ma 4 n R N n n R I I n R N n n R I mn 0 N n n R I I ma 4 N n n R I mn 0.
52 R n d n n n 4 n λ R n n n N n. 5 5
53 53 53
54 54 54
55 I k 4N I. AN ep 55 55
56 56 56
57 U ep k k k k ep U dd ep ep U ep k ep k (*) k k ep U dd ep
58 Transrmata Furera unkcj U mennch. U U )ep dd F Transrmata dwrtna Furera ma pstać: (. F F( )ep d d U Transrmata Furera transrmata dwrtna różną sę jedne nakam w wrażenu wkładncm. Mówm że unkcje U F twrą parę transrmat: F U U( )ep F ep d dd d 58 58
59 Warunk stnena transrmat Furera dla unkcj dwuwmarwej U(): ) Funkcja U() mus bć bewględne całkwalna na całej płascźne () : U ) dd (. ) Funkcja U() mus psadać skńcną lcbę ekstremów w każdm grancnm prstkące na płascźne (). 3) Funkcja U() ne mże meć necągłśc neskńcnch. Zwkle unkcje które psują realne jawska cne psadają transrmatę Furera. Dalej ne będem sę ajmwać pwżsm grancenam
60 k ma. cm 05m ma >>00π m>600 m (KATASTROFA!!!) R R 60 60
61 6 6
62 U P U U ep kr k r r cs n P U ep kr r cs n r dd r dd 6 6
63 63 63 R R dd k U k P U ep ep R F k k U ep ep U F
64 64 64 r kr S ep. r... 8 b b b b b b r ep ep ep ep k cnst k k k S
65 U S ep k ep ep cnst ep k ep ep k U k k k k k ep ep dd 65 65
66 66 66 dd k k U k U ep ep ep F k k U ep ep U F F cnst U I
67 U ep k d k d ep F
68 U ep k d k d ep F
69 69 69 / / 0 / / a a a a a rect a a a a a a a a a a a d a rect snc sn ep ep ep ep / / / / gde de sn snc - unkcja sncus.
70 rect -gnskwa scewk; a rect a a a a. a snc a snca 70 70
71 I snc a snc a snc snc a a. 7 7
72 7 7
73 73 73
74 74 74
75 ' s s r 06s R r ' 06s s 0 6s R s R 75 75
76 76 76
77 77 77
78 06 s R 06 sn 06. NA 06 n nna
79 79 79
80 U A' k k A' ep U( )ep mam: d d. dd (*) U Ak k ep k k A' A k k. dk dk 80 80
81 U Ak k ep k k =0: Ak k ep k k ; >0: Ak k ep k k k k U k k k gde 0 Ak k ep k k k dk dk k k k. ep k k k dk dk. 8 8
82 8 8 dk dk k k k k k k A k U ep ep 0. k k k k k k 0 k k k k k k A ep
83 cnst ep k k k ep k k A k k ep k k dk dk gde k k k A k dk dk k k cnst k k k cnst ep
84 U Ak k ep k k U k k cs k k sn Ak k ep k k 0 A epk cs sn d dk dkdk. dk 84 84
85 J U A epk r cs d ' A 0 ep epcs d 0 0 k r cs ' d ' AJ k r rędu. Psada perwastk: 405; 550; 8654; - unkcja Bessela perwseg rdaju erweg
86 J n n epn cs teg rędu. J 0 epcs d 0 d rędu. Psada perwastk: 405; 550; 8654; - unkcja Bessela perwseg rdaju n- - unkcja Bessela perwseg rdaju erweg 86 86
87 87 87 r J r k J U k k R R sn sn sn sn. sn sn r r
88 88 88
89 89 89
90 90 90 ; ep 0 k k k k k r k J U r k J U r k BJ r k AJ U 0 r k BJ r k AJ U ep ep k k k r k BJ r k AJ U ep ep 0 cnstu U N n n ep
91 9 9
Optyka Fourierowska. Wykład 4 Soczewka
Optka Frrwska Wkła 4 Scwka Scwka Scwka awra ptcn gęsts matrał w którm prękść awa jst mnjsa nż prękść w pwtr Grbść scwk jst mlwana (mnna) tak ab skać amrną mlację a Scwka cnka Scwka cnka jst scharaktrwana
Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u
Ą ć ć ć ć Ź Ź ź ź Ę Ł Ń Ą ź Ł Ę Ę Ń Ń Ź Ź ć Ę Ę Ś ź ć ć ć ć Ź ź ć ć ć ć ć ć ć ć ć Ź ć ć ć ć ć Ź ć ć Ć ć Ę Ą Ś Ń Ń ź Ń Ź ź ć ć ć Ą Ą ć ź ź ć Ę ć ź Ą ć Ń Ę Ę Ę Ę ć Ą Ę ć ź Ó ć ć Ń Ę Ń Ń ć Ś Ą Ę ć Ś ć Ń
123456 782923456 6 22336 46466 6 6 6 783863658386 6 6 6 6 4!"! 468983#84636434$4636 6 6 6 %&6 '5626 ()68'546 6 6 &6 6 82845469234548*+6 %6 6 6 %6 '56268'546"'844$$6 %6 6 6 %&6 '5626 ()68'546,6 6 6 6 -*386
Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.
Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o
Optyka Fourierowska. Wykład 1 Analiza sygnałów i układów dwuwymiarowych
Optka Forierowska Wkład Analiza sgnałów i kładów dwwmiarowch Literatra K. Gniadek Optka Forierowska K. Gniadek Optczne przetwarzanie inormacji J.W. Goodman Introdction to Forier Optics O. K. Erso Diraction
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Ą ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D
Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV
Audi A4 B6 - sprężyny przód E0 411 105 BA żółty niebieski różowy 3 E0 411 105 BB żółty niebieski różowy różowy 4 E0 411 105 BC żółty zielony różowy 5 E0 411 105 BD żółty zielony różowy różowy 6 E0 411
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
S.A RAPORT ROCZNY Za 2013 rok
O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c
G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Zintegrowany analizator widma. (c) Sergiusz Patela Zintegrowany Analizator Widma 1
Zintegrowan analizator widma (c) Sergiusz Patela 998-003 Zintegrowan Analizator Widma Drakcja Bragga i Ramana-Natha ugięt sinθ B λ o ΛN e Eektwność oddziałwania: η sin η0 Gdzie: η P akust p 0. ijkl (c)
q (s, z) = ( ) (λ T) ρc = q
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E
9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1
O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i
Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,
R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n
Tomasz Grębski. Liczby zespolone
Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Załącznik nr 1 do Wzoru umowy znak sprawy:gcs.dzpi Strona 1 z 11
S z c z e g ó ł o w y o p i s i s z a c o w a n y z a k r e s i l o c i o w y m a t e r i a ł ó w e l e k t r y c z n y c h L p N A Z W A A R T Y K U Ł U O P I S I l o j e d n o s t k a m i a r y C e n
O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z
#$%&"!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$
M NM O *+ 62-3B6 8 -C 6-B7 6 * *+5 2 B9 A: 6:!"#$% '!"#$%' ()* +,-. $/0(1()*$ +,!' + -.+ -/ (* +,!' + - / +,!'0!" $(1 234.56789: $(1 ;. *; ' +,!' 1 $% )# ?@ABCDE!6 9: $(1 FGH IJ!" $/0(1 IJKL
2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE
.. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś
Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć
str. 4 GL 040E str. 4 EK 200A EK 200A str. 7 ER 05TE str. 7 LHR 15 ES LH 22EN str. 5 KS 260EPNS str. 13 HE 501 str. 10 HTE 300 str. 10 HE 901 str.
Zastosowanie maszyn Przygotowanie pod³o a Ciêcie metalu Szlifowanie metalu Szybkie usuwanie pow³ok Szlif wykoñczeniowy Szlif zgrubny Szlif drobny Szlif wykoñczeniowy Przygotowanie do polerowania Polerowanie
ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę
WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.)
WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH (12.10.2018 R.) 100 metrów stylem zmiennym dziewcząt 1 WB X LO 1:25,52 17 2 KK I LO 1:25,77 15 3 MZ II LO 1:28,70 14 4 AP III LO 1:30,81 13
! "#$%&' # ()*+,--,./ 0# ! "#9 :;# F >?DE GHIJKL4MNO J P Q RSTUV WXY 4MNO J ZUV 4M 4B[\]^#4_>4_`a bc 1 J 4M4_ (J4_ S4M K ]^+O J ]^
! "#$%&' # ()*+,--,./ 0#1 23456 78! "#9 :;# ?@ABCDE F >?DEGHIJKL4MNOJP QRSTUV WXY 4MNOJZUV 4M 4B[\]^#4_>4_`a bc 1J 4M4_(J4_S4M K ]^+OJ ]^ #`a bc0 ^ 0 2E J 4_4_ # K 4B4M J# 4 \ 2 4_4_ J# 2E O JY NT 4_
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:
Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost
poszczególnych modeli samochodów marki Opel z dnia 31.01.2013. skrzyni biegów
1 Opel D1JOI AAAA Ampera X30F 150 KM (elektryczny) AT 34.10.21-36.00 benzyna 1398 1,2 27 2 Opel H-B AE11 Agila 1.0 ECOTEC 68 KM MT5 34.10.21-33.00 benzyna 996 4,6 4,7 106 109 3 Opel H-B AF11 Agila 1.2
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 02 02 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f Z a b e z p i e c z e n i e m a s o w e j i m p r e z y s p o r t
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
! " #$% & '! " # ( ) ; 678 )* <=>! 2? *+ 1 (%!" # $ % & '!# & ' ' *+! "#$ $%! $& " $ ' ' ($ $. #$ $ #. $ " # 2 # $ " $ / " $ #. $ $ -.. / -/. $ -.. #.
! " #$% & '! " # ( ) ; 678 )* ! 2? *+ 1 (%!" # $ % & '!# & ' ' *+! "#$ $%! $& " $ ' ' ($ $. #$ $ #. $ " # 2 # $ " $ / " $ #. $ $ -.. / -/. $ -.. #. # $ " $ #. 3. $ $ $ -.. " #$.$ # )#& $ # # # " - $..!"#$%&'
Zanim zapytasz prawnika
2 Zanim zapytasz prawnika 1 Zanim zapytasz prawnika Poradnik dla Klientów Biur Porad Prawnych i Informacji Obywatelskiej Pod redakcją Grzegorza Ilnickiego Fundacja Familijny Poznań Poznań 2012 3 N i n
Projekt silnika bezszczotkowego z magnesami trwałymi
Projekt silnika bezszczotkowego z magnesami trwałymi dr inż. Michał Michna michna@pg.gda.pl 01-10-16 1. Dane znamionowe moc znamionowa P n : 10kW napięcie znamionowe U n : 400V prędkość znamionowa n n
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
M P A P S - 50 X 100
ul. Hauke Bosaka 15, 25-217 Kielce; e-mail: marketing@obreiup.com.pl MP seria Jak zamawiać? M P A P S - 50 X 100 M: Marani A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Średnica x Skok
G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u
Ą Ą Ą Ą Ą Ą Ą Ą Ł Ó Ę Ń Ą Ą Ę Ł Ę Ś Ś Ś Ś Ł Ą Ż Ś Ź Ł Ó Ł Ą Ł Ę Ł Ą Ą Ą Ą Ą Ą Ą ĄĄ Ą Ś Ć Ą Ę Ę Ć Ł Ł Ś Ź Ź Ó ĆŚ Ż Ł Ś Ś Ź Ź Ó Ę Ę Ę Ó Ś Ź Ą Ę Ą Ś Ę Ł Ś Ł Ś Ś Ń Ś Ę Ę Ż Ż Ó Ś Ą Ć Ą Ź Ń Ś Ś Ś Ć Ł Ś
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 4 52 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e p o m i a r ó w i n s t a l a c j i e l e k t r y c
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
Algebra z geometrią 2012/2013
Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce
ż ź ż Ś Ź Ś Ś ń ń Ś ń Ś Ś ż Ś Ś ż ćś ż ż ż Ł ć ć ć Ść ń Ś ż ż Ś ż ń Ź Ś ż ż ć Ś Ś Ś Ś Ś Ś Ś ź ż ń Ę ż ć Ś Ś ć ż Ś Ś ż ż ć Ś Ś ć Ś Ś ćś Ś Ś ń ż ń Ś ż ć ć Ć Ś ń Ź ń ć ć ć Ść ń ń Ś Ś ż ĘĄ Ś ż ć ć Ś ć ń ć
WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego.... (tytuł zadania publicznego) w okresie od... do...
Złąn nr 3 WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) wnn dn publneg... (uł dn publneg) w rese d... d... reślneg w umwe nr... wrej w dnu pmęd... (nw Zleendw)... (nw Zleenbr/(-ów), sedb, nr Krjweg Rejesru
; -1 x 1 spełnia powyższe warunki. Ale
Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
ż ń ęą ą ąą ą ą ń ą ż ń ż ń ęą ą ą ą ą ń ę ę ę ż ń ęą ą ą ą ą ń ą ą ą ą ź ń ż ń ęą ą ą ą ą ń ą ą ą ą ź ń ż ń ęą ą ą ą ą ń ą ą ą ą ź ń o o o o o o o ż ń ęą ą ą ą ź ś ść ż ś ść ń ę ą ą ę ą ą ż ń ęą
S: Magnes na tłoku. Amortyzacja P: pneumatyczna regulowana
Siłowniki zgodne z ISO 15552 seria MK Jak zamawiać? M K A P S 50 x 100 M: Marani K: Zgodne z ISO 15552, tuleja kształtowa (Mickey-mouse) A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Amortyzacja
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Sprężyny naciągowe z drutu o przekroju okrągłym
Sprężyny naciągowe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp
24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
Siłowniki kompaktowe P1J. Siłowniki w obudowach skróconych P1M. Wymiary (mm), Dane eksploatacyjne
Siłowniki kompaktowe P1J Kołnierz, F1 Łapa A + slagl. B + slagl. C + slagl. Końcówka widełkowa ze sworzniem Końcówka oczkowa wahliwa Kołek gwintowany cylindra mm mm mm mm mm mm mm mm 12 25,4 18 38 46,0
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Zestawienie samochodów osobowych Opel zawierające informacje o zużyciu paliwa i emisji CO 2
Zestawienie samochodów osobowych Opel zawierające informacje o zużyciu paliwa i emisji CO 2 Pojazdy pogrupowane według typu paliwa, uszeregowane według wielkości poszczególnych modeli samochodów marki
Politechnika Wrocławska Wydział Elektroniki Instytut Cybernetyki Technicznej
Politechnika Wrocławska Wydział Elektroniki Instytut Cybernetyki Technicznej Systemy mikroprocesorowe w automatyce Prędkościomierz rowerowy w oparciu o MC68HC05J1A Opracował: Grzegorz Pietkiewicz Elektronika,
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
2014-01-10. kierowniczych i samodzielnych.
Podział pracy dokonanie wyboru specjalizacji dla wszystkich pracowników. Stanowisko organizacyjne stanowisko pracy wyznaczone w celu realizacji poszczególnych zadań przedsiębiorstwa. Stanowiska łączone
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O K R E L A N I E S I M I N I O W Y C H P O D C Z A S C H O D U N A P O D S T A W I E S Y G N A W s E M G E u g e n u s z w
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp
Załącznik Nr 1 do Uchwały Nr... Rady Miasta Mysłowice z dnia... 2014r.
Załącznik Nr 1 do Uchwały Nr... Rady Miasta Mysłowice z dnia... 2014r. Id: 6C07650B-F062-48EA-BACD-FBE0A98EFD5B. Projekt Strona 2 z 71 !!"#$%&#! '()&*)+$$#"*&$%&#,# $%&#! -!&%&*&$%&#,. /"#*&#$%&#!0 /"#$$*&$$#"0"
Inżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
Cennik skupu tuszy i tonerów. Ważny od 17 lipca 2017
Cennik skupu tuszy i tonerów. Ważny od 17 lipca 2017 Nazwa symbol tonera oryginał Hewlett Packard Hewlett Packard LJ 5/6P 5MC/5MP/5MV 6MP/6PSE C3903A 0,50 zł Hewlett Packard LJ C3909A 5Si 0,75 zł Hewlett
S: Magnes na tłoku. Amortyzacja. pneumatyczna regulowana
ul. Hauke Bosaka 15, 25-217 Kielce; e-mail: obreiup@obreiup.com.pl Jak zamawiać? M K A P S - 50 X 100 M: Marani A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Średnica x Skok P: Zgodne z
1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S
1TEH Wychowawca: mgr Aleksandra Kozimor 1 8:00-8:45 SK BHP-1/2 201 OE org-1/2 305 OE tpw-1/2 305 KK j.p 214 AM his 114 KA DzP-2/2 214 OW dzi-2/2 114 KA DzP-2/2 214 2 8:55-9:40 KK j.p 210 OE org-1/2 305
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
YRAŻENIA ALGEBRAICZNE
72 15. 15. WYR YRAŻENIA ALGEBRAICZNE WITAMY LITERKI Wyrażenie arytmetyczne to liczby połączone znakami działań, np. 3+27 : 5 lub 459 121+15 3 Wyrażenie algebraiczne to liczby wraz z literami połączone
Przykład 3.1. Projektowanie przekroju zginanego
Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena
Władcy Skandynawii opracował
W Ł~ D C Y S K~ N D Y N~ W I I K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 1 K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 2 Władcy Skandynawii G E N E~ L O G I~ K R Ó L Ó W D~ N O R
FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii
FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka
ż Ę ń Ś ó ź ó ń Ę ó ó ź ó Ń ó ó ż ż ó ż ń ó ć ń ź ó ó ó Ę Ę ó ź ó ó Ł Ł Ą Ś ó ń ó ń ó Ł Ł ó ó ó ń Ś Ń ń ń ó ó Ś ó ć ó Ą Ą ń ć ć ó ż ó ć Ł ó ń ó ó ż ó ó ć ż ż Ą ż ń ó Śó ó ó ó ć ć ć ń ó ć Ś ć ó ó ż ó ó
Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó
Podstawowe definicje
W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj
Modulatory i detektory. Modulacja. Modulacja i detekcja
Modulator i detektor Modulacja Przekształcenie sgnału informacjnego do postaci dogodnej do transmisji w kanale telekomunikacjnm Polega na zmianie, któregoś z parametrów fali nośnej (amplitud, częstotliwości,