Zamiana ułamków na procenty oraz procentów na ułamki
|
|
- Dorota Karpińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko co tu znajdziesz jest wyjaśnione na chłopski rozum z zachowaniem poprawności matematycznej. To jest tylko część opracowania o procentach i promilach. Pełną wersję znajdziesz tutaj: Spis tematów. Pojęcie procentu... 2 Zamiana ułamków zwykłych i dziesiętnych na procenty... 2 Zamiana procentów na ułamki dziesiętne i zwykłe... 5 Wersja z dnia: Procenty strona
2 Temat: Pojęcie procentu. Definicja: Procent inny zapis ułamka zwykłego o mianowniku 00. Procent zapisuje się przy użyciu symbolu %. Zamiana ułamków zwykłych i dziesiętnych na procenty Procent sprawia, że zamiast pisać możesz napisać 7%. Jeśli pod kreską ułamkową jest liczba 00, to możesz ją zamienić na symbol %, a przed tym symbolem napisać liczbę która była nad kreską ułamkową. Innymi słowy: zamiast pisać możesz napisać 23% zamiast pisać możesz napisać 427% zamiast pisać, możesz napisać,8% zamiast pisać, możesz napisać 0,49% Łatwe, prawda? No to teraz spróbuj samodzielnie wykonać poniższe ćwiczenie. Zamień podane ułamki na procenty. a) b) c), d), e) [Odp. a) 79%, b) 324%, c) 5,8%, d) 0,6%, e) 00%.] No dobra, a co będzie, jeśli ułamek nie będzie mieć w mianowniku liczby 00? Da się zamienić na procent? Tak, da się zamienić, ale trzeba go będzie najpierw doprowadzić do mianownika 00 i dopiero potem zamienić go na procent, tak jak to był robione wyżej. Przypuśćmy, że masz ułamek i chcesz go zamienić na procent. Ponieważ nie ma on w mianowniku (pod kreską ułamkową) liczby 00, więc zastanawiasz się, przez ile trzeba pomnożyć liczbę 25 by otrzymać 00. Tą liczbą jest oczywiście 4, więc liczbę nad kreską tj. 8 mnożysz przez 4 i liczbę pod kreską tj. 25 także mnożysz przez = ł = = 32% Wykonując poprawne rozszerzenie danego ułamka, zapisz go za pomocą procentu. a) b) c) [Podpowiedź. Przez ile trzeba pomnożyć liczbę pod kreską, by otrzymać 00? Odp. a) 6%, b) 90%, c) 35%, d) 60%, e) 50%.] d) e) Czasami może zdarzyć się i tak, że dany ułamek pod kreską ułamkową może mieć liczbę większą od 00. Wówczas musisz się zastanowić przez ile trzeba ją podzielić by otrzymać liczbę 00 i przez tyle samo podzielić liczbę która jest w liczniku. Jako przykład niech posłuży ułamek. Aby z liczby 200 otrzymać liczbę 00, musisz ją podzielić przez 2. Zatem liczbę 4 także musisz podzielić przez 2. Masz więc: = ł = 7 00 = 7% Wersja z dnia: Procenty strona 2
3 Inny przykład: = ł = 3,8 00 = 3,8% Wykonując poprawne skracanie danego ułamka, zapisz go za pomocą procentu. a) b) c) d) e) [Podpowiedzi. Przez ile trzeba podzielić liczbę pod kreską, by otrzymać 00? Co się robi z przecinkiem jeśli liczbę trzeba podzielić przez 0? Aby liczbę podzielić przez 5 wystarczy wykonać działanie: 5 = = = 0,2. Odp. a) 4%, b) %, c) 2%, d) 32,9%, e) 0,2%.] W niektórych przypadkach liczby która jest w mianowniku nie da się zamienić na liczbę 00 metodami opisanymi wyżej. Przykładem takiego ułamka jest choćby. Ani rozszerzanie go, ani skracanie nie da pod kreską liczby 00. Można jednak wykonać coś takiego: = 24 8 = = ł ł = = 75% Wykonując poprawne skracanie i rozszerzanie danego ułamka, zapisz go za pomocą procentu. a) b) c) d) [Podpowiedzi: c) Najpierw rozszerz ten ułamek przez 4, a potem skróć go przez 0, e) Najpierw rozszerz ten ułamek przez 25, a potem skróć go przez 20. Odp. a) 40%, b) 25%, c),2%, d) 20%, e),25%.] e) To ćwiczenie już było trochę trudniejsze od poprzednich, zgadza się? Nie masz jednak co się nim przejmować, bo zaraz podam jeden uniwersalny sposób który pozwoli każdy ułamek zamienić na procent bez konieczności zastanawiania się, przez ile trzeba go rozszerzyć lub skrócić. Nim jednak to zrobię, zauważ, że na początku tego tematu pisałem m.in. że: = 23% czyli po zamianie powyższego ułamka zwykłego na dziesiętny, masz taki zapis: 0,23 = 23% Wniosek : Przecinek został przesunięty o 2 miejsca w prawo i został dopisany symbol %. Wniosek 2: Powyższa zamiana ułamka dziesiętnego na procent, jest równoważna wykonaniu działania: 0,23 00% = 23% Zapamiętaj: Aby zamienić ułamek dziesiętny na procent, wystarczy przesunąć w nim przecinek o 2 miejsca w prawo i dopisać symbol %. Zamień podane liczby na procenty wykonując odpowiednie przesunięcie przecinka. a) 0,26 b),47 c) 4 d) 0,(83) e) 0,6 f) 2,0 g) 2,8 h) 0,0008 [Odp. a) 26%, b) 47%, c) 400%, d) 83,(83)%, e) 6%, f) 20%, g) 280%, h) 0,08%.] Wersja z dnia: Procenty strona 3
4 Wniosek 3: Skoro ułamek dziesiętny jest tylko inną postacią ułamka zwykłego, więc przy zamianie ułamków zwykłych na procenty, również można wykonać mnożenie przez 00%. Zapamiętaj: Aby zamienić ułamek zwykły na procent, wystarczy pomnożyć go przez 00%. Przykłady: % = 23% % = 427%, % =,8% 0,49 00% = 0,49% % = 40% % = 25% % =,2% 50 00% = 20% 25 Pisząc to opracowanie zakładam, że umiesz mnożyć ułamek zwykły przez liczbę naturalną (w tym przypadku przez 00) oraz, że pamiętasz, że przy takim mnożeniu można skracać mianownik danego ułamka z liczbą która jest za ułamkiem, czyli w tym przypadku z liczbą 00. Taki sposób zamieniania ułamków na procenty, jest bardzo często wykorzystywany w chemii przy obliczaniu tzw. stężenia procentowego roztworów. Spostrzeżenie: Tą metodą można zamieniać na procenty nawet te ułamki zwykłe, które mają mianownik nie dający się przekształcić za pomocą mnożenia lub dzielenia na liczbę 00. Przykłady: 00 00% = 3 3 % = 33 % 00 00% = 7 7 % = 4 % Zamień podany ułamek na procent, mnożąc go przez 00%. a) b) c) d) e) [Odp. a) 60%, b) 60%, c) %, d) %, e) 62,5%.] W oparciu o to co już wiesz, wyucz się na pamięć, że: 00 = % 4 = 25% = 00% 0 = 0% = 50% 2 = 200% 2 5 = 20% 3 4 = 75% 0 = 000% 3 = 33 % 2 3 = 66 % 3 3 = 00% Wersja z dnia: Procenty strona 4
5 Zamiana procentów na ułamki dziesiętne i zwykłe To o czym będę mówić w tym podtemacie jest czynnością odwrotną do tych omówionych poprzednio. Otóż do tej pory zamienialiśmy ułamki na procenty, a teraz będziemy zamieniać procenty na ułamki. Poprzednio pokazywałem, że: 0,23 = 23% a teraz będę pokazywać, że: 23% = 0,23 Wniosek: Aby zamienić procent na ułamek dziesiętny, wystarczy przesunąć w nim przecinek o 2 miejsca w lewo i skreślić symbol %. Ponieważ powyższe przesuwanie przecinka o 2 miejsca w lewo jest równoważne dzieleniu przez 00, więc poprawny jest również zapis: 23% 00% = 0,23 % ę ą Zamień podane procenty na liczbę. [Podpowiedź. Przesuń przecinek o 2 miejsca w lewo i skreśl symbol %.] a) 26% b),47% c) 4% d) 0,83% e) 0,06% f) 2,0% g) 2,8% h) 0,0008% [Odp. a) 0,26, b) 0,047, c) 0,4, d) 0,0083, e) 0,0006, f) 0,020, g) 0,28 h) 0, ] Skoro ułamek dziesiętny jest tylko inną postacią ułamka zwykłego, więc przy zamianie procentów na ułamki zwykłe, również można wykonać dzielenie przez 00%. Zapamiętaj: Aby zamienić procent na ułamek zwykły, wystarczy podzielić go przez 00 i skreślić symbol %. Jest to równoważne podzieleniu danego procentu przez 00%. Przykłady: 28% 00% = = 4 50 = 7 25 % ę ą 4 % 00% % ę ą = 4 00 = % 00% = = % ę ą Zamień podane procenty na liczbę. a) 47% b) 26% c) 0,9% d) % e) 8 % [Odp. a) 0,47, b) 2,6, c) 0,009, d), e).] Zamień podany procent na ułamek zwykły nieskracalny i wpisz jeden ze znaków: >, <, =. a) 60% b) 30% c) 3 30% d) 70% Wersja z dnia: Procenty strona 5
6 Zadanie: masy ogórków stanowi woda. Jaki to procent? Ponieważ w treści zadania jest użyte sformułowanie jaki to procent, więc rozwiązanie tego zadania polega na zapisaniu podanego ułamka za pomocą symbolu %. Skoro procent to inny zapis ułamka o mianowniku 00, więc dany ułamek rozszerzasz do mianownika 00 (w tym przypadku liczbę która jest nad kreską ułamkową mnożysz przez 4 i liczbę pod kreską również mnożysz przez 4). Masz więc: Odp.: Woda w ogórkach stanowi 96% ich masy = = 96% Ponieważ zamiana liczby na procenty odbywa się poprzez pomnożenie jej przez 00%, więc powyższe zadanie można też było rozwiązać w taki sposób: 00% = 96%. W myślach skróciłem liczbę 25 z liczbą 00 przez 25. W stu gramach masła jest osiemdziesiąt jeden gramów tłuszczu. Ile procent masy tego masła stanowi tłuszcz? [Podpowiedź. Zapisz za pomocą ułamka zwykłego jaką częścią tego masła jest tłuszcz, a potem zamień napisany ułamek na procenty. Odp.: 8%.] W stu gramach margaryny jest sześćdziesiąt osiem gramów tłuszczu. Ile procent masy tej margaryny stanowi tłuszcz? [Podpowiedź. Zapisz za pomocą ułamka zwykłego jaką częścią masy tej margaryny jest masa tłuszczu, a potem zamień napisany ułamek na procenty. Odp.: 68%.] Margaryna niskotłuszczowa o masie 450 g zawiera tylko 90 g tłuszczu. Ile procent masy tej margaryny stanowi tłuszcz? [Podpowiedź. Zapisz za pomocą ułamka zwykłego jaką częścią masy tej margaryny jest masa tłuszczu, a potem zamień napisany ułamek na procenty. Odp.: 68%.] Wersja z dnia: Procenty strona 6
Dodawanie ułamków i liczb mieszanych o różnych mianownikach
Dodawanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z dodawaniem ułamków
Bardziej szczegółowoOdejmowanie ułamków i liczb mieszanych o różnych mianownikach
Przedmowa Odejmowanie ułamków i liczb mieszanych o różnych mianownikach To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z odejmowaniem ułamków
Bardziej szczegółowoProcenty - powtórzenie
Procent to umowny zapis wartości, która jest ułamkiem dziesiętnym lub ułamkiem zwykłym o mianowniku 100. 25% to inaczej: lub 0,25. 100% to inaczej : lub 1. Zamiana ułamków na procenty Aby zamienić ułamek
Bardziej szczegółowoProcenty i promile. 1. Pojęcie procentu... 3 Zamiana ułamków zwykłych i dziesiętnych na procenty... 3
Procenty i promile Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach, a pozostała część jest przeznaczona
Bardziej szczegółowo% POWTÓRZENIE. 1) Procent jako część całości. 1% to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub
ZSO nr w Tychach http://www.lo.tychy.pl % POWTÓRZENIE ) Procent jako część całości. % to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub 00 dziesiętne. Dla przykładu:
Bardziej szczegółowoDZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Bardziej szczegółowoUłamki zwykłe. mgr Janusz Trzepizur
Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą
Bardziej szczegółowoPomniejszanie liczby o zadany procent
Pomniejszanie liczby o zadany procent Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach, a pozostała część
Bardziej szczegółowoObliczanie jakim procentem jednej liczby jest druga liczba
Obliczanie jakim procentem jednej liczby jest druga liczba Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach,
Bardziej szczegółowoTemat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Bardziej szczegółowoPowtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Bardziej szczegółowoPRZEKSZTAŁCANIE WZORÓW!
PRZEKSZTAŁCANIE WZORÓW! Przekształcanie wzorów sprawia na początku kłopoty. Wielu uczniów omija zadania gdzie trzeba to zrobić, albo uczy się niepotrzebnie na pamięć tych samych wzorów w innych postaciach.
Bardziej szczegółowoRozszerzanie i skracanie ułamków dziesiętnych
Rozszerzanie i skracanie ułamków dziesiętnych 1. Cele lekcji a) Wiadomości 1. Uczeń zna sposób rozszerzania ułamków dziesiętnych. 2. Uczeń zna sposób skracania ułamków dziesiętnych. b) Umiejętności 1.
Bardziej szczegółowoWzory skróconego mnożenia
Wzory skróconego mnożenia Przedmowa Opracowanie to jest napisane z myślą o gimnazjalistach którzy całkowicie nie rozumieją wzorów skróconego mnożenia i chcą je perfekcyjnie umieć oraz rozumieć. Swoje uwagi
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowoLICZBY - Podział liczb
1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite
Bardziej szczegółowoMATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm
MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria
Bardziej szczegółowoZbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Zadanie domowe Zadanie domowe Liczby naturalne (Sztuka nauczania matematyki w szkole podstawowej i gimnazjum,
Bardziej szczegółowoArytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Zadanie domowe 0 = 4 4 + 4 4, 2 = 4: 4 + 4: 4, 3 = 4 4: 4 4, 4 = 4 4 : 4 + 4, 6 = 4 + (4 + 4): 4, 7 =
Bardziej szczegółowoLiczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Bardziej szczegółowoScenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości ułamki zwykłe, dodawanie i odejmowanie ułamków. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie
Bardziej szczegółowoPLAN KIERUNKOWY. Liczba godzin: 180
Klasa V Matematyka Liczba godzin: 180 PLAN KIERUNKOWY Wstępne Wykonuje działania pamięciowo i pisemnie w zbiorze liczb naturalnych Zna i stosuje reguły kolejności wykonywania działań Posługuje się ułamkami
Bardziej szczegółowoSkrypt 1. Liczby wymierne dodatnie. Liczby naturalne, całkowite i wymierne - przypomnienie wiadomości
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 1 Liczby wymierne dodatnie Liczby naturalne,
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania
Bardziej szczegółowoUsuwanie niewymierności z mianownika ułamka
Usuwanie niewymierności z mianownika ułamka Przedmowa To opracowanie jest napisane z myślą o uczniach gimnazjum którzy nie wiedzą w jaki sposób oraz po co się usuwa niewymierność z mianownika ułamka Starałem
Bardziej szczegółowosą wielomianami nie jest wielomianem zerowym. Rozwiązując załoŝenie otrzymujemy dziedzinę wyraŝenia wymiernego.
6.. WYRAśENIE WYMIERNE W ( ) WyraŜenie wymierne wyraŝa się wzorem y, gdzie W () i P() są wielomianami P( ) i P () nie jest wielomianem zerowym. Dziedziną wyraŝenia wymiernego jest zbiór D { : P( ) 0} Przykład
Bardziej szczegółowoWYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017
WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017 WYMAGANIA EDUKACYJNE I OKRES II OKRES I. LICZBY NATURALNE rozumieć dziesiątkowy
Bardziej szczegółowoŚrodki dydaktyczne Zestaw zadań/pytań z działu Mnożenie i dzielenie ułamków zwykłych. Każde pytanie znajduje się na osobnej karteczce.
Scenariusz lekcji I. Cele lekcji ) Wiadomości Uczeń zna: a) algorytm mnożenia ułamków zwykłych i liczb mieszanych przez liczby naturalne, b) sposób obliczania ułamka z liczby, c) algorytm mnożenia liczb
Bardziej szczegółowoUŁAMKI ZWYKŁE I DZIESIĘTNE
137 - Ułamki zwykłe i dziesiętne - kółko matematyczne dla klasy VI Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_137 Osoby Uczestnicy Certificates Fora dyskusyjne Głosowania Quizy Zadania
Bardziej szczegółowoSprowadzanie ułamków do wspólnego mianownika(
STOPIEŃ BARDZO WYMAGANIA NA OCENY ŚRÓDROCZNE: LICZBY NATURALNE - POWTÓRZENIE WIADOMOŚCI I OSIĄGNIĘCIA Zapisywanie i odczytywanie liczb w dziesiątkowym systemie pozycyjnym. Obliczanie wartości wyrażeń arytmetycznych
Bardziej szczegółowoSTANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
Bardziej szczegółowoMatematyka. Klasa IV
Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Bardziej szczegółowoJak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.
Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Bardziej szczegółowoLista 1 liczby rzeczywiste.
Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki
Bardziej szczegółowoZAŁĄCZNIK 1 Szczegółowe wymagania edukacyjne na poszczególne oceny do nowej podstawy programowej dla kl.4
ZAŁĄCZNIK 1 Szczegółowe wymagania edukacyjne na poszczególne oceny do nowej podstawy programowej dla kl.4 POZIOM KONIECZNY K Zna pojęcie składnika i sumy, odjemnej, odjemnika i różnicy Pamięciowo dodaje
Bardziej szczegółowoKRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5
KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE Przedmiot: matematyka Klasa: 5 OCENA CELUJĄCA Rozwiązuje nietypowe zadania tekstowe wielodziałaniowe. Proponuje własne metody szybkiego liczenia. Rozwiązuje
Bardziej szczegółowoKRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
Bardziej szczegółowo17. Naprzemienne odejmowanie
17. Naprzemienne odejmowanie W starej chińskiej księdze Dziewięć Działów Arytmetyki znajduje się przepis na skracanie ułamków, który w skrócie przytoczymy tak: Chcesz skrócić ułamek Najpierw zobacz, czy
Bardziej szczegółowoKRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,
Bardziej szczegółowoPRZELICZANIE JEDNOSTEK MIAR
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Bardziej szczegółowoWYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń:
WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR I. Liczby naturalne i ułamki - zna nazwy argumentów działań zna kolejność wykonywania działań zna algorytmy czterech działań pisemnych potrafi pamięciowo
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Bardziej szczegółowoKRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoKARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6
KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 Wiesława Janista, Elżbieta Mrożek, Marta Szymańska W tym roku szkolnym kontynuujemy cykl materiałów przeznaczonych dla słabych uczniów. Zadania układają: Elżbieta
Bardziej szczegółowoUŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ
TEST SPRAWDZAJĄCY UMIEJĘTNOŚCI Z MATEMATYKI W KLASIE V UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ program nauczania - Od Pitagorasa do Euklidesa test: sprawdzający nieformalny
Bardziej szczegółowoPOMIAR DYDAKTYCZNY Z MATEMATYKI
POMIAR DYDAKTYCZNY Z MATEMATYKI DZIAŁANIA NA UŁAMKACH ZWYKŁYCH KLASA VI OPRACOWAŁ NAUCZYCIEL MATEMATYKI AGNIESZKA SZCZUCHNIAK CEL OGÓLNY: Umiejętność wykonywania działań na ułamkach zwykłych CELE OPERACYJNE:
Bardziej szczegółowoWymagania programowe na poszczególne stopnie szkolne klasa VI
Wymagania programowe na poszczególne stopnie szkolne klasa VI Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowoWymagania programowe na poszczególne stopnie szkolne klasa VI
Wymagania programowe na poszczególne stopnie szkolne klasa VI 6 5 4 3 2 LICZBY NATURALNE Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe
ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,
Bardziej szczegółowoSemestr Pierwszy Liczby i działania
MATEMATYKA KL. I 1 Semestr Pierwszy Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej podać odwrotność liczby porównać
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
Bardziej szczegółowoKRYTERIA OCENIANIA KLASA IV KLASA V KLASA VI
KRYTERIA OCENIANIA II ETAP EDUKACYJNY MATEMATYKA KLASA IV KLASA V KLASA VI DOPUSZCZAJĄCY odejmować liczby w zakresie 100 z przekroczeniem progu dziesiętnego znać kolejność wykonywania działań, gdy nie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM
WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 6
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 6 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i prowadzi
Bardziej szczegółowoDopuszczający. Opracowanie: mgr Michał Wolak 2
Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na
Bardziej szczegółowoKryteria ocen z matematyki w klasie IV. na ocenę dopuszczającą: na ocenę dostateczną: Uczeń musi umieć:
Kryteria ocen z matematyki w klasie IV Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiętnego, znać kolejność wykonywania działań, gdy nie występuję
Bardziej szczegółowoDOSTOSOWANIE WYMAGAŃ Z MATEMATYKI KLASA VII DO INDYWIDUALNYCH POTRZEB UCZNIA
DOSTOSOWANIE WYMAGAŃ Z MATEMATYKI KLASA VII DO INDYWIDUALNYCH POTRZEB UCZNIA Opinia PPP.4223.418.2015 Dostosowanie w zakresie poziomu wymagań - unikanie odpytywania głośnego czytania na forum klasy (zwracanie
Bardziej szczegółowoMatematyka. Repetytorium szóstoklasisty
Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA
Bardziej szczegółowoKatalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas
Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas OCENA DOPUSZCZAJĄCA (wymagania na ocenę dopuszczającą są równoważne z minimum programowe dla klasy VI)
Bardziej szczegółowoWymagania programowe matematyka kl. VI. Okres I. Na dopuszczający: Uczeń zna:
Wymagania programowe matematyka kl. VI Okres I Na dopuszczający: nazwy działań; algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000, ; kolejność wykonywania działań; algorytmy czterech
Bardziej szczegółowoKryteria oceniania wiadomości i umiejętności matematycznych ucznia klasy VI
Kryteria oceniania wiadomości i umiejętności matematycznych ucznia klasy VI Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań koniecznych na ocenę dopuszczającą. Wykazuje rażący brak wiadomości
Bardziej szczegółowoGIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej
Bardziej szczegółowoKryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08
Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE WŁASNOŚCI LICZB NATURALNYCH KONIECZNE ocena dopuszczająca rozumie dziesiątkowy system pozycyjny umie zapisywać i odczytywać liczby cyframi i słownie
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI klasa 6 rok szkolny 2017/2018
I PÓŁROCZE Uczeń: LICZBY NATURALNE I UŁAMKI Zna nazwy działań. Zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. Zna kolejność wykonywania działań. Zaznacza i odczytuje na osi
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 PODSTAWOWE PONADPODSTAWOWE LICZBY I DZAŁANIA porównywać liczby porządkować liczby w kolejności od najmniejszej do największej lub odwrotnie przedstawiać liczby
Bardziej szczegółowoĆwiczenia z ułamkami
Ćwiczenia z ułamkami Wstęp Ułamki występują w sytuacjach życia codziennego. Jeżeli na przykład chcemy podzielić między kilka osób tabliczkę czekolady, to każda osoba dostanie pewną jej część. Te części
Bardziej szczegółowoWymagania edukacyjne z matematyki do klasy czwartej rok szkolny 2018/2019
Wymagania edukacyjne z matematyki do klasy czwartej rok szkolny 2018/2019 DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY zna pojęcie składnika i sumy zna pojęcie odjemnej, odjemnika i różnicy rozumie
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci
Bardziej szczegółowo( Wynik podaj w postaci ułamka nieskracalnego.
Przykładowe zadania przygotowujące do egzaminu rocznego z matematyki - klasa Część I Zad. Oblicz: 8 a) : 5 5 5 5 c) : 6,5,8 9 : 0,6,5, : 0, b) d) f) 9 : :, 5 0 5 5 0,6 6 : 0, 5 0, 0,0 5 7 :,5 6 0, 5 0,
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6
Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6 Opis osiągnięć Liczby naturalne Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Bardziej szczegółowoI. LICZBY NATURALNE I UŁAMKI
Wymagania na poszczególne oceny z matematyki Klasa VI I. LICZBY NATURALNE I UŁAMKI 1. Ocenę dopuszczającą otrzymuje uczeń, który: zna nazwy działań zna algorytm mnożenia i dzielenia ułamków dziesiętnych
Bardziej szczegółowoA) 0,84; B) 8,4; C) 0,084; D) 0,0084; jest równa: ; C) 1; D) 0;
MATEMATYKA kl. VI Liczby wymierne Wersja A 1. Wynikiem dodawania ułamków i 4 jest: A) 7 ; B) 1 ; C) 1 1 ; D) 6 7 ;. Liczbę 0,1 można zapisać w postaci ułamka: A) 1,; B). Wynikiem mnożenia 0,7 0,1 jest:
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,
Bardziej szczegółowoProgram nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej.
ROZKŁAD MATERIAŁU DLA KLASY V SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi
Bardziej szczegółowoSzkoła Podstawowa nr 28 Wymagania edukacyjne z matematyki do klasy czwartej rok szkolny 2017/2018
1 Szkoła Podstawowa nr 28 Wymagania edukacyjne z matematyki do klasy czwartej rok szkolny 2017/2018 DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY zna pojęcie składnika i sumy zna pojęcie odjemnej,
Bardziej szczegółowoWymagania edukacyjne z matematyki do klasy czwartej
Wymagania edukacyjne z matematyki do klasy czwartej DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY zna pojęcie składnika i sumy zna pojęcie odjemnej, odjemnika i różnicy rozumie prawo przemienności
Bardziej szczegółowoWymagania edukacyjne z matematyki na poszczególne oceny do programu Matematyka z plusem klasa czwarta
Wymagania edukacyjne z matematyki na poszczególne oceny do programu Matematyka z plusem klasa czwarta Na ocenę dopuszczającą uczeń : zna pojęcie składnika i sumy zna pojęcie odjemnej, odjemnika i różnicy
Bardziej szczegółowoOdwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:
Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
Bardziej szczegółowoSkrypt 7. Równania. 1. Zapisywanie związków między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Równania 1. Zapisywanie związków między
Bardziej szczegółowoKryteria ocen z matematyki
Klasa I DZIAŁ: Liczby i działania Kryteria ocen z matematyki obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki zwykłe
Bardziej szczegółowoWymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 6.
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 6. Dział programu: Liczby naturalne Wykonuje proste obliczenia czasowe Wymienia jednostki
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI w klasie 6 w roku szkolnym 2012/2013. Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI w klasie 6 w roku szkolnym 2012/2013 Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące
Bardziej szczegółowoWymagania edukacyjne z matematyki. dla uczniów klasy VI SP. na poszczególne oceny. śródroczne i roczne
Wymagania edukacyjne z matematyki dla uczniów klasy VI SP na poszczególne oceny śródroczne i roczne DOPUSZCZAJĄCA ocena SEMESTR I SEMESTR II Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI O C E N A W I A D O M O Ś C I I U M I E J Ę T N O Ś C I LICZBY NATURALNE I UŁAMKI nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowo