Podstawy Rentgenowskiej Tomografii Komputerowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Rentgenowskiej Tomografii Komputerowej"

Transkrypt

1 Rentgenowska Tomografia Komputerowa Rentgenowska Tomografia Komputerowa (ang. Computed Tomography, CT), nazywana w żargonie medycznym po prostu tomografią, była historycznie pierwszą metodą umożliwiającą uzyskanie obrazów wybranych warstw pacjenta. Poprzedni rozdział zakończyliśmy pytaniem jak aparatura medyczna może zrealizować Transformatę Radona. Okazuje się, że przy pomocy odpowiednio skolimowanej wiązki promieniowania Rentgenowskiego oraz ruchów lampy rentgenowskiej i detektorów, procesy fizyczne zachodzące w trakcie transmisji promieniowania X przez pacjenta automatycznie prowadzą do wyznaczania Transformaty Radona. Spis treści 1 Podstawy Rentgenowskiej Tomografii Komputerowej 1.1 Metoda algebraiczna rekonstrukcji obrazów 1.2 Metody Iteracyjne 2 Budowa i zasada działania Tomografu Rentgenowskiego 2.1 Lampy Rentgenowskie Stosowane w CT 2.2 Detektory promieniowania X stosowane w CT 3 Wizualizacja zrekonstruowanego obrazu. 4 Dodatkowe Rozwiązania 4.1 Tomografia Helikalna (Spiralna) 4.2 HR CT 5 Parametry Akwizycji Podstawy Rentgenowskiej Tomografii Komputerowej Schemat układu pomiarowego, fizycznie realizującego Transformatę Radona. Lampa

2 Rentgenowska emituje wiązkę promieniowania X, przebiegającą przez w odległości t od środka układu współrzędnych. Wiązka ta tworzy kąt φ z osią X. Po dokonaniu pojedynczego pomiaru (skanu) lampa RTG wraz z detektorem przesuwa się wzdłuż do osi T, dokonując kolejnych pomiarów. Po przeskanowaniu obiektu wzdłuż danego kierunku, lampa RTG i detektor obracają się o pewien kąt, a następnie ponownie wykonują ruchy translacyjne. Niech badany obiekt charakteryzuje się pewnym rozkładem liniowego współczynnika osłabienia promieniowania X, który jest niezerowy w obrębie obiektu i równy 0 wszędzie poza nim. Obiekt opisany jest we współrzędnych kartezjańskich X-Y, zaś pozycja lampy Rentgenowskiej oraz detektora w obróconym układzie współrzędnych T-S. Związki pomiędzy tymi układami są następujące: Przypomnimy teraz prawo osłabienia promieniowania Rentgenowskiego przy przejściu przez ośrodek charakteryzujący się niejednorodnym linowym współczynnikiem osłabienia promieniowania X. Załóżmy, iż mamy do czynienia, ze skolimowaną wiązką promieniowania (tzw. pencil beam), która biegnie wzdłuż osi X. Niech obiekt również rozciąga się również tylko wzdłuż tej osi. Wtedy natężenie promieniowania opuszczającego obiekt będzie wynosić: W diagnostyce medycznej chcemy zobrazować jednak wybrane warstwy pacjenta, czyli obiekty dwuwymiarowe. Jeśli obiekt opisany jest w kartezjańskim układzie współrzędnych, to liniowy współczynnik osłabienia promieniowania Rentgenowskiego będzie zależał zarówno od współrzędnej X jak i Y. Utrudni to znacznie rekonstrukcję obrazu. Tymczasem aparat matematyczny wprowadzony w poprzednim rozdziale (parametryzacja prostej w biegunowym układzie współrzędnych, obrót układu współrzędnych), idealnie pasuje to rozważanego problemu. Przyjmijmy teraz iż dokonujemy badania obiektu dwuwymiarowego. Aparatura pomiarowa składa się z lampy Rentgenowskiej i pojedynczego detektora. Lampa Rentgenowska emituje skolimowaną wiązkę promieniowania X. Wiązka ta penetruje obiekt i trafia do detektora. Układ zaprezentowano na rys. 1. Proszę zauważyć, iż wiązka promieniowania biegnąca od lampy RTG do detektora tworzy linię prostą. Można również zaobserwować pewne podobieństwa pomiędzy rys. 1 a rys. [1]. Jak się okaże, nie jest to tylko podobieństwo graficzne. Układ zarejestrowany na rys. 1 realizuje Transformatę Radona, co za chwile wykażemy. Przebieg wiązki promieniowania, która łączy lampę RTG z detektorem można opisać za

3 pomocą parametrów (odległość prostej od początku układu współrzędnych) i kąta φ, jaki tworzy normalna do prostej względem osi X (patrz rozdział Parametryzacja Prostej). Wynik pojedynczego pomiaru, dla ustalonego kąta ustawienia lampy i detektora względem osi X, oraz jej przesunięcia względem początku układu współrzędnych będziemy nazywać skanem i jest on równy: wprowadzają oznaczenie: otrzymujemy zależność: W tym miejscu możemy zauważyć korzyść z rozważania problemu w układzie T-S związanego z lampą RTG i detektorem, a nie pacjentem w tym układzie współrzędnych dokonujemy całkowania wzdłuż prostej równoległej do osi S, a zatem całkujemy funkcję jednowymiarową. Przekształcając powyższe równanie dostajemy: Co jest niczym innym jak Transformatą Radona badanego obiektu. Zbiór jednowymiarowych pomiarów (skanów) dokonanych dla różnych pozycji lampy ale tego samego kąta nazywamy rzutem lub projekcja (ang. projection) i oznaczymy. Projekcja jest tożsama z transformatą Radona obiektu wykonaną dla określonego kąta. Lampa Rentgenowska emitująca skolimowaną wiązkę promieniowania X i detektor przeprowadza fizyczną realizację transformaty Radona. Otrzymujemy serię pomiarów, na podstawie których możemy zrekonstruować obraz obiektu, posługując się np. odwrotną Transformatą Radona. Jest to jednak sposób nieefektywny numerycznie, dlatego zostały opracowane inne metody rekonstrukcji obrazu, cały czas jednak opierające się na pomiarach zebranych w wyżej opisany sposób. W dalszej części materiałów opiszemy jedną z tych metod. Metoda algebraiczna rekonstrukcji obrazów Przeprowadźmy dyskretyzację równania Equation 7 w następujący sposób: Dzielimy obiekt na x kwadratowych obszarów, gdzie = 256, = 512 = 1024, w wyniku czego obliczanie funkcji odbywa się dla dyskretnego zbioru wartości. Lampa i detektor obracają się o kąt i przesuwają o o. Skan dokonany dla zadanego - tego kąta oraz -tego przesunięcia oznaczymy: wykonaną dla -tego kąta.. Z kolei projekcję Przy podziale obiektu na piksele trzeba uwzględnić poprawkę związaną z tym, iż promień skolimowanej wiązki emitowany przez RTG, przechodząc przez piksele pod różnymi kątami (odpowiadającymi kolejnym projekcjom i kolejnym położeniu lampy), pokrywa różne ich

4 powierzchnie. Poprawkę tę można wyliczyć w następujący sposób: gdzie: pole powierzchni promienia rentgenowskiego dla zadanego skanu i przesunięcia lampy w obrębie przyjętego, najmniejszego elementu obiektu, pole powierzchni elementu o współrzędnych. Przejdźmy teraz do opisu obiektu w układzie współrzędnych i rozważmy projekcję dla pewnego zadanego -tego kąta,. Dyskretna postać równania Equation 7, odpowiadająca jednemu skanowi, będzie następująca: Musimy jednak wprowadzić poprawkę na bieg promienia przez poszczególne piksele. W ogólności skolimowana wiązka rentgenowska może przebiegać przez więcej niż pikseli. Założymy, iż promień może przebiegać przez cały obiekt, czyli n=nxn pikseli: W powyższym równaniu, odpowiadającym pojedynczemu skanowi, potrzebujemy zadanego kąta wykonujemy jednak N skanów, tworzących jedną projekcję:. Dla Pojedyncza projekcja wymaga już wag. Wykonujemy ponadto projekcji: [Error parsing LaTeX formula. Error 1: ] a zatem ostatecznie potrzebujemy wag. Dla najniższej stosowanej w Tomografii liczby pikseli, przechowanie samych wag, wymagałoby bajtów pamięci, tj. 32 GB. Ponadto rozwiązanie układu równań, w którym macierz wag wypełniona byłaby bardzo często zerami prowadzi do niestabilności numerycznych. Kolejną wadą takiego podejścia jest możliwość dokonania rekonstrukcji dopiero po zakończeniu wszystkich pomiarów.

5 Metody Iteracyjne Idea metod iteracyjnych polega na wstępnym założeniu pewnej postaci funkcji (np. może to być średni pacjent lub też można założyć obiekt jednorodny), a następnie symulowaniu procesu skanowania i porównywaniu wyniku z symulacji z rzeczywistymi wynikami pomiaru. Na podstawie różnicy wyników otrzymanych z tych dwóch źródeł oblicza się poprawkę do rozkładu początkowego. Wprowadźmy następujące oznaczenia, pomijając dla uproszczenia notacji dyskretyzację równań: rzeczywisty rozkład liniowego współczynnika osłabienia promieniowania X, wyliczony w iteracji rozkład liniowego współczynnika osłabienia promieniowania X, zmierzona wartość skanu wyliczona w -tej iteracji wartość skanu. Błąd pomiędzy rzeczywistą a wyliczoną na drodze iteracji wartości wszystkich skanów wynosi: i oczekujemy, że wraz z dokonywaniem kolejnych poprawek dla warunku minimalizującego funkcję błędu dostajemy: będzie dążył do zera. Z Po przekształceniu powyższego wzoru dostajemy: Problem kiedy dokonać aktualizacji wartości. Rozwiązanie dwa podejścia: 1. Simultaneous Iterative Reconstruction Technique SIRT. W podejściu SIRT, po wyliczeniu korekty dla danego piksela natychmiast uaktualniana jest jego wartość, tak że wyliczane kolejne piskele, nawet dla tej samej projekcji, korzystają już z wartości zaktualizowanej. 2. Algebraic Reconstruction Technique ART. W tym podejściu najpierw wyliczane są wszystkie poprawki dla danej projekcji. Ponieważ każda projekcja składa się z wielu skanów, dla zadanego piksela można otrzymać wiele poprawek. Z tych poprawek obliczana jest średnia korekta, o którą poprawia się zdany piksel. Istnieje jeszcze wiele innych podejść iteracyjnych. Stosuje się również inne podejścia dla wag, np. jeśli promień przechodzi przez środek piksela jego waga wynosi 1, inaczej wynosi 0. Wtedy suma wag kwadratów w mianowniku jest równa liczbie pikseli, przez środek których przechodzi wiązka. Współczynnik taki oznaczmy przez.

6 Przykład. Przykład ten pochodzi z podręcznika Obrazowanie Biomedyczne pod redakcją L. Chmielewskiego, J. L. Kulikowskiego i A. Nowakowskiego. Niech obiekt zostanie podzielony na dwa 4 piksele. Rozkład współczynnika osłabienia promieniowania X jest następujący: Będziemy dokonywać projekcji dla kąta stopni i stopni. Dostajemy następujące wartości skanów: dla kąta : 3, 7, dla kąta : 4, 6, W zerowym kroku zakładamy jednorodny obiekt, o liniowym współczynniku osłabienia promieniowania równym średniej z wartości z którejś projekcji. Dla obydwu projekcji średnia ta wynosi 2.5, a zatem rozkład liniowego współczynnika osłabienia promieniowania X jest zatem równy: Nowe wartości projekcji wynoszą: Będziemy dokonywać projekcji dla kąta stopni. Dostajemy następujące wartości skanów: stopni i dla kąta 5, 5, dla kąta 5, 5, Dokonujemy teraz korekty: co daje następujący rozkład liniowego współczynnika osłabienia promieniowania X:

7 Wykonamy kolejną korektę tym razem korzystając z wartości rzeczywistych projekcji dla kąta 180 stopni: co daje następujący rozkład liniowego współczynnika osłabienia promieniowania X, zgodny z rozkładem tego parametru w badanym obiekcie: Budowa i zasada działania Tomografu Rentgenowskiego Zasada działania skanera CT I generacji. Skaner składał się z pojedynczego detektora i lampy rentgenowskiej emitującej skoligowaną wiązkę promienieniowania X. Lampa i detektor wykonywały ruchu translacyjne i rotacyjne. (Rysunek pochodzi ze strony [2] i został udostępnionego przez dr Jacka Rumińskiego, za co autor niniejszych materiałów serdecznie dziękuje).

8 Zasada działania skanera CT II generacji. W porównaniu z tomografem I generacji zwiększono do kilku liczbę detektorów, co umożliwiło zmniejszenie ruchów translacyjnych lampy. (Rysunek pochodzi ze strony [2] i został udostępnionego przez dr Jacka Rumińskiego, za co autor niniejszych materiałów serdecznie dziękuje). Zasada działania skanera CT III generacji. W tej generacji Tomografów wyeliminowano całkowicie ruch translacyjny. Detektory (w liczbie kilkuset) zostały umieszczone na łuku pierścienia, obracającego się razem z lampą dookoła pacjenta. (Rysunek pochodzi ze strony [2] i został udostępnionego przez dr Jacka Rumińskiego, za co autor niniejszych materiałów serdecznie dziękuje).

9 Zasada działania skanera CT IV generacji. W tej generacji skanerów, detektory umieszczone są na stałe na pierścieniu dookoła pacjenta. Ruch obrotowy wykonuje tylko lampa RTG.(Rysunek pochodzi ze strony [2] i został udostępnionego przez dr Jacka Rumińskiego, za co autor niniejszych materiałów serdecznie dziękuje). Na rysunku zaprezentowano współczesny tomograf rentgenowski. Zdjęcie pochodzi ze stron Wikipedii.

10 Budowa wewnętrzna współczesnego skanera trzeciej generacji. Znaczenie symboli: T lampa RTG, X wachlarzowa wiązka promieni X, D matryca detektorów.zdjęcie pochodzi ze stron Wikipedii. W rozdziale [[2]] dowiedzieliśmy się, iż uzyskanie obrazu wybranego przekroju pacjenta wymaga przeprowadzenia serii naświetleń badanego z różnych kierunków. Wiąże się to oczywiście z ruchem lampy rentgenowskiej i detektorów dookoła pacjenta. W pierwszych Tomografach CT elementy te wykonywały ruchy translacyjne i rotacyjne, opisane w poprzednim rozdziale. Niestety, lampa Rentgenowska jest urządzeniem ciężkim, które ponadto musi być chłodzone za pomocą odpowiedniej cieczy (np. wody lub oleju). Tego rodzaju układ pomiarowy nie może się szybko przesuwać, gdyż ciężka lampa ma pewną bezwładność, co utrudnia jest rozpędzenie i zatrzymania. W efekcie, pierwsze badania diagnostyczne trwały niezmiernie długo, zaś sam sprzęt szybko się zużywał. W kolejnych latach opracowywano nowe rozwiązania, prowadzące do minimalizacji liczby ruchów, takie jak np. zwiększenie ilości detektorów. Rozwiązania te nazwano generacjami Tomografów Rentgenowskich. Do chwili obecnej opracowano IV generacje tomografów, które zaprezentowano na rysunkach: rys. 2, rys. 3, rys. 4, rys. 5. Obecnie w użytku znajdują się tomografy III i IV generacji. Zdjęcie współczesnego tomografu zaprezentowano na rys. 6, natomiast wnętrze tomografu III generacji na rys. 7. W pierwszych tomografach RTG stosowano detektory ksenonowe, które szybko zostały wyparte przez detektory scyntylacyjne (które zostaną omówione w rozdziale dotyczący metody SPECT i PET). Te z kolei są obecnie zastępowane przez detektory półprzewodnikowe. Współczesny zestaw do Rentgenowskiej Tomografii Komputerowej (III i IV generacji) składa się z następujących elementów: gantry główny element urządzenia, w środku którego znajdują się mocowania detektorów i pierścienia, po którym porusza się lampa RTG; na obudowie gantry znajduje się także mały pulpit sterowniczy, który np. umożliwia pochylenie całego urządzenia względem stołu z leżącym pacjentem; wnętrze gantry zaprezentowano na rys. 7, stół, na którym układany jest pacjent,

11 konsoli operatora, komputera i monitora, znajdujących się w oddzielnym pomieszczeniu zabezpieczonym przed promieniowaniem jonizującym, generator wysokiego napięcia dla lampy RTG. Lampy Rentgenowskie Stosowane w CT Lampa rentgenowska, ma zazwyczaj wirującą anodę. W porównani udo klasycznego aparatu RTG kolimatory są usytuowane nie tylko w pobliżu lampy rentgenowskiej, lecz także przy każdym z detektorów. Kolimatory wykonane są z ołowiu i kształtują wiązkę promieniowania i minimalizują promieniowanie rozpraszane. Od wysokości kolimatorów zależy grubość skanowanej warstwy (najczęściej od 0.5 do 10 mm). Lampy rentgenowskie stosowane w tomografach komputerowych pracują w warunkach silnego obciążenia mechanicznego. Aby uzyskać jak najbardziej stabilną wiązkę promieniowania stosuje się np. podwójne łożyskowanie wirującej anody. Stabilność wiązki promieniowania zależy również w dużej mierze nie od konstrukcji samej lampy, lecz od stabilności generatora wysokiego napięcia (różnica potencjałów między anodą a katodą) oraz prądu przepływającego przez żarnik katody. Typowe parametry lampy RTG stosowanej w CT to napięcie przyspieszające około 160 kv (zwykle jednak w granicy kv), prąd anodowy o wartości od 30 do 500 ma. Detektory promieniowania X stosowane w CT W pierwszych skanerach CT, w których stosowano pojedyncze detektory promieniowania jonizującego, do rejestracji promieniowania Rentgenowskiego stosowano detektory scyntylacyjne. Obecnie detektory te są wypierane przez detektory półprzewodnikowe, dlatego detektorom scyntylacyjnym w tym miejscu nie będziemy poświęcaj dużo uwagi (dokładnie detektory scyntylacyjne zostaną omówione przy metodzie SPECT i PET, gdzie są niezwykle ważnym elementem aparatury diagnostycznej). Zasada działania detektora scyntylacyjnego jest następująca. Promieniowanie jonizujące powoduje wzbudzenie atomów lub molekuł scyntylatora, które następnie oddają tak uzyskaną energie poprzez emisję promieniowania elektromagnetycznego w zakresie widzialnym. Fotony tego promieniowania zostają następnie zamienione przez fotoprzetwornik (fotopowielacz lub fotodioda) na przepływ prądu elektrycznego. Istotnym elementem detektora scyntylacyjnego jest fotoprzetwornik, czyli układ konwertujący światło powstałe pod wpływem promieniowania na sygnał elektryczny. W czasie powstawania pierwszych tomografów CT, najlepszymi fotoprzetwornikami były fotopowielacze. Detektory scyntylacyjne charakteryzują się wysoką czułością detekcji promieniowania X, jednakże każdy kryształ scyntylacyjny wymagał połączenia z osobną fotopowielaczem, który jest rodzajem lampy elektronowej, o stosunkowo dużych rozmiarach i wymagającym zasilania wysokim napięciem. W latach 90-tych postęp technologicznych umożliwił konstruowanie tanich, małych i odpowiednio czułych fotodiod krzemowych. Fotodiody to diody półprzewodnikowe, których działanie polega na wykorzystaniu zjawiska fotoelektrycznego zachodzącego w obszarze złącza p-n. Przez fotodiodę, do której przyłożone jest napięcie w kierunku zaporowym, płynie prąd proporcjonalny do wielkości strumienia padającego światła. Zalety fotodiody w porównaniu z fotopowielaczem to przede wszystkim niskie napięcie zasilania oraz mały rozmiar i masa Obecnie kryształy scyntylacyjne zaczęły być wypierane przez detektory półprzewodnikowe cezowe lub kadmowo-wolframowe. Detektory te świeciły pod wpływem promieniowania rentgenowskiego światłem z zakresu widzialnego, które za pomocą fotodetektorów półprzewodnikowych jest zamieniane na sygnał

12 elektryczny. Wizualizacja zrekonstruowanego obrazu. W wyniku procesu skanowania pacjenta skolimowaną wiązką promieniowania Rentgenowskiego, możliwa jest uzyskanie rozkładu liniowego współczynnika osłabienia promieniowania X. Uzyskany obraz prezentowany jest jednak w jednostkach względnych nazywanych jednostkami Hounsfielda (Haunsfield Unit, HU). Najczęściej jako wynik badania tomograficznego podawana jest mapa współczynników osłabienia promieniowania X wyrażona w tzw. jednostkach Haunsfielda (HU Haunsfield Unit): gdzie: dla temperatury 20 stopni Celsjusza i energii promieniowania 73 kv Stosowanie takich jednostek ma uzasadnienie praktyczne lekarz oceniający zdjęcie dokonuje porównania wartości osłabienia promieniowania X w różnych częściach ciała pacjenta. Do celów porównawczych znacznie wygodniejsze są wartości względne niż bezwzględne. Wartości współczynniki osłabienia wiązki promieniowania X, wytworzonego w lampie rentgenowskiej, pracującej przy napięciu 120kV wyrażone w jednostkach HU: Tkanka Plazma krwi ~22 Skrzep ~74 Obrzęk ~19 Wartość HU Tkanka tłuszczowa -25 do -200 Tkanka mięśniowa ~67 Wątroba ~71 Trzustka ~64 Kora mózgowa ~36 Powietrze Płuca Tkanka kostna 1000 do 3100 Tkanka zmieniona nowotworowo od 25 do Rdzeń kręgowy Najmniejsza różnica HU rejestrowana przez Tomografy Rentgenowskie nie jest specyfikowana przez producentów, jednakże szacuje się ją na poziomie 4 HU. Uzyskiwane w obrazowaniu CT obrazu cechuje dynamika w jednostkach HU od wartości do około Do ich reprezentacji wystarczy zatem 4096 poziomów (12 bitów). Obrazy te prezentowane są w skali szarości, jednakże monochromatyczna skala obejmuje 256 odcieni szarości. Oko rozpoznaje około 50 poziomów szarości. W związku z tym, ogranicza się zakres zmienność

13 danych do celów prezentacyjnych. Proces te nazywa się okienkowaniem. Lekarz wybiera położenie środka (window level, WL) okna na skali HU (np. 100 HU) i szerokość okna (window width, WW), (np. 50 HU). Na obrazie zostaną zaprezentowane struktury o HU w zakresie od WL WW/2 do WL + WW/2 (w podanym przykładzie od 75 do 125 HU). Obniżenie poziomu okna umożliwia oglądanie struktur o mniejszym HU. Poszerzenie szerokości okna zmniejsza kontrast obrazu. Część ciała/narząd WL (HU) WW(HU) Płuca Głowa Dziecka Ramię Brzuch (okolice wątroby) Brzuch (okolice nerek) Kręgosłup odcinek lędźwiowy Dodatkowe Rozwiązania Tomografia Helikalna (Spiralna) W systemach od I do IV generacji wykonanie pomiaru i rekonstrukcji kolejnej warstwy wymagało zatrzymania ruchu obrotowego lampy i przesuniecie stołu z pacjentem.w celu maksymalnego skrócenia czasu wykonywania badania znacznych obszarów ciała ludzkiego, firma Toshiba opracowała technologię w której w trakcie obrotu lampy rentgenowskiej w skanerach III i IV generacji przesuwany jest jednocześnie stół z pacjentem. Wypadkowy ruch lampy rentgenowskiej wokół pacjenta, będący złożeniem translacyjnego ruchu stołu i ruchu obrotowego lampy, odbywa się po torze nazywany helisą. Tego rodzaju technologia umożliwia skrócenie badania dużych obszarów pacjenta z 20 30minut do około 10 minut. Firma Toshiba zarezerwowała nazwę Tomografii Helikalnej tylko dla swoich produktów. Konkurencja, podążając za pomysłodawcą nazwała swoje tomografy Tomografami Spiralnymi. HR CT High Resolution CT (HR CT) to technika obrazowania płuc mająca na celu uzyskanie jak największej rozdzielczości przestrzennej, celem diagnostyki zmian w śródmiąższu płuc, takich jak zwłóknienia, rozedma, choroby oskrzelików (średnica oskrzelików 1-2 mm). W celu polepszenia kontrastu i zobrazowania interesujących struktur można zwiększyć natężenie promieniowania X, kosztem ilości diagnozowanych warstw. W technice HRCT obrazowane są warstwy o grubości od 1 2 mm, ale odległości pomiędzy kolejnymi warstwami wynoszą mm. Parametry Akwizycji W poniższej tabeli podano najważniejsze parametry akwizycji wybranych obszarów człowieka. Część ciała/organ Grubość Przekroju (mm) mas Głowa Dół tylny czaszki

14 Kości czaszki Szyja Klatka piersiowa Płuca Żołądek Wątroba Miednica Rdzeń kręgowy

ABC tomografii komputerowej

ABC tomografii komputerowej ABC tomografii komputerowej Tomografia (od gr.: tome cięcie i grafein pisanie) metoda pozwalająca na uzyskiwanie obrazów przekrojów badanej okolicy ciała. Określenie o szerokim znaczeniu, najczęściej kojarzone

Bardziej szczegółowo

Sprzęt stosowany w pozytonowej tomografii emisyjnej

Sprzęt stosowany w pozytonowej tomografii emisyjnej Sprzęt stosowany w pozytonowej tomografii emisyjnej Skaner PET-CT stanowi połączony w jedno urządzenie zespół dwóch tomografów, tomografu rentgenowskiego oraz tomografu PET. W artykule przedstawiono opis

Bardziej szczegółowo

Praktyka z diagnostycznych metod nieradiacyjnych

Praktyka z diagnostycznych metod nieradiacyjnych Instytut Matki i Dziecka Beata Brzozowska 2 marca 2012 Plan wykładu Informacje o Instytucie 1 Informacje o Instytucie Słów kilka o historii Struktura i zadania Instytutu Zakład Diagnostyki Obrazowej 2

Bardziej szczegółowo

Urządzenia do planowania radioterapii (Symulatory i TK)

Urządzenia do planowania radioterapii (Symulatory i TK) Urządzenia do planowania radioterapii (Symulatory i TK) Plan wykładu Historia Zasada działanie symulatora Zasada działania TK Rola i miejsce urządzeń w procesie planowania radioterapii. Historia W. C.

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Jak przygotować się do badań rentgenowskich

Jak przygotować się do badań rentgenowskich Jak przygotować się do badań rentgenowskich? W trosce o prawidłowe przygotowanie pacjentów do badań prosimy o uważne przeczytanie poniższych informacji i zaleceń. Ciąża jest przeciwwskazaniem do badania

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 4, 10 kwietnia 2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Obrazowanie w medycynie

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wydział Fizyki. Laboratorium Technik Jądrowych

Wydział Fizyki. Laboratorium Technik Jądrowych Wydział Fizyki Laboratorium Technik Jądrowych rok akademicki 2018/19 ćwiczenie RTG3 strona 1 z 11 Urządzenia stosowane w radiografii ogólnej cyfrowej. Testy specjalistyczne: Nazwa testu: 1. Wysokie napięcie

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Obrazowanie MRI Skopia rtg Scyntygrafia PET

Obrazowanie MRI Skopia rtg Scyntygrafia PET Wyzwania wynikające z rozwoju metod obrazowania Technika i technologia Konferencja w ramach projektu Wykorzystywanie nowych metod i narzędzi w kształceniu studentów UMB w zakresie ochrony radiologicznej

Bardziej szczegółowo

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka

WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka dr inż. Witold MICKIEWICZ dr inż. Jerzy SAWICKI Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka Aksjografia obrazowanie ruchu osi zawiasowej żuchwy - Nowa metoda pomiarów

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

( L ) I. Zagadnienia. II. Zadania

( L ) I. Zagadnienia. II. Zadania ( L ) I. Zagadnienia 1. Promieniowanie X w diagnostyce medycznej powstawanie, właściwości, prawo osłabienia. 2. Metody obrazowania naczyń krwionośnych. 3. Angiografia subtrakcyjna. II. Zadania 1. Wykonanie

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Informatyki i Nauki o Materiałach. Informatyczne systemy dla medycyny. Tomografia komputerowa, rekonstrukcja, przetwarzanie obrazów

Informatyki i Nauki o Materiałach. Informatyczne systemy dla medycyny. Tomografia komputerowa, rekonstrukcja, przetwarzanie obrazów Imię i nazwisko autora pracy Krystian Przybyła Imię i nazwisko promotora pracy dr Marcin Binkowski Wydział Informatyki i Nauki o Materiałach Kierunek studiów Informatyka Specjalność Informatyczne systemy

Bardziej szczegółowo

Nowoczesne sieci komputerowe

Nowoczesne sieci komputerowe WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010

Bardziej szczegółowo

Zapytania do specyfikacji istotnych warunków zamówienia

Zapytania do specyfikacji istotnych warunków zamówienia Warszawa, 05 sierpnia 2009 r. Powiat Łowicki Ul. Stanisławskiego 30 99-400 ŁOWICZ fax (046) 837-56-78 email: rip@powiatlowicki.pl Zapytania do specyfikacji istotnych warunków zamówienia Działając na podstawie

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Pomiar prędkości światła

Pomiar prędkości światła Tematy powiązane Współczynnik załamania światła, długość fali, częstotliwość, faza, modulacja, technologia heterodynowa, przenikalność elektryczna, przenikalność magnetyczna. Podstawy Będziemy modulować

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium TECHNIKI OBRAZOWANIA MEDYCZNEGO Medical Imaging Techniques Forma

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność

Bardziej szczegółowo

Uwaga: Ten materiał przeznaczony jest dla studentów do nauki przed egzaminem, natomiast nie powinien być wykorzystywany do pisania anonimowych

Uwaga: Ten materiał przeznaczony jest dla studentów do nauki przed egzaminem, natomiast nie powinien być wykorzystywany do pisania anonimowych Uwaga: Ten materiał przeznaczony jest dla studentów do nauki przed egzaminem, natomiast nie powinien być wykorzystywany do pisania anonimowych donosów do prasy, jak to ostatnio miało miejsce. Wyjątkowo

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.

Bardziej szczegółowo

Wartość diagnostyczna angio-tk w diagnostyce krwotoku podpajęczynówkowego

Wartość diagnostyczna angio-tk w diagnostyce krwotoku podpajęczynówkowego Wartość diagnostyczna angio-tk w diagnostyce krwotoku podpajęczynówkowego Przed wprowadzeniem do diagnostyki angio-tk złotym standardem w ocenie naczyń mózgowych w SAH była angiografia klasyczna. Wartość

Bardziej szczegółowo

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

PROMIENIOWANIE RENTGENOWSKIE

PROMIENIOWANIE RENTGENOWSKIE PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne

Bardziej szczegółowo

Czym jest tomografia komputerowa?

Czym jest tomografia komputerowa? CT Wyjątkowo dobrej jakości obrazy wnętrza ludzkiego ciała dają tomografy komputerowe Tomografia to też technika rentgenowska, chociaż znacząco udoskonalona Czym jest tomografia komputerowa? Tomografia

Bardziej szczegółowo

Wydział Fizyki. Laboratorium Technik Jądrowych

Wydział Fizyki. Laboratorium Technik Jądrowych Wydział Fizyki Laboratorium Technik Jądrowych rok akademicki 2016/17 ćwiczenie RTG1 zapoznanie się z budową i obsługą aparatu RTG urządzenia stosowane w radiografii cyfrowej ogólnej testy specjalistyczne:

Bardziej szczegółowo

Testy kontroli fizycznych parametrów aparatury rentgenowskiej. Waldemar Kot Zachodniopomorskie Centrum Onkologii Szczecin 26.04.2014 r.

Testy kontroli fizycznych parametrów aparatury rentgenowskiej. Waldemar Kot Zachodniopomorskie Centrum Onkologii Szczecin 26.04.2014 r. Testy kontroli fizycznych parametrów aparatury rentgenowskiej Waldemar Kot Zachodniopomorskie Centrum Onkologii Szczecin 26.04.2014 r. ROZPORZĄDZENIE MINISTRA ZDROWIA z dnia 18 lutego 2011 r. w sprawie

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

Weryfikacja systemu TK dla potrzeb radioterapii. Dr inż. Dominika Oborska-Kumaszyńska The Royal Wolverhampton NHS Trust MPCE Department

Weryfikacja systemu TK dla potrzeb radioterapii. Dr inż. Dominika Oborska-Kumaszyńska The Royal Wolverhampton NHS Trust MPCE Department Weryfikacja systemu TK dla potrzeb radioterapii Dr inż. Dominika Oborska-Kumaszyńska The Royal Wolverhampton NHS Trust MPCE Department Symulator TK Transopzycja geometrii Testy dla TK Mechaniczne dopasowanie

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

( F ) I. Zagadnienia. II. Zadania

( F ) I. Zagadnienia. II. Zadania ( F ) I. Zagadnienia 1. Rozchodzenie się fal akustycznych w układach biologicznych. 2. Wytwarzanie i detekcja fal akustycznych w ultrasonografii. 3. Budowa aparatu ultrasonograficznego metody obrazowania.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) 1 Schemat żyroskopu Wiązki biegnące w przeciwną stronę Nawinięty światłowód optyczny Źródło światła Fotodioda Polaryzator

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Tomograf komputerowy spiralny min.16-warstwowy. Wymagania ogólne. Sprawa Nr: RAP/10/2012 Załącznik Nr 3 do SIWZ. (pieczęć Wykonawcy)

Tomograf komputerowy spiralny min.16-warstwowy. Wymagania ogólne. Sprawa Nr: RAP/10/2012 Załącznik Nr 3 do SIWZ. (pieczęć Wykonawcy) Sprawa Nr: RAP/10/2012 Załącznik Nr 3 do SIWZ (pieczęć Wykonawcy) PARAMETRY TECHNICZNE PRZEDMIOTU ZAMÓWIENIA Nazwa i adres Wykonawcy:...... Nazwa i typ (producent) oferowanego urządzenia:...... Tomograf

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Fotometria CCD 4. Fotometria profilowa i aperturowa

Fotometria CCD 4. Fotometria profilowa i aperturowa Fotometria CCD 4. Fotometria profilowa i aperturowa Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 Fotometria CCD Proces wyznaczania jasności gwiazd na obrazie

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Plan wykładu 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Monitor LCD Monitor LCD (ang. Liquid Crystal Display) Budowa monitora

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA, UMK TORUŃ

I PRACOWNIA FIZYCZNA, UMK TORUŃ I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Sprostowanie do udzielonych odpowiedzi we wcześniejszych turach

Sprostowanie do udzielonych odpowiedzi we wcześniejszych turach Szpital Giżycki Sp. z o.o. w restrukturyzacji 11-500 Giżycko, ul. Warszawska 41 Tel: 87/ 429-66-45, Fax: 87/ 429-66-30 e-mail: zaopatrzenie@zozgiz.pl strona internetowa: www.zozgiz.pl Giżycko, 23.02.2018

Bardziej szczegółowo

2.2 Opis części programowej

2.2 Opis części programowej 2.2 Opis części programowej Rysunek 1: Panel frontowy aplikacji. System pomiarowy został w całości zintegrowany w środowisku LabVIEW. Aplikacja uruchamiana na komputerze zarządza przebiegiem pomiarów poprzez

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo