Wprowadzenie do Sztucznej Inteligencji
|
|
- Katarzyna Głowacka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków odpowiadających stanom w procesie rozwiązywania problemu jest zbiorem krawędzi, odpowiadających krokom w procesie rozwiązywania problemu S jest niepustym podzbiorem N,, zawierającym stany początkowe problemu GD jest niepustym podzbiorem N,, zawierającym stany docelowe problemu. Stany GD są opisane: przez podanie własności stanów występujących w przeszukiwaniu przez podanie własności ścieŝki tworzonej podczas przeszukiwania ŚcieŜką rozwiązania nazywamy ścieŝkę wiodącą przez ten graf z wierzchołka naleŝącego do S do wierzchołka naleŝącego do GD. 1
2 Podstawowe problemy teorii przeszukiwania przestrzeni stanów Czy metoda gwarantuje znalezienie rozwiązania? Czy algorytm zakończy się w kaŝdym przypadku, czy moŝe wpaść w pętlę nieskończoną? Czy jeśli rozwiązanie zostanie znalezione, to mamy gwarancję, Ŝe będzie to rozwiązanie optymalne? Jaka jest czasowa i pamięciowa ("przestrzenna") złoŝoność obliczeniowa procesu przeszukiwania? Czy i w jaki sposób moŝna zredukować złoŝoność obliczeniową? Sformułowanie zadania dla algorytmów przeszukiwania Definicja stanu przestrzeni Stan początkowy problemu (ang. initial state) Zbiór dopuszczalnych operatorów/akcji (ang. operator/action action set) lub funkcja następnika (ang. successor function) Zbiór stanów docelowych (ang. goal states) ) lub funkcja weryfikacji celu (ang. goal test) Funkcja kosztu ścieŝki (ang. path cost) - z reguły głębokość przeszukiwania 2
3 Problemy występujące w reprezentacji grafowej Powtarzające się stany (cykle) Identyfikacja grafu przestrzeni stanów: drzewa przeszukiwania, acykliczne grafy skierowane Rozmiar przestrzeni stanów (ograniczanie złoŝoności) Powtarzające się stany: efektywność przeszukiwania B B B C C C C C D Przestrzeń stanów Graf przeszukiwania
4 Powtarzające się stany: opis problemu Konieczne ze względu na efektywność przeszukiwania Nieuniknione w niektórych zadaniach (np. z odwracalnymi operatorami) - warunek zatrzymania Uwaga! Kompromis między kosztami przeszukiwania a kosztami wykrywania powtórzeń stanów Powtarzające się stany: metody przeciwdziałania Zakaz powrotu do bezpośrednio poprzedzającego stanu Wykrywanie cykli w ścieŝce - zakaz generowania jakiegokolwiek stanu poprzedzającego (pośrednio) Wykrywanie dowolnego powtarzającego się stanu w całym grafie przeszukiwania (duŝe wymagania pamięciowe!)
5 Przykład przeszukiwania przestrzeni stanów: problem komiwojaŝera 100 B E D C CDBE = 0 Przykład przeszukiwania przestrzeni stanów: problem komiwojaŝera 20 D 00 E 7 C E 2 D 2 C E C 100 B D E E B C D D E E
6 Kierunki przeszukiwania przestrzeni stanów Przeszukiwanie w przód (ang. forward chaining) Przeszukiwanie w tył (ang. backward chaining) Przeszukiwanie dwukierunkowe (ang. bidirectional search) Przeszukiwanie w przód Start Cel
7 Przeszukiwanie w tył Start Cel Branching factor - co to takiego?
8 Kiedy przeszukiwanie w przód? Wszystkie lub większość danych zawarta jest w początkowym sformułowaniu problemu - np. interpretacja i analiza duŝych zbiorów danych Występuje duŝa liczba potencjalnych celów, ale jest tylko kilka moŝliwości zastosowania faktów i informacji wejściowych dla konkretnej instancji problemu Trudno sformułować hipotezę docelową - np. określanie struktury związków chemicznych Przeszukiwanie w przód wykorzystuje wiedzę i ograniczenia zawarte e w danych i opisie stanu początkowego problemu, aby pokierować przeszukiwaniem zgodnie z zasadami opisanymi przez operatory zmiany stanów. Kiedy przeszukiwanie w tył? Cel lub hipoteza jest dana w sformułowaniu problemu albo moŝna ją j łatwo sformułować np. dowodzenie twierdzeń matematycznych, systemy diagnostyczne Liczba reguł moŝliwych do zastosowania rośnie szybko i powoduje, Ŝe liczba odwiedzanych stanów jest bardzo duŝa; wczesna sekcja celów moŝe wyeliminować większość gałęzi tak, Ŝe przeszukiwanie będzie bardziej efektywne np. dowodzenie twierdzeń Dane o problemie nie są znane explicite,, tylko muszą być pozyskane przez rozwiązującego; przeszukiwanie w tył moŝe pomóc ukierunkować proces pozyskiwania danych - np. diagnostyka medyczna Przeszukiwanie wstecz wykorzystuje informacje o Ŝądanym celu i kieruje procesem przeszukiwania poprzez dobór odpowiednich operatorów zmiany stanów oraz eliminację pewnych gałęzi z przestrzeni stanów. 8
9 Przeszukiwanie dwukierunkowe Start Cel Przeszukiwanie dwukierunkowe Jednoczesne przeszukiwanie w przód i w tył Ograniczenie złoŝoności czasowej Problem generowania poprzedników stanu Problem wielu stanów docelowych (np. stany poprzedzające mata w szachach) Efektywna metoda sprawdzania występowania stanu w grafie przeszukiwania przeciwnego kierunku (problem wyminięcia!) Dobór odpowiedniej strategii przeszukiwania w kaŝdym kierunku 9
10 Praktyczna realizacja przeszukiwania - mechanizm nawrotów Start Cel Strategie przeszukiwania przestrzeni stanów Przeszukiwanie wszerz (ang. breadth-first search) Przeszukiwanie w głąb (ang. depth-first search) Przeszukiwanie w głąb z nawrotami (ang. depth-first search with backtracking) Przeszukiwanie z iteracyjnym pogłębianiem (ang. iterative deepening search) Przeszukiwanie metodą jednolitego kosztu (ang. uniform-cost search) 10
11 lgorytm przeszukiwania w głąb procedure depth_first_search(initial_state initial_state) begin open = [initial_state[ initial_state]; closed = []; while open [] do begin remove the leftmost state from open,, call it X; if X is goal state then return(success); generate all children of X; put X on closed; eliminate any children of X already on either open or closed, as this will cause loops in the search; put the remaining descendants, in order of discovery, on the LEFT end of open; end end. Przeszukiwanie w głąb - przykład 11
12 Przeszukiwanie w głąb - przykład Przeszukiwanie w głąb - przykład 12
13 Przeszukiwanie w głąb - przykład Przeszukiwanie w głąb - przykład itd. 1
14 lgorytm przeszukiwania w głąb (rekurencja) function depth_first_search(current_state current_state) begin if current_state is a goal then return(success) else begin add current_state to closed; while current_state has unexamined children do begin child := next unexamined child of current_state if child is not a member of closed then {check for loops} if depth_first_search(child child) ) = success then return(success) end end; return(fail) end Przeszukiwanie w głąb - przykład cel
15 lgorytm przeszukiwania wszerz procedure breadth_first_search(initial_state initial_state) begin open = [initial_state[ initial_state]; closed = []; while open [] do begin remove the leftmost state from open,, call it X; if X is goal state then return(success); generate all children of X; put X on closed; eliminate any children of X already on either open or closed, as this will cause loops in the search; put the remaining descendants, in order of discovery, on the RIGHT end of open; end end. Przeszukiwanie wszerz - przykład 1
16 Przeszukiwanie wszerz - przykład Przeszukiwanie wszerz - przykład 1
17 Przeszukiwanie wszerz - przykład Przeszukiwanie wszerz - przykład 17
18 Przeszukiwanie wszerz - przykład itd. Przeszukiwanie wszerz - przykład cel
19 lgorytm przeszukiwania z iteracyjnym pogłębianiem (1) procedure iterative_deepening_search(initial_state initial_state) begin for depth 0 to do begin if depth_limited_search(initial_state initial_state, depth) = success then return(its result); end; return(failure); end. lgorytm przeszukiwania z iteracyjnym pogłębianiem (2) function depth_limited_search(current_state current_state, depth) begin if current_state is a goal then return(success) else if depth = 0 then return(failure) else begin add current_state to closed; while current_state has unexamined children do begin child := next unexamined child of current_state if child is not a member of closed then {check for loops} if depth_limited_search(child child, depth-1) = success then return(success) end end; return(failure) end. 19
20 Iteracyjne pogłębianie - przykład depth=0 Iteracyjne pogłębianie - przykład depth=1 20
21 Iteracyjne pogłębianie - przykład depth=1 Iteracyjne pogłębianie - przykład depth=1 21
22 Iteracyjne pogłębianie - przykład depth=1 Iteracyjne pogłębianie - przykład depth=2 22
23 Iteracyjne pogłębianie - przykład depth=2 Iteracyjne pogłębianie - przykład depth=2 2
24 Iteracyjne pogłębianie - przykład depth=2 Iteracyjne pogłębianie - przykład depth=2 2
25 Iteracyjne pogłębianie - przykład depth=2 Iteracyjne pogłębianie - przykład depth=2 2
26 Iteracyjne pogłębianie - przykład depth=2 Iteracyjne pogłębianie - przykład depth=2 2
27 Iteracyjne pogłębianie - przykład depth=2 Iteracyjne pogłębianie - przykład depth= 27
28 Iteracyjne pogłębianie - przykład depth= Iteracyjne pogłębianie - przykład depth= 28
29 Iteracyjne pogłębianie - przykład depth= Iteracyjne pogłębianie - przykład depth= 29
30 Iteracyjne pogłębianie - przykład depth= itd. lgorytm Uniform-cost search procedure uniform_cost_search(initial_state initial_state) begin open = [initial_state[ initial_state]; closed = []; while open [] do begin remove the first state from open,, not already on closed, call it X; if X is a goal state then return(solution path that led to X); generate all children of X; put X on closed; for each child of X do assign path cost to the child state; add the child state to the open; end; re-order states on open according to path cost value (lower values first) end end. 0
31 lgorytm UCS - przykład(1) -0 B- C- D- koszt operacji lgorytm UCS - przykład(2) -0 B- C- D- koszt operacji 1
32 lgorytm UCS - przykład() -0 B- C- D- E-9 F-9 G H I J koszt operacji lgorytm UCS - przykład() -0 B- C- D- E-9 F-9 G-9 H-8 I J koszt operacji 2
33 lgorytm UCS - przykład() -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 koszt operacji lgorytm UCS - przykład() -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 2 K L M N O-10 P-11 Q R koszt operacji
34 lgorytm UCS - przykład(7) -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 2 K-1 L-12 M N O-10 P-11 Q R koszt operacji lgorytm UCS - przykład(8) -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 2 K-1 L-12 M-1 N O-10 P-11 Q R koszt operacji
35 lgorytm UCS - przykład(9) -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 2 K-1 L-12 M-1 N-1 O-10 P-11 Q R koszt operacji lgorytm UCS - przykład(10) -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 2 K-1 L-12 M-1 N-1 O-10 P-11 Q R koszt operacji
36 lgorytm UCS - przykład(11) -0 B- C- D- 7 E-9 F-9 G-9 H-8 I-12 J-1 2 K-1 L-12 M-1N-11 O-10 P-11 Q R 1 koszt operacji -12 itd. lgorytm UCS: charakterystyka Cechy szczególne Ocena heurystyczna stanu to koszt dojścia do tego stanu (koszt pokonanej ścieŝki od stanu początkowego) - koszt przejścia z dowolnego stanu do jego stanu potomnego musi być zawsze 0 Stanowi uogólnienie algorytmu przeszukiwania wszerz - w algorytmie przesz. wszerz koszt, to głębokość na jakiej leŝy stan Optymalny (gwarantuje znalezienie najkrótszego rozwiązania)!!! Wady DuŜe wymagania czasowe i pamięciowe (rosnące wykładniczo!)
37 Porównanie strategii przeszukiwania W głąb Iteracyjne Dwukie- Kryterium Wszerz Uniformcost z nawrotami pogłębianie runkowe ( jeśli moŝliwe) Czas B d B d B n B d B d/2 Pamięć B d B d Bn Bd B d/2 Optymalny? Tak Tak Nie Tak Tak Zupełny? Tak Tak Tak Tak Tak B - średnia liczba następników kaŝdego stanu (ang. branching factor) n - maksymalna głębokość przeszukiwania d - głębokość rozwiązania Zasady implementacji algorytmów przeszukiwania przestrzeni stanów 1. Reprezentacja rozwiązania problemu jako ścieŝki od stanu początkowego do stanu docelowego. 2. Przeglądanie systematyczne wszystkich ścieŝek w poszukiwaniu celu.. Powrót do poprzedniego stanu pozwalający na wznowienie przeszukiwania w sytuacji, gdy dotychczasowa ścieŝka nie prowadzi do celu - mechanizm nawrotów.. Struktury listowe umoŝliwiające utrzymywanie w sposób jawny danych o aktualnie analizowanych stanach: lista open,, pozwalająca na powrót do nie odwiedzonych jeszcze stanów, lista closed stanów juŝ odwiedzonych, pozwalająca na wykrywanie pętli i uniknięcie powtarzania bezowocnych ścieŝek.. Zastosowanie stosu w algorytmie przeszukiwania w głąb i kolejki jednokierunkowej w przeszukiwaniu wszerz. 7
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Studia Inżynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków w odpowiadających
Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów
Przeszukiwanie przestrzeni stanów Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia Inynierskie Przestrze stanów jest to czwórka uporzdkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Heurystyczne przeszukiwanie przestrzeni stanów
Heurystyczne przeszukiwanie przestrzeni stanów Wykład Informatyka Studia InŜynierskie Realizacja przeszukiwania heurystycznego Systemy eksperckie Gdy problem nie posiada dokładnego rozwiązania zania ze
Heurystyczne przeszukiwanie przestrzeni stanów
Heurystyczne przeszukiwanie przestrzeni stanów Wykład Informatyka Studia InŜynierskie Podstawowe pojęcia teorii grafów przeszukiwania Korzeń grafu Stan, od którego zaczynamy przeszukiwanie grafu (drzewa)
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka
Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka DEFINICJA: System produkcji M zbiórst.zw.stanów wyróżnionys 0 St.zw.stanpoczątkowy podzbiórg St.zw.stanówdocelowych zbiórot.zw.operacji:
Sztuczna Inteligencja i Systemy Doradcze
ztuczna Inteligencja i ystemy Doradcze Przeszukiwanie przestrzeni stanów Przeszukiwanie przestrzeni stanów 1 Postawienie problemu eprezentacja problemu: stany: reprezentują opisy różnych stanów świata
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Przeszukiwanie Przeszukiwanie przestrzeni stanów Motywacja Rozwiązywanie problemów: poszukiwanie sekwencji operacji prowadzącej do celu poszukiwanie
LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel
Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli
Heurystyczne przeszukiwanie przestrzeni stanów
Heurystyczne przeszukiwanie przestrzeni stanów Wykład Studia Inżynierskie Realizacja przeszukiwania heurystycznego Systemy eksperckie Gdy problem nie posiada dokładnego rozwiązania zania ze względu na
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul Poziomy sztucznej inteligencji Sztuczna świadomość? Uczenie się
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
Elementy kognitywistyki II:
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD IV: Agent szuka rozwiązania (na ślepo) Poprzednio: etapy rozwiązywania problemu sformułowanie celu sformułowanie problemu stan początkowy (initial
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, wgłąb
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, wgłąb AUTOR: Krzysztof Górski Indeks: 133247 e-mail: 133247@student.pwr.wroc.pl
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Podstawy sztucznej inteligencji
wykład II Problem solving 03 październik 2012 Jakie problemy możemy rozwiązywać? Cel: Zbudować inteligentnego agenta planującego, rozwiązującego problem. Szachy Kostka rubika Krzyżówka Labirynt Wybór trasy
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Krzysztof Jakubczyk. Zadanie 2
Zadanie 2 Krzysztof Jakubczyk Moje rozwiązanie nie znajduje strategii pozycyjnej w znaczeniu zdefiniowanym na wykładzie (niezaleŝnie od pozycji startowej), gdyŝ takowa nie istnieje. Przykład: 1 1 0 Środkowa
Podstawy sztucznej inteligencji
wykład 2 Strategie przeszukiwania - ślepe i heurystyczne 27 październik 2011 Plan wykładu 1 Strategie czyli jak znaleźć rozwiązanie problemu Jak wykonać przeszukiwanie Przeszukiwanie przestrzeni stanów
SZTUCZNA INTELIGENCJA
Instytut Automatyki, Robotyki i Informatyki Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Literatura SZTUCZNA INTELIGENCJA Modelowanie problemów za
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Heurystyczne przeszukiwanie grafów gier dwuosobowych
Heurystyczne przeszukiwanie grafów gier dwuosobowych Wykład Informatyka Studia InŜynierskie Teoria gier w dziedzinie SI Liczba graczy jednoosobowe, dwuosobowe oraz wieloosobowe Suma wypłat gry o sumie
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie
ĆWICZENIE 1: Przeszukiwanie grafów strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE studia niestacjonarne ĆWICZENIE 1: Przeszukiwanie grafów strategie
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 BFS DFS Algorytm Dijkstry Algorytm Floyda-Warshalla Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą
Zastosowania algorytmów heurystycznych do sterowania systemami autonomicznymi
Wrocław, 16.06.2009 Zastosowania algorytmów heurystycznych do sterowania systemami autonomicznymi Opracował: Janusz Taterka 1. Wstęp W systemach autonomicznych spotykamy się z zadaniami planowania działań.
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m
Algorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS
Problem straŝaka w drzewach Agnieszka Skorupka Matematyka Stosowana FTiMS Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 5. ROZWIĄZYWANIE PROBLEMÓW Z OGRANICZENIAMI Problemy z ograniczeniami
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD V: Agent wciąż szuka rozwiązania (choć już nie na ślepo)
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD V: Agent wciąż szuka rozwiązania (choć już nie na ślepo) Poprzednio: węzeł reprezentowany jest jako piątka: stan odpowiadający węzłowi rodzic węzła
Zadanie 1: Piętnastka
Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski
Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel
Wstęp do programowania Zastosowania stosów i kolejek Piotr Chrząstowski-Wachtel FIFO - LIFO Kolejki i stosy służą do przechowywania wartości zbiorów dynamicznych, czyli takich, które powstają przez dodawanie
ALHE Jarosław Arabas. Przeszukiwanie przestrzeni ścieżek w grafie. Algorytm A*
ALHE Jarosław Arabas Przeszukiwanie przestrzeni ścieżek w grafie Algorytm A* Zbiór rozwiązań 2134 1234 1243 2143 2314 2413 1324 2341 1342 1423 2431 1432 3124 4123 3142 4132 3214 4213 3241 3412 4312 3421
Algorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:
ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Dynamiczne struktury danych
Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I
Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.
Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Kolejkowanie. Graf sekwencyjny. Graf sekwencyjny: biegunowy, acykliczny Graf acykliczny to graf nie zawierający cykli G(V,E)
Kolejkowanie Systemy wbudowane dr. inŝ. Paweł Russek Katedra Elektroniki AGH Graf sekwencyjny Graf sekwencyjny: biegunowy, acykliczny Graf acykliczny to graf nie zawierający cykli Cykl to droga zamknięta
Algorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Detekcja zakleszczenia (1)
Detekcja zakleszczenia (1) Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Procesy aktywne i pasywne Definicja zakleszczenia Problem detekcji wystąpienia zakleszczenia Detekcja zakleszczenia
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques
KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie