PRÓBNY SPRAWDZIAN Z NOWĄ ERĄ 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRÓBNY SPRAWDZIAN Z NOWĄ ERĄ 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA"

Transkrypt

1 PRÓBNY SPRAWDZIAN Z NOWĄ ERĄ 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o.

2 Zadanie 1. (0 2) 1.1. C II. Analiza i interpretacja tekstów kultury B Zadanie 2. (0 1) C Zadanie 3. (0 1) FP 4) identyfikuje wypowiedź jako tekst informacyjny, literacki, reklamowy. 2. Analiza. Uczeń: 2) odróżnia fikcję artystyczną od rzeczywistości. 7) wyszukuje w tekście informacje wyrażone wprost i pośrednio (ukryte). 7) wyszukuje w tekście informacje wyrażone wprost i pośrednio (ukryte). 2 z 12

3 Zadanie 4. (0 1) C Zadanie 5. (0 2) 7) wyszukuje w tekście informacje wyrażone wprost i pośrednio (ukryte); 9) wyciąga wnioski wynikające z przesłanek zawartych w tekście [ ]. III. Tworzenie wypowiedzi B 2. Świadomość językowa. Uczeń: 4) poprawnie stopniuje przymiotniki [ ] C 3. Świadomość językowa. Uczeń: 1) rozpoznaje podstawowe funkcje składniowe wyrazów użytych w wypowiedziach ([ ] dopełnienie, przydawka [ ]). 3 z 12

4 Zadanie 6. (0 1) B1 Zadanie 7. (0 1) FP Zadanie 8. (0 1) D Zadanie 9. (0 1) II. Analiza i interpretacja tekstów kultury. C 3. Świadomość językowa. Uczeń: 3) rozpoznaje w wypowiedziach podstawowe części mowy ([ ] zaimek, przyimek [ ]) i wskazuje różnice między nimi. 7) wyszukuje w tekście informacje wyrażone wprost i pośrednio (ukryte). 9) wyciąga wnioski wynikające z przesłanek zawartych w tekście [ ]. 2. Analiza. Uczeń 10) charakteryzuje [ ] bohaterów. 4 z 12

5 Zadanie 10. (0 1) II. Analiza i interpretacja tekstów kultury. A1 Zadanie 11. (0 1) B Zadanie 12. (0 2) Wymagania ogólne II. Analiza i interpretacja tekstów kultury. 2. Analiza. Uczeń: 11) identyfikuje [ ] bajkę [ ]. 8) rozumie dosłowne i przenośne znaczenie wyrazów w wypowiedzi. 2. Samokształcenie i docieranie do informacji. Uczeń korzysta z informacji zawartych w [ ] słowniku języka polskiego [ ]. 2. Analiza. Uczeń: 10) charakteryzuje i ocenia bohaterów. 2 punkty uczeń formułuje wypowiedź, w której odwołuje się do definicji i tekstu Sławomira Mrożka. Przykład Moim zdaniem druga definicja charakteryzuje postawę Koguta. Kogut jest bohaterem bardzo pewnym siebie i zarozumiałym. Idąc na rozmowę, marzył o sławie i zaszczytach, które go czekają. Udawał kogoś innego, zależało mu na sukcesie. 1 punkt uczeń formułuje wypowiedź, w której odwołuje się tylko do definicji LUB tekstu Sławomira Mrożka. Przykłady Do postawy Koguta odnosi się definicja druga, czyli pragnienie sukcesu. LUB Kogut udawał lwa, bo pragnął sławy i zaszczytów. 0 punktów odpowiedź niepoprawna albo brak odpowiedzi. 5 z 12

6 Zadanie 13. (0 7) III. Tworzenie wypowiedzi. 1. Mówienie i pisanie. Uczeń: 1) tworzy spójne teksty [ ] związane z otaczającą go rzeczywistością [ ]; 4) świadomie posługuje się różnymi formami językowymi [ ]; 5) tworzy [ ] dziennik; 6) stosuje w wypowiedzi pisemnej odpowiednią kompozycję i układ graficzny zgodny z wymogami danej formy gatunkowej (w tym wydziela akapity). 2. Świadomość językowa. Uczeń: 5) pisze poprawnie pod względem ortograficznym [ ]; 6) poprawnie używa znaków interpunkcyjnych [ ]; 7) operuje słownictwem z określonych kręgów tematycznych [ ]. 1. Treść 3 punkty 2 punkty 1 punkt 0 punktów Uczeń: przedstawia wydarzenia z perspektywy Lisa, umiejscawia je w konkretnym czasie i prezentuje opinie na ich temat; Uczeń: przedstawia wydarzenia z perspektywy Lisa, umiejscawia je w konkretnym czasie; Uczeń: pisze pracę na inny temat lub w innej formie.* konsekwentnie stosuje narrację pierwszoosobową; tworzy tekst logicznie uporządkowany, rozwinięty, bogaty treściowo. Uczeń: przedstawia wydarzenia z perspektywy Lisa, umiejscawia je w konkretnym czasie, ALE w sposób ogólnikowy prezentuje opinie na ich temat; ALBO niekonsekwentnie stosuje narrację pierwszoosobową; ALBO nie tworzy tekstu logicznie uporządkowanego; ALBO nie tworzy wypowiedzi rozwiniętej, bogatej treściowo. niekonsekwentnie stosuje narrację pierwszoosobową; nie tworzy tekstu logicznie uporządkowanego, rozwiniętego, bogatego treściowo. * Uwaga: Jeżeli uczeń nawiązuje do tematu, ale nie nadaje swojej treści formy dziennika, ocenia się pracę w pozostałych kryteriach. Jeżeli uczeń pisze pracę na zupełnie inny temat, to całą pracę ocenia się na 0 punktów. 6 z 12

7 2. Styl* 1 p. Styl konsekwentny, dostosowany do formy wypowiedzi. 0 p. Styl niekonsekwentny lub niedostosowany do formy wypowiedzi. 3. Język* 1 p. Dopuszczalne 4 błędy (fleksyjne, składniowe, leksykalne, frazeologiczne). 0 p. Więcej niż 4 błędy (fleksyjne, składniowe, leksykalne, frazeologiczne). 4. Ortografia* 1 p. Dopuszczalne 2 błędy. 0 p. Więcej niż 2 błędy. Uczeń uprawniony do dostosowanych kryteriów oceniania Rozpoczyna zdania wielką literą. 5. Interpunkcja* 1 p. Dopuszczalne 3 błędy. 0 p. Więcej niż 3 błędy. Uczeń uprawniony do dostosowanych kryteriów oceniania Kończy zdania stosownymi znakami interpunkcyjnymi. * Uwaga: Punkty za kryteria 2., 3., 4., i 5. przyznaje się, jeżeli uczeń napisał co najmniej 10 linii tekstu. Jeśli linii jest mniej, to decyduje liczba wyrazów (co najmniej 55). Zadanie 14. (0 1) I. Sprawność rachunkowa. D Zadanie 15. (0 1) III. Modelowanie matematyczne. B 3. Liczby całkowite. Uczeń: 2) interpretuje liczby całkowite na osi liczbowej. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 2) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie [...] (w trudniejszych przykładach). 14. Zadania tekstowe. Uczeń: 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki [ ] oraz nabyte umiejętności rachunkowe, a także własne poprawne metody. 7 z 12

8 Zadanie 16. (0 1) II. Wykorzystanie i tworzenie informacji. D Zadanie 17. (0 1) IV. Rozumowanie i tworzenie strategii. BC Zadanie 18. (0 1) II. Wykorzystanie i tworzenie informacji. B Zadanie 19. (0 1) I. Sprawność rachunkowa. B 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 9. Wielokąty, koła, okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów trójkąta. 12. Obliczenia praktyczne. Uczeń: 1) interpretuje 100% danej wielkości jako całość, 50% jako połowę, 25% jako jedną czwartą, 10% jako jedną dziesiątą, a 1% jako setną część danej wielkości liczbowej. 12. Obliczenia praktyczne. Uczeń: 8) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali [ ]. 3. Liczby całkowite. Uczeń: 3) oblicza wartość bezwzględną. 8 z 12

9 Zadanie 20. (0 1) III. Modelowanie matematyczne. A Zadanie 21. (0 1) III. Modelowanie matematyczne. C Zadanie 22. (0 1) II. Wykorzystanie i tworzenie informacji. FF 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 3) wykonuje nieskomplikowane rachunki, w których występują jednocześnie ułamki zwykłe i dziesiętne. 14. Zadania tekstowe. Uczeń: 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody. 11. Obliczenia w geometrii. Uczeń: 2) oblicza pola: kwadratu, prostokąta, rombu, równoległoboku, trójkąta, trapezu przedstawionych na rysunku [ ] oraz w sytuacjach praktycznych. 13. Elementy statystyki opisowej. Uczeń: 2) odczytuje i interpretuje dane przedstawione w [ ] diagramach i na wykresach. 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki pamięciowe na liczbach całkowitych. 9 z 12

10 Zadanie 23. (0 1) IV. Rozumowanie i tworzenie strategii. PF 13. Elementy statystyki opisowej. Uczeń: 2) odczytuje i interpretuje dane przedstawione w [ ] tabelach [ ]. 14. Zadania tekstowe. Uczeń: 3) dostrzega zależności między podanymi informacjami. Uwagi do zadań Jeśli uczeń podaje tylko odpowiedź, to otrzymuje 0 punktów. 2. W pracy ucznia z dysleksją dopuszczamy pomyłki powstałe przy przepisywaniu liczb: mylenie cyfr podobnych graficznie, przestawienie sąsiednich cyfr, opuszczenie cyfry, pominięcie lub przestawienie przecinka. Zadanie 24. (0 2) IV. Rozumowanie i tworzenie strategii. 10. Bryły. Uczeń: 3) rozpoznaje siatki [ ] ostrosłupów. 14. Zadania tekstowe. Uczeń: 3) dostrzega zależności między podanymi informacjami. Przykładowe rozwiązania I sposób Ostrosłup, o którym mowa w zadaniu, ma 5 krawędzi podstawy o długości 5 cm i 5 krawędzi bocznych o długości 10 cm. Suma długości krawędzi ostrosłupa to: = 75 [cm]. II sposób Krawędzi bocznych jest tyle samo co krawędzi podstawy (czyli 5). Sumę długości krawędzi bocznej i krawędzi podstawy należy zatem pomnożyć przez 5. (10 + 5) 5 = 15 5 = 75 [cm] 2 punkty poprawne obliczenie sumy długości krawędzi ostrosłupa (75 cm). 1 punkt poprawne ustalenie liczby krawędzi o długości 10 cm i liczby krawędzi o długości 5 cm. 0 punktów rozwiązanie błędne lub brak rozwiązania zadania. 10 z 12

11 Zadanie 25. (0 3) IV. Rozumowanie i tworzenie strategii. 12. Obliczenia praktyczne. Uczeń: 9) w sytuacji praktycznej oblicza: [ ] czas przy danej drodze i danej prędkości, stosuje jednostki prędkości: km/h, m/s. Przykładowe rozwiązania I sposób Przejazd całego pociągu przez wiadukt oznacza pokonanie drogi równej 187,4 m + 12,6 m = 200 m. Prędkość 180 km/h oznacza, że pociąg przejeżdża 180 km w 3600 s, czyli m w 3600 s : 3600 = 50 v = 180 km h = 50 m, co oznacza, że w ciągu 1 sekundy pociąg pokonuje 50 m. s Czas przejazdu pociągu przez wiadukt to czas pokonania 200 m z prędkością 50 m, czyli 4 s. s II sposób 187,4 + 12,6 = 200 [m] 200 m = 0,2 km 0,2 180 = [h] = 4 [s] punkty poprawne obliczenie czasu przejazdu przez wiadukt i wyrażenie go w sekundach (4 s). 2 punkty poprawny sposób obliczenia czasu przejazdu przez wiadukt całego pociągu, ale w obliczeniach uczeń popełnia błędy rachunkowe. LUB poprawne obliczenie drogi do pokonania przez pociąg (200 m lub 0,2 km) oraz poprawne zinterpretowanie prędkości, np. zapisanie, że pociąg pokonuje 50 m w ciągu 1 s lub 0,2 km w ciągu 1/900 godziny. 1 punkt poprawny sposób obliczenia drogi, którą musi przejechać pociąg. LUB poprawne zinterpretowanie prędkości. 0 punktów rozwiązanie błędne lub brak rozwiązania zadania. 11 z 12

12 Zadanie 26. (0 4) IV. Rozumowanie i tworzenie strategii. 14. Zadania tekstowe. Uczeń: 1) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; 3) dostrzega zależności między podanymi informacjami; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki [ ] oraz nabyte umiejętności rachunkowe, a także własne poprawne metody; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. Przykładowe rozwiązania I sposób Koszt planowanych zakupów: 1, ,80 + 0, ,30 = , ,60 = 25,20 [zł] 25,20 20 = 5,20 [zł] tyle zabraknie na planowane zakupy 5,20 : 8,00 = 0,65 [kg] o tyle należy zmniejszyć planowaną ilość landrynek 1,5 0,65 = 0,85 [kg] Odpowiedź: Tomek może kupić 85 dag (lub 0,85 kg) landrynek. II sposób Koszt zakupów bez landrynek: 2 1,80 + 0, ,30 = 13,20 [zł] Na landrynki pozostaje 20 zł 13,20 zł = 6,80 zł, czyli można kupić 6,80 : 8 = 0,85 [kg] = 85 [dag]. Odpowiedź: Tomek może kupić 85 dag (lub 0,85 kg) landrynek. 4 punkty poprawny sposób obliczenia, ile maksymalnie można kupić landrynek (0,85 kg lub 85 dag). 3 punkty poprawny sposób obliczenia, ile landrynek można kupić, ale błędy w obliczeniach. Przykład 5,20 : 8 = 0,65 [kg] 1,5 0,65 = 0,85 [kg] LUB 6,80 : 8 = 0,65 [kg] 2 punkty poprawny sposób obliczenia kwoty, której zabraknie na planowane zakupy. Przykład 25,20 zł 20 zł = 5,20 zł LUB poprawny sposób obliczenia kwoty, jaką dysponuje Tomek na zakup landrynek. Przykład 20 zł 13,20 zł = 6,80 zł 1 punkt poprawny sposób obliczenia kosztu planowanych zakupów. Przykład 1, ,80 + 0, ,30 = , ,60 = 25,20 [zł] LUB poprawny sposób obliczenia kosztu planowanych zakupów bez landrynek. Przykład 2 1,80 + 0, ,30 = 13,20 [zł] 0 punktów rozwiązanie błędne lub brak rozwiązania zadania. 12 z 12

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ SP-5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Odbiór wypowiedzi i

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: SP-1X, SP-4 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Odbiór wypowiedzi

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ SP-8 KWIECIEŃ 2016 Zadanie 1. (0 1) JĘZYK POLSKI TAK Zadanie

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ SP-7 KWIECIEŃ 2016 Zadanie 1. (0 1) JĘZYK POLSKI B2 Zadanie

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ SP-8 KWIECIEŃ 2015 Zadanie 1. (0 1) JĘZYK POLSKI A Zadanie

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a 6 c Próbny sprawdzian w szóstej klasie Klasa 6c Wyniki procentowe poszczególnych uczniów 70% 60% 50% Polska (52%) 40% 30% 20% 10% 0% nr ucznia 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 wynik w % 51

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: SP-1X, SP-2, SP-4 KWIECIEŃ 2015 Zadanie 1. (0 1) JĘZYK POLSKI

Bardziej szczegółowo

Nowy Sprawdzian Szóstoklasisty 2017 z OPERONEM i Gazetą Wyborczą. Kartoteka testu

Nowy Sprawdzian Szóstoklasisty 2017 z OPERONEM i Gazetą Wyborczą. Kartoteka testu Kartoteka testu * 1. identyfikuje wypowiedź jako tekst informacyjny I.1.4. 2. odbiera teksty kultury na poziomie dosłownym II.3.1. i przenośnym 3. wyszukuje informacje wyrażone wprost i pośrednio (ukryte)

Bardziej szczegółowo

Ogólnopolski Sprawdzian Szóstoklasisty 2018 z OPERONEM. Kartoteka testu. Wymagania szczegółowe

Ogólnopolski Sprawdzian Szóstoklasisty 2018 z OPERONEM. Kartoteka testu. Wymagania szczegółowe Kartoteka testu 1. I. Odbiór wypowiedzi 2. I. Odbiór wypowiedzi 3. II. Analiza i interpretacja 4. I. Odbiór wypowiedzi 5. I. Odbiór wypowiedzi 6.a) 6.b) I. Odbiór wypowiedzi I. Odbiór wypowiedzi 7. I.

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ SP-7 KWIEIEŃ 2015 Zadanie 1. (0 1) JĘZYK POLSKI A Zadanie 2.

Bardziej szczegółowo

Język polski i matematyka

Język polski i matematyka KLUCZ ODPOWIEDZI I KARTOTEKA PRÓBNEGO SPRAWDZIANU W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ Język polski i matematyka Rok szkolny 201/2016 Wyniki próbnego sprawdzianu prosimy wpisywać na internetowej stronie

Bardziej szczegółowo

SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA

SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA PRZYKŁADOWY ZESTAW ZADAŃ DLA UCZNIÓW Z UPOŚLEDZENIEM UMYSŁOWYM W STOPNIU LEKKIM (S8) GRUDZIEŃ

Bardziej szczegółowo

PODSUMOWANIE - KWIECIEŃ 2015

PODSUMOWANIE - KWIECIEŃ 2015 PODSUMOWANIE - KWIECIEŃ 2015 J.POLSKI + MATEMATYKA ŚREDNIA J.POLSKI MATEMATYKA J.ANGIELSKI SZKOŁA 64,2% 72,3% 55,8% 77,42% POWIAT 68,2% 74,0% 62,0% 81,59% WOJEWÓDZTWO 65,8% 72,4% 58,8% 78,28% Wynik szkoły

Bardziej szczegółowo

KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ

KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL Nr zad. MATEMATYKA Odpowiedzi 1 AC. AD. BC. BD. 2 AC. AD. BC. BD. 3 A. B. C. D. 4 AC. AD. BC. BD. 5 A. B. C. D. 6 PP. PF. FP. FF. 7 A. B. C. D. 8 PP. PF.

Bardziej szczegółowo

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_8) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 2) II. Wykorzystanie

Bardziej szczegółowo

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA DNIE DIGNOSTYZNE W KLSIE SZÓSTEJ SZKOŁY PODSTWOWEJ W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 1. JĘZYK POLSKI I MTEMTYK ROZWIĄZNI ZDŃ I SHEMTY PUNKTOWNI RKUSZ S8 dla uczniów z upośledzeniem umysłowym w stopniu lekkim

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe

Bardziej szczegółowo

Analiza i interpretacja próbnego sprawdzianu w klasie szóstej

Analiza i interpretacja próbnego sprawdzianu w klasie szóstej Analiza i interpretacja próbnego sprawdzianu w klasie szóstej 17 grudnia 2014 r. 1 Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia 30 kwietnia 2007 roku w sprawie warunków i

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 6b Rozkład łatwości zadań Średni wynik klasy 22.38 pkt 53% Średni wynik szkoły 23.12 pkt 55% Średni wynik ogólnopolski 21.65 pkt 52% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa Klasa VIa Rozkład łatwości zadań Średni wynik klasy.75 pkt 40% Średni wynik szkoły 17.08 pkt 41% Średni wynik ogólnopolski.64 pkt 52% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

SPRAWDZIAN 2016 RAPORT

SPRAWDZIAN 2016 RAPORT SPRAWDZIAN 216 RAPORT Szkoła Podstawowa im. ks. Teodora Korcza w Zespole Szkolno-Przedszkolnym w Topoli Małej 1 Sprawdzian szóstoklasisty został przeprowadzony 5 kwietnia 216r, składał się z dwóch części.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Próbny Sprawdzian Szóstoklasisty 2016 II edycja Marzec 2016. Język polski i matematyka Klucz punktowania

Próbny Sprawdzian Szóstoklasisty 2016 II edycja Marzec 2016. Język polski i matematyka Klucz punktowania Próbny Sprawdzian Szóstoklasisty 016 II edycja Marzec 016 Język polski i matematyka Klucz punktowania ZADANIA WYBORU WIELOKROTNEGO 1. 6. 9. 10. 11. 15. 17. 18. 0. 1. 3. Poprawna odpowiedź B D D A C D B

Bardziej szczegółowo

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

Próbny egzamin ósmoklasisty z WSiP. Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 7 KWIECIEŃ Analiza wyników

Próbny egzamin ósmoklasisty z WSiP. Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 7 KWIECIEŃ Analiza wyników Próbny egzamin ósmoklasisty z WSiP Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 7 KWIECIEŃ 2018 Analiza wyników Arkusz egzaminu próbnego składał się z 22 zadań. Zadania sprawdzały umiejętności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII

Bardziej szczegółowo

Rozkład materiału nauczania. Klasa 5

Rozkład materiału nauczania. Klasa 5 1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-700-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ S7 dla uczniów słabosłyszących i niesłyszących

Bardziej szczegółowo

Sprawozdanie z analizy sprawdzianu zewnętrznego w roku szkolnym 2015/2016

Sprawozdanie z analizy sprawdzianu zewnętrznego w roku szkolnym 2015/2016 Sprawozdanie z analizy sprawdzianu zewnętrznego w roku 2015/2016 W dniu 5 kwietnia 2016r. po raz ostatni odbył się ogólnopolski sprawdzian dla uczniów klas szóstych szkół podstawowych. Do sprawdzianu w

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Analiza i interpretacja próbnego sprawdzianu w klasie szóstej

Analiza i interpretacja próbnego sprawdzianu w klasie szóstej Analiza i interpretacja próbnego sprawdzianu w klasie szóstej stycznia r. Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia kwietnia roku w sprawie warunków i sposobu oceniania,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016

Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Sprawdzian próbny napisało 19 uczniów klasy 6a, 1 uczeń nie przystąpił do sprawdzianu próbnego (nie był obecny w szkole). Jedna uczennica

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA V

Wymagania na poszczególne oceny szkolne KLASA V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa

Bardziej szczegółowo

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych

Bardziej szczegółowo

SPRAWDZIAN Rozwiązania zadań i schematy punktowania

SPRAWDZIAN Rozwiązania zadań i schematy punktowania SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania (Zestaw zadań dla uczniów bez niepełnosprawności i uczniów ze specyficznymi trudnościami w uczeniu się) KWIECIEŃ 2014 Obszar standardów egzaminacyjnych

Bardziej szczegółowo

I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ

I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań pisemnych

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie

Bardziej szczegółowo

R A P O R T. z cz. I i cz. II sprawdzianu w VI klasie szkoły podstawowej. Sprawdzian odbył się 5 kwietnia 2016 r. w

R A P O R T. z cz. I i cz. II sprawdzianu w VI klasie szkoły podstawowej. Sprawdzian odbył się 5 kwietnia 2016 r. w R A P O R T z cz. I i cz. II sprawdzianu w VI klasie szkoły podstawowej Sprawdzian odbył się 5 kwietnia 2016 r. w Szkole Podstawowej im. S. Staszica w Wilkowie-Osiedlu w roku szkolnym 2015/2016 1 Niniejszy

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 JĘZYK POLSKI

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 JĘZYK POLSKI PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) Wymagania szczegółowe 2) wyszukuje w wypowiedzi potrzebne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Liczby naturalne. Działania na liczbach naturalnych. Proste i odcinki. Kąty. Koła i okręgi. Działania pisemne na liczbach

Bardziej szczegółowo

ANALIZA SPRAWDZIANU SZÓSTOKLASISTY KWIECIEŃ 2016 ROK SZKOLNY 2015/2016

ANALIZA SPRAWDZIANU SZÓSTOKLASISTY KWIECIEŃ 2016 ROK SZKOLNY 2015/2016 ANALIZA SPRAWDZIANU SZÓSTOKLASISTY KWIECIEŃ 2016 ROK SZKOLNY 2015/2016 Opracowały: mgr U Radosz, mgr A Poll 1 Plan standardowego zestawu zadań egzaminacyjnych Sprawdzian został przeprowadzony 5 kwietnia

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-500-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe

Bardziej szczegółowo

SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania

SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania (Zestaw zadań dla uczniów bez niepełnosprawności i uczniów ze specyficznymi trudnościami w uczeniu się) KWIECIEŃ 2014 Obszar standardów egzaminacyjnych

Bardziej szczegółowo

Wstępne wyniki sprawdzianu w klasie szóstej w roku 2016

Wstępne wyniki sprawdzianu w klasie szóstej w roku 2016 OKRĘGOWA KOMISJA EGZAMINACYJNA ul. Gronowa 22, 61-655 Poznań tel.: 61 854 01 60, fax: 61 852 14 41 www.oke.poznan.pl OKEP 4513/18/2016 Wstępne wyniki sprawdzianu w klasie szóstej w roku 2016 Szanowni Państwo,

Bardziej szczegółowo

Wstępne wyniki sprawdzianu w klasie szóstej w roku 2015

Wstępne wyniki sprawdzianu w klasie szóstej w roku 2015 OKRĘGOWA KOMISJA EGZAMINACYJNA ul. Gronowa 22, 61-655 Poznań tel.: 61 854 01 60, fax: 61 852 14 41 www.oke.poznan.pl OKEP 4513/16/2015 Wstępne wyniki sprawdzianu w klasie szóstej w roku 2015 Szanowni Państwo,

Bardziej szczegółowo

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23 TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile

Bardziej szczegółowo

Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr

Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr Opracowały: Grala Ewa Sylwia Filipkowska Jadwiga Potaś Janina Rydzewska Agnieszka Sienkiewicz Bożena Sprawdzian wiadomości

Bardziej szczegółowo

SPRAWDZIAN 2013. Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji)

SPRAWDZIAN 2013. Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji) SPRWDZIN 2013 Klucz punktowania zadań (zestawy zadań dla uczniów bez dysfunkcji) KWIEIEŃ 2013 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność

Bardziej szczegółowo

SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA (S7)

SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA (S7) SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA (S7) GRUDZIEŃ 2013 Zadanie 1. zawartych w nich informacji. Uczeń [ ] zdobywa świadomość

Bardziej szczegółowo

SPRAWDZIAN 2015 RAPORT

SPRAWDZIAN 2015 RAPORT SPRAWDZIAN 2015 RAPORT Szkoła Podstawowa im. ks. Teodora Korcza w Zespole Szkolno-Przedszkolnym w Topoli Małej 1 Sprawdzian szóstoklasisty został przeprowadzony 1 kwietnia 2015r, składał się z dwóch części.

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 EGZMIN W KLSIE TRZECIEJ GIMNZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 1. JĘZYK POLSKI ZSDY OCENINI ROZWIĄZŃ ZDŃ RKUSZ GH-P8 KWIECIEŃ 2017 Zadanie 1. (0 1) 2) wyszukuje w wypowiedzi potrzebne informacje [ ].

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014

PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014 PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014 1 1 Wstęp W kwietniu 2015 roku uczniowie klas szóstych będą pisać swój sprawdzian w nowej formule: część 1. - język polski i matematyka

Bardziej szczegółowo

Wymagania programowe z matematyki w klasie V.

Wymagania programowe z matematyki w klasie V. Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne

Bardziej szczegółowo

PRÓBNY SPRAWDZIAN Z NOWĄ ERĄ 2014/2015. Część 1. JĘZYK POLSKI I MATEMATYKA

PRÓBNY SPRAWDZIAN Z NOWĄ ERĄ 2014/2015. Część 1. JĘZYK POLSKI I MATEMATYKA PRÓBNY SPRAWDZIAN Z NOWĄ ERĄ 2014/2015 Część 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) I. Odbiór wypowiedzi i wykorzystanie

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy 4 Szkoły Podstawowej poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: Matematyka

Bardziej szczegółowo

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r. PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ W DNIU 27 SIERPNIA 2012 r. (ze zmianami) Cele kształcenia wymagania ogólne I. Sprawność rachunkowa.

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ: GH-P7 KWIECIEŃ 2017 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P2 KWIECIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KL. IV- VI ROK SZKOLNY 2015/2016

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KL. IV- VI ROK SZKOLNY 2015/2016 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KL. IV- VI ROK SZKOLNY 2015/2016 Przedmiotowe zasady oceniania zawierają: 1. Kryteria oceniania na poszczególne oceny. Kryteria oceniania punktowanych sprawdzianów

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIECIEŃ 2019 Zadanie 1. (0 1) PF Zadanie 2. (0 1) II. Analiza i interpretacja

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i

Bardziej szczegółowo