MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:"

Transkrypt

1 MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile razy mniej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) zapisuje i odczytuje liczby naturalne wielocyfrowe; II. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe lub większe, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; ) szacuje wyniki działań. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 3) porównuje liczby naturalne; II. Działania na liczbach naturalnych. Uczeń: 6) porównuje liczby naturalne z wykorzystaniem ich różnicy lub ilorazu; ) szacuje wyniki działań. II. Działania na liczbach naturalnych. Uczeń: 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); ) szacuje wyniki działań. II. Działania na liczbach naturalnych. Uczeń: 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); ) szacuje wyniki działań. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 3) porównuje liczby naturalne; II. Działania na liczbach naturalnych. Uczeń: 6) porównuje liczby naturalne z wykorzystaniem ich różnicy lub ilorazu; ) szacuje wyniki działań.

2 6. Dzielenie z resztą 7. Kwadraty i sześciany liczb 8. Zadania tekstowe, cz. 9. Czytanie tekstów. Analizowanie informacji 0. Przygotowanie do rozwiązywania zadań tekstowych II. Działania na liczbach naturalnych. Uczeń: 4) wykonuje dzielenie z resztą liczb naturalnych; ) szacuje wyniki działań. II. Działania na liczbach naturalnych. Uczeń: 0) oblicza kwadraty i sześciany liczb naturalnych; XIV. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 6) weryfikuje wynik zadania, oceniając sensowność rozwiązania. XIV. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 6) weryfikuje wynik zadania, oceniając sensowność rozwiązania. XIV. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania np. poprzez szacowanie, sprawdzanie wszystkich warunków zadania, ocenianie rzędu wielkości otrzymanego wyniku;

3 . Zadania tekstowe, cz.. Kolejność wykonywania działań 3. Oś liczbowa Praca klasowa i jej omówienie. SYSTEMY ZAPISYWANIA LICZB 7 h. System dziesiątkowy. Porównywanie liczb naturalnych II. Działania na liczbach naturalnych. Uczeń: 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia oraz rozdzielność mnożenia względem dodawania; ) stosuje reguły dotyczące kolejności wykonywania działań; XIV. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania np. poprzez szacowanie, sprawdzanie wszystkich warunków zadania, ocenianie rzędu wielkości otrzymanego wyniku; II. Działania na liczbach naturalnych. Uczeń: 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia oraz rozdzielność mnożenia względem dodawania; ) stosuje reguły dotyczące kolejności wykonywania działań; ) szacuje wyniki działań. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) interpretuje liczby naturalne na osi liczbowej; I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) zapisuje i odczytuje liczby naturalne wielocyfrowe; ) interpretuje liczby naturalne na osi liczbowej; I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 3) porównuje liczby naturalne;

4 3. Rachunki pamięciowe na dużych liczbach 4. Jednostki monetarne złote i grosze 5. Jednostki długości 6. Jednostki masy 7. System rzymski 8. Z kalendarzem za pan brat 9. Godziny na zegarach Praca klasowa i jej omówienie II. Działania na liczbach naturalnych. Uczeń: ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe lub większe, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) zapisuje i odczytuje liczby naturalne wielocyfrowe; 3) porównuje liczby naturalne; 4) zaokrągla liczby naturalne; VII. Proste i odcinki. Uczeń: 4) mierzy odcinek z dokładnością do mm XII. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: milimetr, centymetr, decymetr, metr, kilometr; XII. Obliczenia praktyczne. Uczeń: 7) zamienia i prawidłowo stosuje jednostki masy: gram, dekagram, kilogram, tona; I. Liczby naturalne w układzie pozycyjnym. Uczeń: 5) liczby w zakresie do zapisane w systemie rzymskim przedstawia w systemie dziesiątkowym, a zapisane w systemie dziesiątkowym przedstawia w systemie rzymskim. XII. Obliczenia praktyczne. Uczeń: 4) wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach; XII. Obliczenia praktyczne. Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach;

5 3. DZIAŁANIA PISEMNE 5 h. Dodawanie pisemne. Odejmowanie pisemne 3. Mnożenie pisemne przez liczby jednocyfrowe 4. Mnożenie przez liczby z zerami na końcu 5. Mnożenie pisemne przez liczby wielocyfrowe 6. Dzielenie pisemne przez liczby jednocyfrowe II. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje liczby naturalne wielocyfrowe sposobem pisemnym i za pomocą kalkulatora; II. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje liczby naturalne wielocyfrowe sposobem pisemnym i za pomocą kalkulatora; II. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); ) szacuje wyniki działań. II. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); ) szacuje wyniki działań. II. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); ) szacuje wyniki działań. II. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); ) szacuje wyniki działań..

6 7. Działania pisemne. Zadania tekstowe Praca klasowa i jej omówienie 4. FIGURY GEOMETRYCZNE h. Proste, półproste, odcinki. Wzajemne położenie prostych 3. Odcinki prostopadłe i odcinki równoległe 4. Mierzenie długości 5. Kąty II. Działania na liczbach naturalnych. Uczeń: 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia oraz rozdzielność mnożenia względem dodawania; ) stosuje reguły dotyczące kolejności wykonywania działań; XIV. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania np. poprzez szacowanie, sprawdzanie wszystkich warunków zadania, ocenianie rzędu wielkości otrzymanego wyniku; VII. Proste i odcinki. Uczeń: ) rozpoznaje i nazywa figury: punkt, prosta, półprosta, odcinek; VII. Proste i odcinki. Uczeń: ) rozpoznaje proste i odcinki prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; VII. Proste i odcinki. Uczeń: ) rozpoznaje proste i odcinki prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; VII. Proste i odcinki. Uczeń: 4) mierzy odcinek z dokładnością do mm VIII. Kąty. Uczeń: ) wskazuje w dowolnym kącie ramiona i wierzchołek; 4) rozpoznaje kąt prosty, ostry i rozwarty; 5) porównuje kąty;

7 6. Mierzenie kątów 7. Wielokąty 8. Prostokąty i kwadraty 9. Obwody prostokątów i kwadratów 0. Koła i okręgi. Co to jest skala?. Skala na planach Praca klasowa i jej omówienie 5. UŁAMKI ZWYKŁE 8 h. Ułamek jako część całości. Liczby mieszane 3. Ułamki i liczby mieszane na osi liczbowej VIII. Kąty. Uczeń: ) mierzy z dokładnością do stopnia kąty mniejsze od 80 ; 3) rysuje kąty mniejsze od 80 ; 6) rozpoznaje kąty wierzchołkowe i przyległe oraz korzysta z ich własności. VII. Proste i odcinki. Uczeń: ) rozpoznaje proste i odcinki prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych. VIII. Kąty. Uczeń: 4) rozpoznaje kąt prosty, ostry i rozwarty. IX. Wielokąty, koła i okręgi. Uczeń: 4) rozpoznaje i nazywa: kwadrat, prostokąt.; 5) zna najważniejsze własności kwadratu, prostokąta ; XI. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków; IX. Wielokąty, koła i okręgi. Uczeń: 6) wskazuje na rysunku cięciwę, średnicę oraz promień koła i okręgu; 7) rysuje cięciwę koła i okręgu, a także, jeżeli dany jest środek okręgu, promień i średnicę; XII. Obliczenia praktyczne. Uczeń: 8) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali, oraz długość odcinka w skali, gdy dana jest jego rzeczywista długość; XII. Obliczenia praktyczne. Uczeń: 8) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali, oraz długość odcinka w skali, gdy dana jest jego rzeczywista długość; IV. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; IV. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej, a liczbę mieszaną w postaci ułamka niewłaściwego; IV. Ułamki zwykłe i dziesiętne. Uczeń: 7) zaznacza i odczytuje ułamki zwykłe i dziesiętne na osi liczbowej oraz odczytuje ułamki zwykłe i dziesiętne zaznaczone na osi liczbowej;

8 4. Porównywanie ułamków 5. Rozszerzanie i skracanie ułamków 6. Ułamki niewłaściwe 7. Ułamek jako wynik dzielenia 8. Dodawanie ułamków zwykłych 9. Odejmowanie ułamków zwykłych Praca klasowa i jej omówienie 6. UŁAMKI DZIESIĘTNE 7 h. Ułamki o mianownikach 0, 00, 00. Zapisywanie wyrażeń dwumianowanych, cz. 3. Zapisywanie wyrażeń dwumianowanych, cz. 4. Różne zapisy tego samego ułamka dziesiętnego 5. Porównywanie ułamków dziesiętnych 3 3 IV. Ułamki zwykłe i dziesiętne. Uczeń: 7) zaznacza i odczytuje ułamki zwykłe i dziesiętne na osi liczbowej oraz odczytuje ułamki zwykłe i dziesiętne zaznaczone na osi liczbowej; ) porównuje ułamki (zwykłe i dziesiętne); IV. Ułamki zwykłe i dziesiętne. Uczeń: 3) skraca i rozszerza ułamki zwykłe; IV. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej, a liczbę mieszaną w postaci ułamka niewłaściwego; IV. Ułamki zwykłe i dziesiętne. Uczeń: ) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek zwykły; V. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; V. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; IV. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej, a liczbę mieszaną w postaci ułamka niewłaściwego; 8) zapisuje ułamki dziesiętne skończone w postaci ułamków zwykłych; 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone dowolną metodą; XII. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: milimetr, centymetr, decymetr, metr, kilometr; XII. Obliczenia praktyczne. Uczeń: 7) zamienia i prawidłowo stosuje jednostki masy: gram, dekagram, kilogram, tona; IV. Ułamki zwykłe i dziesiętne. Uczeń: ) porównuje ułamki (zwykłe i dziesiętne). IV. Ułamki zwykłe i dziesiętne. Uczeń: ) porównuje ułamki (zwykłe i dziesiętne).

9 6. Dodawanie ułamków dziesiętnych 7. Odejmowanie ułamków dziesiętnych Sprawdzian i jego omówienie 7. POLA FIGUR 8 h. Co to jest pole figury?. Jednostki pola. Pole prostokąta 3. Zależność między jednostkami pola 4. Wycinanki i układanki Sprawdzian i jego omówienie 8. PROSTOPADŁOŚCIANY I SZEŚCIANY 7 h. Opis prostopadłościanu. Siatki prostopadłościanów 3. Pole powierzchni prostopadłościanu 4. Sprawdzian i jego omówienie 3 V. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w przykładach najprostszych), pisemnie i za pomocą kalkulatora (w przykładach trudniejszych); V. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w przykładach najprostszych), pisemnie i za pomocą kalkulatora (w przykładach trudniejszych); XI. Obliczenia w geometrii. Uczeń: ) oblicza pola: trójkąta, kwadratu, prostokąta przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; XI. Obliczenia w geometrii. Uczeń: 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń); XI. Obliczenia w geometrii. Uczeń: 3) stosuje jednostki pola: mm, cm, dm, m, km, ar, hektar (bez zamiany jednostek w trakcie obliczeń); XII. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: milimetr, centymetr, decymetr, metr, kilometr; X. Bryły. Uczeń: ) wskazuje wśród graniastosłupów prostopadłościany i sześciany i uzasadnia swój wybór; X. Bryły. Uczeń: 3) rozpoznaje siatki graniastosłupów prostych ; 4) rysuje siatki prostopadłościanów; XI. Obliczenia w geometrii. Uczeń: 3) stosuje jednostki pola: mm, cm, dm, m, km, ar, hektar (bez zmiany jednostek w trakcie obliczeń); 5) oblicza objętość i pole powierzchni prostopadłościanu przy danych długościach krawędzi;

10

11 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) odczytuje i zapisuje liczby naturalne wielocyfrowe; ) interpretuje liczby naturalne na osi liczbowej; 3) porównuje liczby naturalne;. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, takich jak np lub ; liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 4) wykonuje dzielenie z resztą liczb naturalnych; 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne; 0) oblicza kwadraty i sześciany liczb naturalnych;. Działania na liczbach naturalnych. Uczeń: 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; ) stosuje reguły dotyczące kolejności wykonywania działań;. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, takich jak np lub ; liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne;

12 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 5. Zadania tekstowe. 6. Szacowanie wyników działań. 7. Działania pisemne dodawanie i odejmowanie. 8. Działania pisemne mnożenie. 9. Działania pisemne dzielenie.. Działania na liczbach naturalnych. Uczeń: ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; ) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 6) porównuje różnicowo i ilorazowo liczby naturalne; 4. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy; 5) do rozwiązania zadania osadzonego w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki oraz nabyte umiejętności rachunkowe, w także własne poprawne metody; 6) weryfikuje wynik zadania, oceniając sensowność rozwiązania.. Działania na liczbach naturalnych. Uczeń: ) szacuje wyniki działań.. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora;. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową pisemnie i za pomocą kalkulatora (w trudniejszych przykładach);. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową pisemnie i za pomocą kalkulatora (w trudniejszych przykładach);

13 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 0. Cztery działania na liczbach.. WŁASNOŚCI LICZB NATURALNYCH. Wielokrotności.. Dzielniki. 3. Cechy podzielności przez, 5, 0, 00 oraz przez 3 i Liczby pierwsze i liczby złożone. 5. Rozkład liczby na czynniki pierwsze.. Działania na liczbach naturalnych. Uczeń: ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; ) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne;. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); 6) porównuje ilorazowo liczby naturalne;. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); 6) porównuje ilorazowo liczby naturalne;. Działania na liczbach naturalnych. Uczeń 7) rozpoznaje liczby naturalne podzielne przez, 3, 5, 9, 0, 00;. Działania na liczbach naturalnych. Uczeń 7) rozpoznaje liczby naturalne podzielne przez, 3, 5, 9, 0, 00; 8) rozpoznaje liczbę złożoną, gdy jest ona jednocyfrowa lub dwucyfrowa, a także, gdy na istnienie dzielnika wskazuje poznana cecha podzielności;. Działania na liczbach naturalnych. Uczeń 9) rozkłada liczby dwucyfrowe na czynniki pierwsze;

14 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 3. UŁAMKI ZWYKŁE. Ułamki zwykłe i liczby mieszane.. Ułamek jako iloraz. 3. Skracanie i rozszerzanie ułamków. 4. Porównywanie ułamków. 5. Dodawanie i odejmowanie ułamków o jednakowych mianownikach. 6. Dodawanie i odejmowanie ułamków o różnych mianownikach. 4. Ułamki zwykłe i dziesiętne. Uczeń ) opisuje część danej całości za pomocą ułamka; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 7) zaznacza ułamki zwykłe na osi liczbowej oraz odczytuje ułamki zwykłe zaznaczone na osi liczbowej; 4. Ułamki zwykłe i dziesiętne. Uczeń ) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek; 4. Ułamki zwykłe i dziesiętne. Uczeń 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 4. Ułamki zwykłe i dziesiętne. Uczeń 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; ) porównuje ułamki; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje i odejmuje ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 4. Ułamki zwykłe i dziesiętne. Uczeń: 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje i odejmuje ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 4. Zadania tekstowe.

15 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 7. Mnożenie ułamków przez liczby naturalne. 8. Obliczanie ułamka danej liczby. 9. Mnożenie ułamków. 0. Dzielenie ułamków przez liczby naturalne.. Dzielenie ułamków. 4. FIGURY NA PŁASZCZYŹNIE. Proste prostopadłe i proste równoległe.. Kąty. 4. Ułamki zwykłe i dziesiętne. Uczeń 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) mnoży ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 5) oblicza ułamek danej liczby naturalnej; 4. Zadania tekstowe. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) mnoży ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 5) oblicza ułamek danej liczby naturalnej; 6) oblicza kwadraty i sześciany ułamków zwykłych oraz liczb mieszanych; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 7. Proste i odcinki. Uczeń: ) rozpoznaje i nazywa figury: punkt, prosta, półprosta, odcinek; ) rozpoznaje odcinki i proste prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; 4) mierzy długość odcinka z dokładnością do mm; 5) wie, że aby znaleźć odległość punktu od prostej, należy znaleźć długość odpowiedniego odcinka prostopadłego; 8. Kąty. Uczeń: ) wskazuje w kątach ramiona i wierzchołek; 4) rozpoznaje kąt prosty, ostry i rozwarty;

16 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 3. Mierzenie kątów. 4. Kąty przyległe, wierzchołkowe. Kąty utworzone przez trzy proste. 5. Wielokąty. 6. Rodzaje trójkątów. 7. Konstruowanie trójkąta o danych bokach. 8. Miary kątów w trójkątach. 8. Kąty. Uczeń: ) mierzy kąty mniejsze od 80 stopni z dokładnością do stopnia; 3) rysuje kąt o mierze mniejszej niż 80 stopni; 4) rozpoznaje kąt prosty, ostry i rozwarty; 5) porównuje kąty; 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 9. Wielokąty, koła, okręgi. Uczeń: 4) rozpoznaje i nazywa kwadrat, prostokąt,. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków; 9. Wielokąty, koła, okręgi. Uczeń: ) rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne, równoboczne i równoramienne;. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków; 9. Wielokąty, koła, okręgi. Uczeń: ) konstruuje trójkąt o trzech danych bokach; ustala możliwość zbudowania trójkąta (na podstawie nierówności trójkąta); 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 9. Wielokąty, koła, okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów trójkąta;. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów.

17 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 7. Proste i odcinki. Uczeń: ) rozpoznaje odcinki i proste prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; 9. Prostokąty i kwadraty. 9. Wielokąty, koła, okręgi. Uczeń: 4) rozpoznaje i nazywa kwadrat, prostokąt; 5) zna najważniejsze własności kwadratu, prostokąta;. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków; 7. Proste i odcinki. Uczeń: ) rozpoznaje odcinki i proste równoległe; 3) rysuje pary odcinków równoległych; 0. Równoległoboki i romby. 9. Wielokąty, koła, okręgi. Uczeń: 4) rozpoznaje i nazywa romb, równoległobok; 5) zna najważniejsze własności rombu, równoległoboku;. Miary kątów w równoległobokach.. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków; 9. Wielokąty, koła, okręgi. Uczeń: 5) zna najważniejsze własności rombu, równoległoboku;. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 7. Proste i odcinki. Uczeń: ) rozpoznaje odcinki i proste równoległe; 3) rysuje pary odcinków równoległych;. Trapezy 9. Wielokąty, koła, okręgi. Uczeń: 4) rozpoznaje i nazywa trapez; 5) zna najważniejsze własności trapezu;. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków;

18 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 3. Miary kątów w trapezach. 4. Czworokąty podsumowanie. 9. Wielokąty, koła, okręgi. Uczeń: 5) zna najważniejsze własności trapezu;. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 9. Wielokąty, koła, okręgi. Uczeń: 4) rozpoznaje i nazywa kwadrat, prostokąt, romb, równoległobok, trapez; 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 5. Figury przystające. 9. Wielokąty, koła, okręgi. 5. UŁAMKI DZIESIĘTNE. Zapisywanie ułamków dziesiętnych.. Porównywanie ułamków dziesiętnych. 4. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; 7) zaznacza ułamki dziesiętne na osi liczbowej oraz odczytuje ułamki dziesiętne zaznaczone na osi liczbowej; 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe będące dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone (przez rozszerzanie ułamków zwykłych); 4. Ułamki zwykłe i dziesiętne. Uczeń: ) porównuje ułamki dziesiętne; 4. Zadania tekstowe. 4. Ułamki zwykłe i dziesiętne. Uczeń: 6) zapisuje wyrażenia dwumianowane w postaci ułamka dziesiętnego i odwrotnie; 3. Różne sposoby zapisywania długości i masy.. Obliczenia praktyczne. Uczeń: 6) prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 7) prawidłowo stosuje jednostki masy: gram, kilogram, dekagram, tona; 4. Zadania tekstowe.

19 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 4. Dodawanie i odejmowanie ułamków dziesiętnych. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje i odejmuje ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 4) porównuje różnicowo ułamki; 5. Mnożenie ułamków dziesiętnych przez 0, 00, Dzielenie ułamków dziesiętnych przez 0, 00, Mnożenie ułamków dziesiętnych przez liczby naturalne. 8. Mnożenie ułamków dziesiętnych. 9. Dzielenie ułamków dziesiętnych przez liczby naturalne. 0. Dzielenie ułamków dziesiętnych.. Szacowanie wyników działań na ułamkach dziesiętnych. 4. Zadania tekstowe. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) mnoży ułamki dziesiętne w pamięci (w najprostszych przykładach); 4. Zadania tekstowe. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach); 4. Zadania tekstowe. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) mnoży ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie; 5) oblicza ułamek danej liczby naturalnej; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) mnoży ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 6) oblicza kwadraty i sześciany ułamków dziesiętnych; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 9) szacuje wyniki działań.

20 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5. Działania na ułamkach zwykłych i dziesiętnych. 3. Procenty a ułamki. 6. POLA FIGUR. Pole prostokąta i kwadratu. 4. Ułamki zwykłe i dziesiętne. Uczeń: 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe będące dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone (przez rozszerzanie ułamków zwykłych); 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 3) wykonuje nieskomplikowane rachunki, w których występują jednocześnie ułamki zwykłe i dziesiętne;. Obliczenia praktyczne. Uczeń: ) interpretuje 00% danej wielkości jako całość, 50% - jako połowę, 5% - jako jedną czwartą, 0% - jako jedną dziesiątą, a % - jako jedną setną danej wielkości liczbowej; ) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 0%, 0%.. Obliczenia w geometrii. Uczeń: ) oblicza pola: kwadratu i prostokąta przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Zależności między jednostkami pola. 4. Zadania tekstowe.. Obliczenia w geometrii. Uczeń: ) oblicza pola: kwadratu i prostokąta przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Obliczenia praktyczne. Uczeń: 6) prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 4. Zadania tekstowe.

21 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 3. Pole równoległoboku. 4. Pole rombu. 5. Pole trójkąta. 6. Pole trapezu. 7. Pola wielokątów podsumowanie. Obliczenia w geometrii. Uczeń: ) oblicza pola: równoległoboków przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Obliczenia w geometrii. Uczeń: ) oblicza pola: rombów przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Obliczenia w geometrii. Uczeń: ) oblicza pola: trójkątów przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Obliczenia w geometrii. Uczeń: ) oblicza pola: trapezów przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków; ) oblicza pola: kwadratu, prostokąta, rombu, równoległoboku, trójkąta, trapezu przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń); 7. LICZBY CAŁKOWITE

22 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5. Liczby ujemne.. Dodawanie liczb całkowitych. 3. Odejmowanie liczb całkowitych. 4. Mnożenie i dzielenie liczb całkowitych 8. GRANIASTOSŁUPY. Prostopadłościany i sześciany.. Przykłady graniastosłupów prostych. 3. Siatki graniastosłupów prostych. 4. Pole powierzchni graniastosłupa prostego. 5. Objętość figury. Jednostki objętości. 6. Objętość prostopadłościanu. 3. Liczby całkowite. Uczeń: ) podaje praktyczne przykłady stosowania liczb ujemnych; ) interpretuje liczby całkowite na osi liczbowej; 4) porównuje liczby całkowite;. Obliczenia praktyczne. Uczeń: 5) odczytuje temperaturę (dodatnią i ujemną) 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki na liczbach całkowitych; 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki na liczbach całkowitych; 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki na liczbach całkowitych; 0. Bryły. Uczeń: ) wskazuje wśród graniastosłupów prostopadłościany i sześciany i uzasadnia swój wybór; 0. Bryły. Uczeń: ) rozpoznaje graniastosłupy proste w sytuacjach praktycznych i wskazuje te bryły wśród innych modeli brył; ) wskazuje wśród graniastosłupów prostopadłościany i sześciany i uzasadnia swój wybór; 0. Bryły. Uczeń: 3) rozpoznaje siatki graniastosłupów prostych; 4) rysuje siatki prostopadłościanów;. Obliczenia w geometrii. Uczeń: 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zmiany jednostek w trakcie obliczeń); 4) oblicza pole powierzchni prostopadłościanu przy danych długościach krawędzi;. Obliczenia w geometrii. Uczeń: 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ;. Obliczenia w geometrii. Uczeń: 4) oblicza objętość prostopadłościanu przy danych długościach krawędzi; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ;

23 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 5 7. Objętość graniastosłupa prostego. 8. Litry i mililitry.. Obliczenia w geometrii. Uczeń: 4) oblicza objętość prostopadłościanu przy danych długościach krawędzi; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ;. Obliczenia w geometrii. Uczeń: 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ;

24 LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI ( H). Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) odczytuje i zapisuje liczby naturalne wielocyfrowe; ) interpretuje liczby naturalne na osi liczbowej; 3) porównuje liczby naturalne;. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach takich jak np lub , liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową ( ) w pamięci (w najprostszych przykładach) ( ) 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne; 0) oblicza kwadraty i sześciany liczb naturalnych; ) stosuje reguły dotyczące kolejności wykonywania działań; ) szacuje wyniki działań. 4. Ułamki zwykłe i dziesiętne. Uczeń: 7) zaznacza ułamki zwykłe i dziesiętne na osi liczbowej oraz odczytuje ułamki zwykłe i dziesiętne zaznaczone na osi liczbowej; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje ułamki dziesiętne w pamięci (w najprostszych przykładach) ( ); 5) oblicza ułamek danej liczby naturalnej; 6) oblicza kwadraty i sześciany ułamków ( ) dziesiętnych ( ); 7) oblicza wartości prostych wyrażeń arytmetycznych, stosując reguły dotyczące kolejności wykonywania działań; 8) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii ( ); 9) szacuje wyniki działań.

25 . Działania pisemne na ułamkach dziesiętnych. 4. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe ( ); 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie ( ); 4. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe ( ); 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 3. Potęgowanie liczb*. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 6) oblicza kwadraty i sześciany ułamków zwykłych i dziesiętnych oraz liczb mieszanych; 4. Działania na ułamkach zwykłych. 4. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; ) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek; 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 6) zapisuje wyrażenia dwumianowane w postaci ułamka dziesiętnego i odwrotnie; 7) zaznacza ułamki zwykłe ( ) na osi liczbowej oraz odczytuje ułamki zwykłe ( ) zaznaczone

26 na osi liczbowej; 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 4. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę 5. Ułamki zwykłe i dziesiętne. z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe; 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 4. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; ) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek; 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 7) zaznacza ułamki zwykłe na osi liczbowej oraz odczytuje ułamki zwykłe zaznaczone na osi liczbowej; 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora); 0) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt. 9 w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci lub za pomocą kalkulatora; ) porównuje ułamki (zwykłe i dziesiętne). 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych,

27 6. Rozwinięcia dziesiętne ułamków zwykłych. a także liczby mieszane; ) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 3) wykonuje nieskomplikowane rachunki, w których występują jednocześnie ułamki zwykłe i dziesiętne; 4) porównuje różnicowo ułamki; 8) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii lub za pomocą kalkulatora; 4. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania; 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe ( ); 6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania. 4. Ułamki zwykłe i dziesiętne. Uczeń: 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora); 0) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt. 9 w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora; 7. Powtórzenie wiadomości. 8. Praca klasowa. FIGURY NA PŁASZCZYŹNIE (9 H). Proste, odcinki, okręgi, koła. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 4) porównuje różnicowo ułamki; 7. Proste i odcinki. Uczeń: ) rozpoznaje i nazywa figury: punkt, prosta, półprosta, odcinek; ) rozpoznaje odcinki i proste prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych;

28 . Trójkąty, czworokąty i inne wielokąty. 5) wie, że aby znaleźć odległość punktu od prostej, należy znaleźć długość odpowiedniego odcinka prostopadłego; 9. Wielokąty, koła i okręgi. Uczeń: 6) wskazuje na rysunku, a także rysuje cięciwę, średnicę, promień koła i okręgu. 9. Wielokąty, koła i okręgi. Uczeń: ) rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne, równoboczne i równoramienne; 4) rozpoznaje i nazywa kwadrat, prostokąt, romb, równoległobok, trapez; 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu;. Obliczenia w geometrii. Uczeń: ) oblicza obwód wielokąta o danych długościach boków 3. Kąty. 8. Kąty. Uczeń: ) wskazuje w kątach ramiona i wierzchołek; ) mierzy kąty mniejsze od 80 stopni z dokładnością do stopnia; 3) rysuje kąt o mierze mniejszej niż 80 stopni; 4) rozpoznaje kąt prosty, ostry i rozwarty; 5) porównuje kąty; 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 4. Kąty w trójkątach i czworokątach.. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 9. Wielokąty, koła i okręgi. Uczeń: 3) stosuje twierdzenie o sumie kątów trójkąta; 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu; 5. Powtórzenie wiadomości. 6. Praca klasowa. Obliczenia w geometrii. Uczeń: 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów.

29 LICZBY NA CO DZIEŃ (4 H). Kalendarz i czas.. Obliczenia praktyczne: Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach; 4) wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach;. Jednostki długości i jednostki masy. 3. Skala na planach i mapach.. Obliczenia praktyczne. Uczeń: 6) zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 7) zamienia i prawidłowo stosuje jednostki masy: gram, kilogram, dekagram, tona;. Obliczenia praktyczne. Uczeń: 8) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali, oraz długość odcinka w skali, gdy dana jest jego rzeczywista długość; 4. Zaokrąglanie liczb.. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: 4) zaokrągla liczby naturalne; 4. Ułamki zwykłe i dziesiętne. Uczeń: ) zaokrągla ułamki dziesiętne; 5. Kalkulator.. Działania na liczbach naturalnych. Uczeń: ) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową pisemnie, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach); 4. Ułamki zwykłe i dziesiętne. Uczeń: 9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone dowolną metodą (( ) lub za pomocą kalkulatora); 6. Odczytywanie informacji z tabel i diagramów. 7. Odczytywanie danych przedstawionych na wykresach. 5. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: ) dodaje odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci ( ) i za pomocą kalkulatora; 8) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii lub za pomocą kalkulatora; 3. Elementy statystyki opisowej. Uczeń: ) gromadzi i porządkuje dane; ) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach. 3. Elementy statystyki opisowej. Uczeń: ) gromadzi i porządkuje dane; ) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach.

30 8. Powtórzenie wiadomości. 9. Praca klasowa. PRĘDKOŚĆ, DROGA, CZAS (8 H). Droga.. Obliczenia praktyczne. Uczeń: 6)zamieniai prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, ( ). Prędkość.. Obliczenia praktyczne. Uczeń: 6)zamieniai prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: ( ) prędkość przy danej drodze i danym czasie, ( ) stosuje jednostki prędkości: km/h, m/s 3. Czas.. Obliczenia praktyczne. Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach; 6)zamieniai prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: ( ) czas przy danej drodze i danej prędkości; 4. Droga, prędkość, czas.. Obliczenia praktyczne. Uczeń: 3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach; 6)zamieniai prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, prędkość przy danej drodze i danym czasie, czas przy danej drodze i danej prędkości; stosuje jednostki prędkości: km/h, m/s 5. Sprawdzian. POLA WIELOKĄTÓW (0 H). Pole prostokąta.. Obliczenia w geometrii. Uczeń: ) oblicza pola: kwadratu, prostokąta ( ) przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w trakcie obliczeń);. Pole równoległoboku. Obliczenia w geometrii. Uczeń:

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE

WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23 TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,

Bardziej szczegółowo

II. Działania na liczbach naturalnych. Uczeń:

II. Działania na liczbach naturalnych. Uczeń: TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY V

WYMAGANIA EGZAMINACYJNE DLA KLASY V TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.

Bardziej szczegółowo

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka

Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.

Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Liczby naturalne. Działania na liczbach naturalnych. Proste i odcinki. Kąty. Koła i okręgi. Działania pisemne na liczbach

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i

Bardziej szczegółowo

Wymagania programowe z matematyki w klasie V.

Wymagania programowe z matematyki w klasie V. Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA V

Wymagania na poszczególne oceny szkolne KLASA V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Rozkład materiału nauczania. Klasa 5

Rozkład materiału nauczania. Klasa 5 1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste

Bardziej szczegółowo

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV i ponadpodstawowe z matematyki w SP9 Klasa IV Rozdział DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM 1. Zbieranie i prezentowanie danych 2. Rzymski system zapisu liczb 3. Obliczenia kalendarzowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019. Treści nauczania według podstawy programowej klasa IV klasa V klasa VI

Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019. Treści nauczania według podstawy programowej klasa IV klasa V klasa VI Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019 W tabeli przedstawiono informacje, w których klasach według program Matematyka z plusem realizowane są poszczególne wymagania.

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM Opis założonych osiągnięć ucznia Wymagania programowe, które stanowią oczekiwane osiągnięcia uczniów zostały podzielone na wymagania podstawowe (bazowe dla przedmiotu) i wymagania ponadpodstawowe (rozszerzające

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,

Bardziej szczegółowo

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r. PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ W DNIU 27 SIERPNIA 2012 r. (ze zmianami) Cele kształcenia wymagania ogólne I. Sprawność rachunkowa.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione

Bardziej szczegółowo

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

Wymagania edukacyjne z matematyki- klasa 4

Wymagania edukacyjne z matematyki- klasa 4 Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Liczby dodatnie i ujemne Dodawanie liczb całkowitych Mnożenie i dzielenie liczb całkowitych

Bardziej szczegółowo

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne 1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające

Bardziej szczegółowo

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie ZAKRES MATERIAŁU KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2016/2017 ETAP SZKOLNY Cele edukacyjne: Rozwijanie zdolności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV:

WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV: WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV: Na każdym poziomie obowiązują także wszystkie wymagania z poziomów niższych.

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.) Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne 1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Aleksandra Baster Szkoła Podstawowa nr 164 w Krakowie Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem Uczeń otrzyma ocenę dopuszczającą,

Bardziej szczegółowo

MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA

MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA 2018-09-01 MATEMATYKA klasa V Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych

Bardziej szczegółowo

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa.

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa. MATEMATYKA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.)

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) 1 PSO i kontrakt z uczniami. 1 Matematyka w otaczającym nas świecie 1 Karta pracy 1 Po I etapie edukacyjnym 1 Ślimak gra edukacyjna

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe mnożenie i dzielenie Ile razy więcej, ile

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 1 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 6 Nr lekcji Temat lekcji Zagadnienie do realizacji wg podstawy programowej LICZBY NATURALNE (8

Bardziej szczegółowo

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi Rozkład materiału nauczania. Matematyka wokół nas Klasa 4 DZIAŁANIA NA LICZBACH NATURALNYCH (22 h) 1 Liczby naturalne. Oś liczbowa 1. 1 ) odczytuje i zapisuje liczby naturalne wielocyfrowe 1. 2 ) interpretuje

Bardziej szczegółowo

odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów:

odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów: Matematyka Klasa V Wymagania programowe podstawowe Uczeń : zapisuje słownie i czyta duże liczby zapisane w systemie dziesiątkowym porównuje liczby naturalne i porządkuje je rosnąco lub malejąco, używa

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy IV opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy IV opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Barbara Pierzchała Szkoła Podstawowa nr 164 Wymagania edukacyjne z matematyki dla klasy IV opracowane na podstawie programu Matematyka z plusem Uczeń otrzyma ocenę dopuszczającą,

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w klasach IV VI

Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania ( w skrócie PSO ) jest zgodny z Ustawą o systemie oświaty z dnia 7 września 1991 roku ( ze zmianami), oraz Rozporządzeniem

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki dla

Bardziej szczegółowo

Wymagania z matematyki dla klasy IV na poszczególne oceny

Wymagania z matematyki dla klasy IV na poszczególne oceny Wymagania z matematyki dla klasy IV na poszczególne oceny Treści nauczania w klasie IV na podstawie podstawy programowej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 1) zapisuje i doczytuje

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa, klasy 4 8. Plan wynikowy z rozkładem materiału Klasa 5

Matematyka z kluczem. Szkoła podstawowa, klasy 4 8. Plan wynikowy z rozkładem materiału Klasa 5 Matematyka z kluczem Szkoła podstawowa, klasy 4 8 Plan wynikowy z rozkładem materiału Klasa 5 Plan wynikowy Klasa 5 Matematyka z kluczem Temat lekcji Punkty z podstawy programowej z dnia Lp. Wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki : Matematyka z plusem GWO

Wymagania edukacyjne z matematyki : Matematyka z plusem GWO klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.

Bardziej szczegółowo

Treści nauczania. Klasa 6

Treści nauczania. Klasa 6 . Klasa 6 2. Działania na liczbach naturalnych Obliczenia pamięciowe i pisemne Podzielność liczb naturalnych przez 2, 3, 5, 9, 10, 25*, 100 Średnia arytmetyczna* wykonuje działania na liczbach naturalnych

Bardziej szczegółowo

Treści nauczania. Klasa 5

Treści nauczania. Klasa 5 . Klasa 5 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 2. Działania na liczbach naturalnych Systemy liczenia Obliczenia pamięciowe na liczbach naturalnych Prędkość droga czas Działania pisemne

Bardziej szczegółowo

4. Program a treści nauczania

4. Program a treści nauczania Program nauczania Matematyka z pomysłem. Program a treści nauczania z podstawy programowej to - w grupowane w a - z z podstawy programowej. Prezentowany program nauczania jest przeznaczony do realizacji

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z klasa 5

Matematyka z kluczem. Plan wynikowy z klasa 5 Matematyka z kluczem Plan wynikowy z klasa 5 Matematyka z kluczem Plan wynikowy klasa 5 Lp. Temat lekcji Punkty z podstawy programowej z dnia 27 sierpnia 2012 r. Dział 1. Liczby naturalne 1 Działania pamięciowe

Bardziej szczegółowo

względem dodawania i odejmowania liczb stosuje rozdzielność mnożenia i dzielenia rozwiązuje nietypowe zadania tekstowe

względem dodawania i odejmowania liczb stosuje rozdzielność mnożenia i dzielenia rozwiązuje nietypowe zadania tekstowe Plan wynikowy 27 Klasa 5 Lp. Temat lekcji Punkty z podstawy programowej z dnia 27 sierpnia 2012 r. Wymagania podstawowe Wymagania ponadpodstawowe Dział 1. Liczby naturalne (22 godziny) 1 Działania pamięciowe

Bardziej szczegółowo

I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ

I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań pisemnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym

Bardziej szczegółowo

Wymagania z matematyki dla klasy V na poszczególne oceny

Wymagania z matematyki dla klasy V na poszczególne oceny Wymagania z matematyki dla klasy V na poszczególne oceny Treści nauczania w klasie V na podstawie podstawy programowej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 1) zapisuje i doczytuje liczby

Bardziej szczegółowo

Matematyka z kluczem. Rozkład materiału do klasy 5

Matematyka z kluczem. Rozkład materiału do klasy 5 Matematyka z kluczem Rozkład materiału do klasy 5 Lp. Matematyka z kluczem klasa 5 L.go Temat lekcji dzi n Dział 1. Liczby naturalne Punkty z podstawy programowej z dnia 27 sierpnia 2012 r. 1 1 Lekcja

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 5

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 5 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 5 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 5 Treści wykraczające poza podstawę programową zostały zaznaczone kolorem

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 5

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 5 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 5 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 5 Treści wykraczające poza podstawę programową zostały zaznaczone kolorem

Bardziej szczegółowo

Matematyka z plusem Klasa IV

Matematyka z plusem Klasa IV Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie

Bardziej szczegółowo