Cwiczenia do wykladu FIZYKA IIA 2003/ Seria 4
|
|
- Henryka Kurek
- 10 lat temu
- Przeglądów:
Transkrypt
1 wici o wyklu FIZYK II / - Sri Zi Olicyc pojmosc kostor plskigo o powirchi oklk S, or olglosci miy oklkmi. Zi. Olicyc pojmosc kostor kulistgo o promiiu wwtrym i wtrym Zi Olicyc pojmosc stpc uklu wirjcgo iskoci wil kostorów o pojmosci ky, polcoych jk rysuku Zi. Kostory i lowo o potcjlu ky, l o prciwym ku. Nstpi polcoo rówolgl kostory - jk jst róic potcjlów miy puktmi i f, - jki s luki kostorch f f Zi 5 Zlc pojmosc stpc uklu kostorów ky o pojmosci. Zi 6. Dwi kul mtlic o promiich i polco s rutm. Do uklu oprowoo luk stpi olcoo rut. Jki luk juj si kj kul? Zi 7. Plytk mii o gruosci jst umisco okli w polowi olglosci miy oklkmi plskigo kostor o powirchi S i olglosci miy oklkmi. Jk jst pojmosc kostor pr i po umisciu plytki? Zi 8. Zlc prc, jk wykoo umiscjc mii plytk o gruosci miy oklkmi kostor plskigo o powirchi oklk S i olglosci miy oklkmi por. i 7.. Pryjc /, or - cost pr i po wprowiu plytki, - cost pr i po wprowiu plytki.
2 Zi Olicyc pojmosc kostor plskigo o powirchi oklk S, or olglosci miy oklkmi. owii Pojmosc kostor plskigo wyrmy jko r r l postwi S S S i popri j srii Pol miy wom prciwi lowymi powirchimi jst joro,,, s wktor l,y,, cyli s ilocy sklry l. Zi. Olicyc pojmosc kostor kulistgo o promiiu wwtrym i wtrym owii r r r r wgricy l r r Pooi jk w poprim iu wylicmy róic potcjlów miy oklkmi kostor w tym prypku sfrmi wspólsrokowymi. Zi Olicyc pojmosc stpc uklu wirjcgo iskoci wil kostorów o pojmosci ky, polcoych jk rysuku
3 owii Dostjmy ukl stpcy Zi. Kostory i lowo o potcjlu ky, l o prciwym ku. Nstpi polcoo rówolgl kostory - jk jst róic potcjlów miy puktmi i f, - jki s luki kostorch owii Olicmy róic potcjlów l kostor powstlgo po polciu i i prplyiciu luków, stpi wylicmy luki kostorch pry ym f f rowii wyirmy Dl 8 cyli Dl > ± ±
4 Zi 5 Zlc pojmosc stpc uklu kostorów ky o pojmosci. owii Poy ukl mo prrysowc stpujco N kostor, wic tk jky go i ylo Zi 6. Dwi kul mtlic o promiich i polco s rutm. Do uklu oprowoo luk stpi olcoo rut. Jki luk juj si kj kul? owii N postwi i pojmosc lowj kuli to, cyli Kostory s polco rówolgl, wic cyli or
5 Zi 7. Plytk mii o gruosci jst umisco okli w polowi olglosci miy oklkmi plskigo kostor o powirchi S i olglosci miy oklkmi. Jk jst pojmosc kostor pr i po umisciu plytki? owii Pojmosc kostor plskigo o powirchi S i olglosci miy oklkmi wyosi Po umisciu miij plytki o gruosci powstj m kostory plski o powirchi S i olglosci miy oklkmi /*-, cyli pojmosc kostor plytk to Zi 8. Zlc prc, jk wykoo umiscjc mii plytk o gruosci miy oklkmi kostor plskigo o powirchi oklk S i olglosci miy oklkmi por. i 7.. Pryjc /, or - cost pr i po wprowiu plytki, - cost pr i po wprowiu plytki. owii Dl / ostjmy, tm S S S cost p k cost p k
Dokumentacja techniczna IQ3 Sterownik z dostępem poprzez Internet IQ3 Sterownik z dostępem poprzez Internet Opis Charakterystyka
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu
24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni
2. Obliczyć natężenie pola grawitacyjnego w punkcie A, jeżeli jest ono wytwarzane przez bryłę o masie M, która powstała przez wydrążenie kuli o
Grwitcj. Obliczyć, jką siłą jest przyciągn s, jeżeli znn jest s plnety orz gęstość i proień drugiej plnety tkże odległości, jk n rysunku. (,, / F ) 5 F G.5.5 7 Sił t jest położon do poziou pod kąte β tki,
Mechanika i wytrzymałość materiałów
1 k trmłość mtrłó Wkłd Nr 9 rktrstk gomtr fgur płsk momt stt, środk ężkoś fgur jgo, momt błdoś, głó trl os błdoś, głó trl momt błdoś, prom błdoś, trd Str Wdł Iżr j Robotk Ktdr Wtrmłoś, Zmę trłó Kostrukj
Staruszek do wszystkiego
Struszek wszystkiego tekst; Jeremi Przybory muz.: Jerzy Wsowski rr. voc.: Andrzej Borzym ru- stek wszy j j St l St ru- szek d wszy St ru- szek wszy Tum tu. ttt tu tu utkie-go jest inie-z-wo-dnv wsku#ch.
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
Zagadnienie brachistochrony jako przyk lad zastosowania rachunku wariacyjnego
Zgnienie brchistochrony jko przyk l zstosowni rchunku wricyjnego 1. Przestwienie problemu. Równni Euler-Lgrenge 3. Tożsmość Beltrmiego 4. Równnie cykloiy 5. Zs Fermt 1 Przestwienie problemu Brchistochron
Praca, potencjał i pojemność
Prc, potencjł i pojemność Mciej J. Mrowiński 1 listopd 2010 Zdnie PPP1 h Wyzncz wrtość potencjłu elektrycznego w punkcie oddlonym o h od cienkiego, jednorodnie nłdownego łdunkiem Q pierścieni o promieniu.
Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe
lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci
Prawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
Podstawy wytrzymałości materiałów
Podst trmłośi mteriłó Wdił Iżrii ej i Robotki IiR - ib - Wkłd Nr 11 Złożo st prężeń - tęże mteriłu st krt mteriłu, poję tężei, el stosoi ipote tężeio, pręże redukoe, pregląd ipote tężeio: ipote Glileus,
Twoje zdrowie -isamopoczucie
Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie
Mechanika i wytrzymałość materiałów
1 eik i trmłość mteriłó Wdił Iżrii ej i Robotki Wkłd Nr 15 Złożo st prężei tęże mteriłu st krt mteriłu, poję tężei, el stosoi ipote tężeio, pręże redukoe, pregląd ipote tężeio: ipote Glileus, ipote de
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i
Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym
ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9
ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic
Ć W I C Z E N I E N R E-14
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW
Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!
TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem
Mechanika i wytrzymałość materiałów
1 ehik i wtrmłość mteriłów I - Wkłd Nr 3 Sttk: płski i prestre ukłd sił rówowg płskiego ukłdu sił, prestre ukłd sił redukj, wruki rówowgi Wdił Iżierii ehiej i Rootki Ktedr Wtrmłośi, Zmęei teriłów i Kostrukji
Rys.1. Rys.1. str.1. 19h 20h 21h 22h 23h 24h 0h 1h 2h 3h 4h 5h 6h. kopia. Nr1
niewidoczny skrypt Romny (R) dl wszystkich ludzi świt NIESAMWITE MŻLIWŚCI SZABLNÓW LISTWWYCH: "A"; "B", "C" ZWIĄZANE Z ŁUKAMI, PDZIAŁEM RÓWNMIERNIE RZŁŻNYM. KPIA FRAGMENTU PLIKU: SKRYPT (R).001. STRNA
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z
Mtrił ddktcn Godj gomtrcn Mrcin Ligs, Ktdr Gomtki, Wdił Godji Górnicj i Inżnirii Środowisk, AGH LIPSOIDA OBROTOWA, LIPSA POŁUDNIKOWA, SZROKOŚĆ GODZYJNA, SZROKOŚĆ ZRDUKOWANA, SZROKOŚĆ GOCNTRYCZNA, WSPÓŁRZĘDN
KATALOG PRODUKTÓW 2007
KTLOG PROUKTÓW 2007 30-063 Kraków, al. 3-go Maja 5, tel. 012 63 25 345; 032 798 3812, tel/fax 012 63 25 425 www.uchwyt.com.pl Wyroby zawarte w tym katalogu mogą ulegać modyfikacji. Zastrzega się również
GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ.
Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk GŁÓWN ROMINI KRZYWIZNY, DŁUGOŚĆ ŁUKU OŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLŻNIKA, OL OWIRZCHNI I OBJĘTOŚĆ LISOIDY OBROTOWJ rkrój
Uchwała nr 54/IX/2016 Komendy Chorągwi Dolnośląskiej ZHP z dnia r.
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 5 4 / I X / 2 0 1 6 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 5. 0 2. 0 1 6 r. w s p r a w i e p r z y j ę
Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych
Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
or rowerowy la ka e o Pumptrack Warszawa
or rowerowy la ka e o Pumptrack Warszawa Co to jest pumptrack?!? film: www.bit.ly/pumptrackwarszawa Pumptrack to zap tlo y tor o kszta cie falistym o az y... ...prze e wszystkim a rowerze ale tak e a rolkac
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0)
Kolokwium z mmki 7.. Tm A godz.. Imię i nzwisko Nr indksu Zdni Wznczć cłkę d cos sin Wznczć ką unkcję pirwoną do unkcji cos sin kór przchodzi przz punk Odp. c cos cos F Zdni Nrsowć wrswic unkcji ln odpowidjąc
I C. Biologia. Chemia. Technika w produkcji cukierniczej. Technika w produkcji cukierniczej. Technologia produkcji cukierniczej
Zsdnicz Szkoł Zwodow Rzemiosł i Przedsiębiorcz Bydgoszcz, ul. Kijowsk I C Wychowwc : Cichowsk Mgdlen :0 - : Mtemtyk Biologi Mtemtyk :00 - : Godzin wychowcz Chemi. Grup Informtyk GP. Grup Informtyk :0 -
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
Sprawdzian całoroczny kl. III
Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0
, 2 AS. Piątek Sobota Niedziela. W-nr sala - ul. Wawelska 46; Wi - nr sala - ul. Widok 8;
-0.03, AS 3 :0-0: 0:30 - : ASYSTOWANIE LEKARZOWI DENTYŚCIE :0 - :0 EM Wi - :0 - : 3:00-3: 3:0 - :3 : - :0 0 : - :30 :3 - :0 : - :0 3 : - :00 :0 - :0 Wi- Wi- Wi- ORTODONCJA I TECHNIKI ORTODONTYCZNE EM Wi
KSIÊGA ZNAKU. Logo Twojej firmy
KSIÊGA ZNAKU Opis nku. Logotyp i sygnet twor¹ rem logo, cyli Znk. Logotyp to tekstowe predstwienie nwy firmy. Sygnet to okreœlenie chrkterystycego elementu grficnego. W niektórych prypdkch sygnet mo e
Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
Dodatkowa analiza wskaźnika z art. 243 na podstawie:
wykonanie wykonanie plan wykonanie n-3 n-2 n-1 4kw 2010 2011 2012 2012 2013 2014 59.063.056,54 63.099.718,93 63.829.275,56 63.863.731,42 65.496.070,97 305.148,63 432.734,47 1.302.703,00 3.922.000,00 400.000,00
Długo łuku krzywej., klasy. t ; t oraz łuk nie ma czci wielokrotnych, to długo łuku. wyraa si wzorem
Długo łuku kzwj Kzw ( L : [, ] f ( Jli dn js ównni wkoow kzwj pochodn (, ( s cigł w pzdzil W współzdnch igunowch:, kls C, m długo L ( f ( ( α;, pz czm funkcj (, ( oz ich ( ; oz łuk ni m czci wilokonch,
TM 1 12A. data. piątek. 26.09.2015r. sobota. 27.09.2015r. niedziela. piątek. 3.10.2015r. sobota. 4.10.2015r. niedziela. godzina. 25.09.2015r.
data 25.09.2015r. 26.09.2015r. niedziela 27.09.2015r. 2.10.2015r. 3.10.2015r. niedziela 4.10.2015r. L godzina TM 1 12A 1 16.00-16.45 BHP PD 2 16.45-17.30 BHP PD 3 17.30-18.15 BHP PD 4 18.15-19.00 BHP PD
Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.
Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy
Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA
Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni
Projektowanie konstrukcji z blach i profili
Projektownie konstrukji z lh i profili KAtlog 1.1 01/2011 zmówienie fksowe: +48 (0) 61 29 70 123 legend towr w opkowniu s Do prezentji n regłh z hkmi. W opkowniu typu skin i lister. opkownie hurtowe Pojedyńze
Plan wykładu. Obliczanie pierwiastków wielomianów. Własności wielomianów. Własności wielomianów. Schemat Hornera. Własności wielomianów. p z. p c r.
Pl wyłdu Olicie pierwistów wielomiów Włsości wielomiów Schemt Horer olicie wrtości dieleie wielomiów deflcj omplety schemt Horer metod Newto eśli, to p m stopień. p p /3 3/3 Włsości wielomiów Włsości wielomiów
Podstawy wytrzymałości materiałów
Podsty ytrymłośi mteriłó IiR - ib - Wykłd Nr 3 Śi te Śi te, ruek bepeńst śi, obli ytrymłośioe połąeń śruboy/itoy/sorioy, obli ytrymłośioe ytrymłośi spoi pioy Wydił Iżyrii ej i Robotyki Ktedr Wytrymłośi,
ECOsine TM PASYWNY FILTR HARMONICZNYCH PAŹDZIERNIK 2008 PASYWNY FILTR HARMONICZNYCH
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri Środowisk w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana
Uniwrsytt Jgilloński, Collgium Mdicum, Ktdr Chmii rgnicznj Strochmi Izomri konformcyjn obrót wokół wiązni pojdynczgo tn projkcj Nwmn konformcj: nprzminlgł nprzciwlgł kąt torsyjny w ukłdzi cztrch tomów
Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1
Errt do I i II dni skrptu Konstrukcj stlo. Prkłd oblicń dług PN-EN 99- Rodił. W osttnim kpici pkt. dodno nstępującą inormcję: Uględniono min nikjąc prodni pr PKN crcu 009 r. poprk opublikonch normch, śld
http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html
O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016
Gra. The Antykoncepcja Game. Gra The Antykoncepcja Game rozpoczyna siæ od walki z plemnikami.
2 Gr The Antykoncepcj Gme Gr The Antykoncepcj Gme rozpoczyn siæ od wlki z plemnikmi. Wcielj¹c siê w jedn¹ z wybrnych postci kobiecych toczymy zciek³¹ wlkê (strzelnkê) z tkuj¹c¹ nsz¹ komórkê jjow¹ chmr¹
Stal wysokowęglowa: Wyżarzanie (+LC)
C/izkargi, 6 Pol. Ind. Sarrikola E48195 LRRETZU izkaia SPIN Stal wysokowęglowa: Wyżarzanie (+LC) Skład chemiczny Klasyfikacja Klasyfikacja symboliczna numeryczna C10E Norma Skład Chemiczny Europejska (EN)
1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S
1TEH Wychowawca: mgr Aleksandra Kozimor 1 8:00-8:45 SK BHP-1/2 201 OE org-1/2 305 OE tpw-1/2 305 KK j.p 214 AM his 114 KA DzP-2/2 214 OW dzi-2/2 114 KA DzP-2/2 214 2 8:55-9:40 KK j.p 210 OE org-1/2 305
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Modelowanie układów kombinacyjnych w VHDL (cz.1)
Modelownie ukłdów kombincyjnych w VHDL (c.1) jednostki (entity) i rchitektury (rchitecture) modele prostych brmek w VHDL typ bit i opertory logicne identyfiktory, spcje, komentre listy połąceń prypisni
Grafy hamiltonowskie, problem komiwojażera algorytm optymalny
1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2
Do roboty" Dr in. Micha! Grodecki
P mtriów Dl znyh przkrojów olizy g!ówn ntrln momnty zw!noi. N ih postwi olizy promini zw!noi, nrysow lips zw!noi. Uwgi: Przkroj mj jn o symtrii. W zwizku z tym jn z osi poztkowgo uk!u wspó!rznyh musi si
Do roboty" Dr in. Micha! Grodecki
P mtriów Dl znyh przkrojów olizy g!ówn ntrln momnty zw!noi. N ih postwi olizy promini zw!noi, nrysow lips zw!noi. Uwgi: Przkroj mj jn o symtrii. W zwizku z tym jn z osi poztkowgo uk!u wspó!rznyh musi si
Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
Podsumowanie wyników ankiet dotyczących żywienia w sklepikach szkolnych.
Posumowni wyników nkit otyząyh żywini w sklpikh szkolnyh. 1.Czy jsz posiłki z stołówki szkolnj? )tk - )ni - )zsmi - 4 6 4 3 tk ni zsmi 1.Czy jsz posiłki z stołówki szkolnj? 2.Il śrnio spożywsz posiłków
Testy interaktywne. Krok 1 Pobieramy program ze strony www i instalujemy na dysku komputera. Hot Potatoes JCloze JMix JCross JQuiz JMatch TheMaster
tekst http://www.hojnki.net, http://hotpot.uvi., http://www.enuznie.om, http://www.winrr.pl Testy interktywne Hot Pottoes JCloze JMix JCross JQuiz JMth TheMster - Krok 1 Poiermy progrm ze strony www i
Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja
Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.
Mechanika i wytrzymałość materiałów
1 eik i trmłość mteriłó Wkłd Nr 13 Odkstłei beek gi ii ugięi beki, kąt obrotu beki, ruek stośi pr giiu, ró różikoe iii ugięi beki, ruki bregoe, stoso sd superpoji do i odkstłeń beek, prkłd obioe Wdił Iżrii
Podstawy Konstrukcji Maszyn
Pdsty Knstrukcji Msyn Wykłd 9 Prekłdnie ębte cęść Krekcje Dr inŝ. Jcek Crnigski Obróbk kół ębtych Metd biedni Pdcięcie ębó Pdcięcie stpy ęb Wstępuje gdy jest duŝ kąt dległść ębó, cyli pry ncinniu młej
I C. 2. Grupa. Informatyka. Wychowanie fizyczne. Edukacja dla. Geografia. Godzina wychowacza PJ. Technologia produkcji cukierniczej.
Zsdncz Szkoł Zwodow Rzemosł Przedsęborcz Bydgoszcz, ul. Kjowsk I C Wychowwc : Jelenewsk Ptrycj :0 - : :00 - :. Grup. Grup :0 - : : - 0:0 0: - :0 Edukcj dl Relg Hstor Edukcj dl Fzyk Hstor : - :0 Relg Geogrf
Przekładnie morskie. Napędy pomp DPO 087
Przekładnie morskie Napędy pomp DPO 087 Przekładnia hydrauliczna DPO 087 montowana jest do koła pasowego lub kołnierza silnika. Wyposażona jest w dwa osobne wały, które mogą napędzać niezależne od siebie
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN
UEZPIECZENI GRUPOWE - sus srn sus łąngo żi i osnigo rżwągo UTORZY MICHŁ OCZEK MŁGORZT CZUPRYN Rowż gruę osób. Owiśi s lib nurlną więs od. Nih i on wi i osob dl i=,,... us gru sus łąngo żi sus osnigo rżwągo
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego
0 Podzi kàtów ze wzgl du mir Przyk dy kàtów 0 B B W soêi Kàt wkl s y m mir wi kszà od 80 i miejszà od 60. Kàty wyuk e to kàty, któryh mir jest wi ksz àdê rów 0 i miejsz àdê rów 80, lu rów 60. Ni ej rzedstwimy
x y x y y 2 1-1
Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().
K a r l a Hronová ( P r a g a )
A C T A U N I V E R S I T A T I S L O D Z I E N S I S KSZTAŁCENIE POLONISTYCZNE CUDZOZIEMCÓW 2, 1989 K a r l a Hronová ( P r a g a ) DOBÓR I UKŁAD MATERIAŁU GRAMATYCZNEGO W PODRĘCZNIKACH KURSU PODSTAWOWEGO
UMOWA ZLECENIE. zobowiązuje się wykonać wymienione w l czynności w okresie od 01.07.2009 do
Dinter Polsk Sp. z o. O. ul Grżyny 15 02-548 Wrszw REGON 010406268 UMOWA ZLECENIE N/P 521-10-03-920 Zwrt dni 30 czerwc 2009.w Kozietułch.pomiędzy: DINTER POLSKA SP Z O.O.z siedzibą w Wrszwie, ul. Grżyny
Języki, automaty i obliczenia
Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015 Pln Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F,
I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I
M G 6 6 5 v 1. 2 0 1 5 G R I L L G A Z O W Y T R Ó J P A L N I K O W Y M G 6 6 5 I N S T R U K C J A U 7 Y T K O W A N I A I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Regionalne Koło Matematyczne
Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej
Mechanika i wytrzymałość materiałów
1 Mechnik i wytrzymłość mteriłów IB - Wykł Nr 4 Sttyk: trcie ślizgowe i toczne trcie ślizgowe, trcie toczne, zgnieni równowgi z uwzglęnieniem sił trci Wyził Inżynierii Mechnicznej i Robotyki Kter Wytrzymłości,
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,
R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n
TM 1 PRZEDMIOT /miejsce zajęć :G- gimnazjum P-pracownia / data. piątek r. sobota r. niedziela. piątek r.
data 25.09.2015r. 26.09.2015r. niedziela 27.09.2015r. 2.10.2015r. 3.10.2015r. niedziela 4.10.2015r. L godzina TM 1 PRZEDMIOT /miejsce zajęć :G- gimnazjum P-pracownia / 1 16.00-16.45 BHP PD 2 16.45-17.30
NACIONALINIS EGZAMINŲ CENTRAS
2016 NACIONALINIS EGZAMINŲ CENTRAS Imię, nzwisko Kls Ko uzni DIAGNOSTINIS MOKYMOSI PASIEKIMŲ VERTINIMAS CZYTANIE Weług M. Kepenienė Mingiusis krokoils, Vilnius: FOLIUM, 1998. Posłuhjie, o się przyrzyło
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -