NOWE TECHNOLOGIE
|
|
- Antonina Stasiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 NOWE TECHNOLOGIE IBM Dialog z przyrodą musi być prowadzony w języku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Michał Heller Koniec technologii krzemowej? Prawo Moora i jego konsekwencje (czyli o postępie technologicznym); Nanotechnologia I (czyli nano jest trendy) Kwanty, stany, pasma (czyli mechanika kwantowa dla początkujących); Nanotechnologia II, III, IV (studnie, druty, kropki; nanorurki i nanomaszyny); Spintronika stosowana; Dlaczego elektrony kręcą? (czyli o spinie); Kwantowa kryptografia i teleportacja I i II (czyli o splątaniu kwantowym oraz kodach i kluczach); Komputery kwantowe I i II (czyli o przyszłych informatykach oraz o przyszłych komputerach) Badania i postęp (czyli o finansowaniu badań); W smutnym kolorze blue (czyli o niebieskim laserze i białych diodach); Optoelektronika (czyli o manipulowaniu światłem); Nieliniowo, adaptacyjnie i femtosekundowo, czyli ekstremalnie w optyce; Czy komputer moŝe myśleć? Prezentacja prac studentów Uwaga: Wykład moŝe być zaliczony do godzin pozakierunkowych: przedmioty ogólnouniwersyteckie Wydziału Fizyki kod: -NT-OG Wykłady FUW M. Grynberg Eksperyment fizyczny w warunkach ekstremalnych (Czw..5-2.) Seminarium fizyki ciała stałego (Pt..5-2.) R. Stępniewski Fizyka ciała stałego (Pon..5-2.) T. Dietl, J. Majewski Physical foundation of nanotechnology (Śr..5-2.) D. Wasik, T. Stacewicz Wstęp do optyki i fizyki ciała stałego (Śr ) Cz. Radzewicz Wybrane zagadnienia optyki (Pt ), Optyka instrumentalna (Czw ) J. Dobaczewski Mechanika kwantowa I (Wt , Pt ) J. Baranowski Fizyka materiałów i nanostruktur I (Czw ) Electronic properties of solids (ang.) (Śr ) J. Tworzydło Wstęp do kwantowej teorii układu wielu cząstek Nowe technologie Zadania Studenckie Do zaliczenia wykładu wymagana będzie obecność na co najmniej zajęciach oraz KRÓTKIE sprawozdanie: Tematy sprawozdań zegarek, komputer, komórka, TV, Hi-Fi, samochód, dom za -2-3 lat co by było fajnie mieć (wehikuł czasu? tanie źródło energii? antygrawitację? działko na komary?...) co by warto zmniejszyć (powiększyć) i dlaczego? interface człowiek-maszyna za kilkanaście lat. pilot do TV przyszłości rozrywka w następnych dekadach problemy świadomych maszyn i ich relacje z ludźmi kuchnia przyszłości usługi sieciowe wyzwania technologii krzemowej (litografii, processingu, testow itp) synergie (czyli łączenie produktow/modeli): procesor+pamięć+video+..., komorka+komputer+palm+... drukarka+kopiarka+fax+..., TV+DVD+konsola+... nośniki danych łączność i lokalizacja id karty - uniwersalny dowód osobisty/prawo jazdy/karta płatnicza/i co jeszcze? zagroŝenia prywatności zagroŝenia: piractwo kontra copyright nowe usługi i modele biznesowe co moŝna zmieścić w zegarku? disruptive technologies dzisiaj Najlepsze sprawozdania studenci będą mogli zaprezentować na ostatnim wykładzie!
2 Nowe technologie l. Jak nie palę papierosów Jak palę papierosy Koniec technologii krzemowej? Prawo Moora i jego konsekwencje. a. b. Jak to działa i. Trochę logiki ii. iii. c. Prawo Moora Od bramki do bramki Jak działa tranzystor i. Nanotechnologia ii. iii. Domieszki koncentracja i statystyka Tunelowanie iv. Chłodzenie Amara's law is a maxim stating: We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.. Początek XIX w. ok.. 8 Francuz Joseph Jacquard i jego krosna (sprzeciw w Lyonie). George Boole (85-865) Źródło: Prof.. Ryszard Tanas 2
3 2. Połowa XIX w. Anglik Charles Babbage i jego maszyna analityczna. Skonstruowana w r. w Science Museum w Londynie. Urządzenie składa się z 4 części i waŝy ponad 3 tony. Podobnie jak i drukarka. komputer drukarka Źródło: Koniec XIX w. Herman Hollerith wynalazł maszynę liczącą, którą moŝna było programować przy pomocy kart. Wykorzystano ją w 89 r w spisie powszechnym w USA. W 9 r. Hollerith's Tabulating Machine Company łączy się z dwoma innymi Computing Scale Company of America oraz International Time Recording Company. Powstaje Computing-Tabulating-Recording Company (C-T-R). W 924 r. zmienia nazwę na International Business Machines Corporation IBM. Źródło: IBM 945 ENIAC lampowa maszyna licząca, zawierała 8 lamp próŝniowych, 7 oporników oraz 5 milionów połączeń. ZuŜywała 6 kilowatów energii. Zaprojektowana przez Jouna Prospera Eckerta (99-995) i Johna Mauchly ego (97-98). WaŜyła 27 ton, zajmowała 46 m 3, i mogła dodać 5, numerów/s. 5. W połowie lat 4-tych John von Neuman wymyślił projekt maszyny EDVAC (Electronic Discrete Variable Automatic Computer) z pamięcią do przechowywania danych i programów oraz z centralną jednostką procesorową William Schockley, John Bardeen oraz Walter Brattain z Bell Labs wymyślają tranzystor (Nobel 956) 7. Rok października komputer ENIAC zostaje ostatecznie wyłączony i zdemontowany. Firma Semiconductor Laboratory, załoŝona przez Williama Shockley'a, jest pierwszą załoŝoną w Dolinie Krzemowej. 7. Lata 5 XX w. superkomputer IBM Lata 6 XX w. minikomputer Digital Equipment Corporation 9. W 969 r. Intel Corporation dostaje zamówienie na układ do japońskiego kalkulatora... J. Von Neuman, źródło Wikipedia Eniac - max. 6h Źródło: 3
4 Jak to działa? Trochę logiki NOT OR AND WEJŚCIE WYJŚCIE Sumator: = = = = = 2 = = 3 = = 4 = - Jak to działa? Trochę logiki NOT OR AND WEJŚCIE WYJŚCIE 2 Jak to działa? Trochę logiki Jak to działa? Trochę logiki NAND NOT OR AND XOR NOR NAND XNOR 4
5 Od bramki do bramki. AND OR AND OR Od bramki do bramki. Lampa próŝniowa jako przełącznik Potrzeba było przełączników: szybkich i niezawodnych. Na początku (r)ewolucji koszty, rozmiar, pobór mocy, łatwość obsługi, uniwersalność, skalowalność, kompatybilność nie miały duŝego znaczenia Eniac - max. 6h Jak działa tranzystor? 948 William Schockley, John Bardeen oraz Walter Brattain z Bell Labs wymyślają tranzystor (Nobel 956) Źródło:
6 Półprzewodniki dziury elektrony Nośniki: Domieszki: Akceptory (typ p) Donory (typ n) 955 Shockley Semiconductor pierwsza firma w Palo Alto (krzemowej dolinie) Rok 956 IBM tworzy pierwszy dysk twardy - RAMAC 35. Jego pojemność to 5MB,natomiast cena - milion dolarów. W laboratoriach MIT ukończony zostaje pierwszy komputer tranzystorowy. A. Newell, D. Shaw i F. Simon wynajdują IPL (Information Processing Language - język przetwarzania informacji). 957 Fairchild Semiconductor na skutek nieporozumień z Shockleyem odchodzą z firmy: Julius Blank, Victor Grinich, Gordon E. Moore, Robert W. Noyce, Jean Hoerni, Gene Kleiner, Jay Last, Sheldon Roberts ( zdradziecka 8-ka ). Ken Olsen i Harlan Anderson zakładają firmę DEC (Digital Equipment Corporation) Oficjalnie opublikowany zostaje język FORTRAN-, stworzony przez Johna Backusa i jego współpracowników z IBM. FORTRAN uŝywa zapisu podobnego do tego z algebry. Dlatego teŝ język ten stanie się popularny, szczególnie wśród naukowców i techników. 958 Pierwszy układ scalony (IC Integrated Circuit) wykonany przez Jack Kilby na germanie w Texas Instruments (2 Nagroda Nobla z fizyki). NiezaleŜnie Robert Noyce (Fairchild) zbudował IC na krzemie. Źródło: Prawo Moore a "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will remain nearly constant for at least years." (Moore, Electronics 965) Ilość układów 2 Ok. rok i 5 mies Rok Źródło: Wikipedia, Intel, 8 lipca 968 Gordon E. Moore i Robert W. Noyce załoŝyli w kalifornijskim Mountain View w hrabstwie Santa Clara (zaledwie kilka mil od Palo Alto), firmę N M Electronics, wkrótce przemianowaną na Intel (Intel = Integrated Electronics). 969 r. Intel Corporation dostaje zamówienie na układ do japońskiego kalkulatora... i44 Data wprowadzenia:5 listopada 97 Ilość tranzystorów: Technologia: µm, PMOS Wielkość płytki krzemu:2 mm 2 Szybkość pracy Taktowanie rdzenia proc.:8 khz (.6 MIPS) Taktowanie magistrali sys.:jak rdzeń procesora Szerokość magistrali danych (wewn./zewn.):4 bity (adresów 2 bitów) i88 Data wprowadzenia:kwiecień 972 Ilość tranzystorów:3 5 Technologia: µm, PMOS Wielkość płytki krzemu:9 mm 2 Szybkość pracy Taktowanie rdzenia proc.:2 khz (.6 MIPS), magistrali sys.:2 khz Szerokość magistrali danych (wewn./zewn.):8 bitów Szerokość magistrali adresowej:4 bitów Źródło: Wikipedia, Intel, 6
7 Źródło: Altair (i jego klony) procesor Intel 88 Bill Gates i Paul Allen piszą wersję BASICa na Altair A gdzie jest ekran i klawiatura? Apple I (976) 386 (985) i88 (974) 286 (982) i888 (978) IBM PC Pentium (993) Pentium III (999) Źródło: Intel Pentium 4 (2) 42 tranzystorów technologia.8 mikrona. Zegar.5 GHz 6 warstw Rozmiar procesorów Intel (w skali) Nanotechnologia Core Duo Extreme X68 (26) 29 tranzystorów technologia 65 nm Zegar 2,93 GHz 8 warstw Moc 75 W Pentium D 9 (26) 376 tranzystorów technologia 65 nm Zegar 3,2 GHz 8 warstw Moc 5W AMD Athlon 64 FX-62 (26) tranzystorów technologia 9 nm. Zegar 2,8 GHz 9 warstw Moc 25W Źródło: Intel, µm = 9 nm Na czubku ludzkiego włosa zmieściłoby się obecnie ok..5 układu Intel 44 7
8 TRENDY: Pierwsze Prawo Moore a Źródło: Intel Nanotechnologia.2 nm SiO 2 9 nm generation transistor (Intel 23) Źródło: Intel Nanotechnologia TRENDY: Pierwsze Prawo Moore a Rozmiary Wirus Ebola 6 nm Średnica ludzkiego włosa nm Średnica krwinki czerwonej Ilość komponentów (tranzystory, połączenia, izolacje itd.) w IC podwaja się co około 8 miesięcy. Rozmiar liniowy komponentów równieŝ zmniejsza się wykładniczo w czasie. Dł. fali światła widzialnego Rhinowirus 3 nm Ebola Najnowszy tranzystor Intela nm Promień Bohra,5 nm Średnica DNA, nanorurek 2nm Źródło: 5-Processing_Technology Te trendy nie mogą być kontynuowane w nieskończoność. Co zastąpi technologię Si? Z czego będzie wynikała ta zmiana technologii? EKONOMIA Źródło: Intel 8
9 PROBLEM: Drugie Prawo Moore a Koszt pojedynczego komponentu maleje wykładniczo o ok. 35% na rok. ALE: Koszt fabryki produkującej chipy rośnie takŝe wykładniczo! W 225 roku fabryka procesorów kosztowałaby bilion USD ( 2 USD) Ten trend w oczywisty sposób równieŝ nie moŝe być kontynuowany! (Arthur Rock s law) Źródło: Intel Myślimy, Ŝe tranzystor jest zbudowany tak. Asen Asenov, Glasgow David Williams Hitachi-Cambridge Granice miniaturyzacji? 25 nm MOSFET Produkcja od 28 4,2 nm MOSFET Produkcja??? IEEE Trans Electron Dev 5(9), 837 (23) NO EXPONENTIAL IS FOREVER... BUT WE CAN DELAY FOREVER International Technology Roadmap for Semicond. SEMATECH: międzynarodowe konsorcjum producentów półprzewodników określa cele, opłaca badania nad rozwiązaniem problemów dotyczących wszystkich, w jego skład wchodzą: AMD, Agere Systems, Hewlett-Packard, Hynix, Infineon Technologies, IBM, Intel, Motorola, Philips, STMicroelectronics, Texas Instruments Stara się zdefiniować wyzwania technologiczne, określić dalsze cele i przewidzieć ich specyfikację, koszt, wydajność, czas wdroŝenia itp. Tranzystor Elementy pamięci Gordon Moore, 23 Źródło: Intel, Sematech 9
10 PROBLEM (?): Zjawiska kwantowe Źródło: Intel, Sematech PROBLEM: Statystyka domieszek 22 atomów Si 7 domieszek Rozmiar tranzystora 5 nm Średnia ilość domieszek 2.5 PROBLEM: Tunelowanie PROBLEM: Chłodzenie Z roku na rok układy wymagają większej mocy do wykonywania operacji logicznych. Power (Watts) Mainframe Chips (liquid cooled) P6 Pentium proc Year
11 7 tranzystorów pracujących z częstością.5 GHz zuŝywa 3 W. Zakładając, Ŝe na tej samej powierzchni za jakiś czas będzie pracować 8 tranzystorów z częstością GHz otrzymamy gęstość mocy na poziomie kw/cm 2 (porównywalną gęstość mocy ma silnik rakietowy!) Film PROBLEM: Chłodzenie Gęstość mocy rośnie dramatycznie. PROBLEM: PodłoŜa Krzem 23, wafer 3 mm: Wymagane jest nie więcej niŝ 2 cząstek < nm na wafer Dokładność polerowania 3 nm Krzem 27, wafer 3 mm: Wymagane jest nie więcej niŝ 77 cząstek < nm na wafer (jak to zmierzyć?) Dokładność polerowania 65 nm Krzem 26, wafer 45 mm: Wymagane jest nie więcej niŝ 77 cząstek < nm na wafer (jak to zmierzyć?) Dokładność polerowania 22 nm (jak to zmierzyć?) PROBLEM: Litografia PROBLEM: Litografia Litografia 23, Długość fali światła 248 nm Kanał FET 9 nm: Wymagane jest nie więcej niŝ 2/m2 < nm Fluktuacje granic rezystu 7 nm Litografia 27, Długość fali światła 93 nm (?) 53 nm (?) X-ray (?) Kanał FET 35 nm: Wymagane jest nie więcej niŝ 5/m2 < nm Fluktuacje granic rezystu 3 nm Litografia 26, Długość fali światła X-ray (?) Kanał FET 9 nm: Wymagane jest nie więcej niŝ 5/m2 < nm Fluktuacje granic rezystu nm Prawdopodobnie koniec epoki polimerowych rezystów (cząstki polimerów są zbyt duŝe!) week9
12 PROBLEM: itd... itd... itd... itd... NOWE TECHNOLOGIE Przeprojektowanie CMOS (np. wertykalne, FIN, MOSFET z podwójną bramką) Urządzenia alternatywne (np. na pojedynczych elektronach) Urządzenia hybrydowe (np. FET z nanorurek) Nowe architektury (np. samonaprawiające się, defect-tolerance, automaty komórkowe) Zupełnie nowe architektury (np. komputery molekularne, komputery kwantowe) NOWE TECHNOLOGIE Jacek.Szczytko@fuw.edu.pl Dialog z przyrodą musi być prowadzony w języku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Michał Heller IBM Nanotechnologia (I) a Koniec technologii krzemowej? Prawo Moora i jego konsekwencje (czyli o postępie technologicznym); Nanotechnologia I (czyli nano jest trendy) Kwanty, stany, pasma (czyli mechanika kwantowa dla początkujących); Nanotechnologia II, III, IV (studnie, druty, kropki; nanorurki i nanomaszyny); Spintronika stosowana; Dlaczego elektrony kręcą? (czyli o spinie); Kwantowa kryptografia i teleportacja I i II (czyli o splątaniu kwantowym oraz kodach i kluczach); Komputery kwantowe I i II (czyli o przyszłych informatykach oraz o przyszłych komputerach) Badania i postęp (czyli o finansowaniu badań); W smutnym kolorze blue (czyli o niebieskim laserze i białych diodach); Optoelektronika (czyli o manipulowaniu światłem); Nieliniowo, adaptacyjnie i femtosekundowo, czyli ekstremalnie w optyce; Czy komputer moŝe myśleć? Prezentacja prac studentów Uwaga: Wykład moŝe być zaliczony do godzin pozakierunkowych: przedmioty ogólnouniwersyteckie Wydziału Fizyki kod: -NT-OG b a,b,c < nm c 2
13 Kwanty, stany, pasma mechanika kwantowa dla początkujących. 2. Świat klasyczny i kwantowy 3. Czy dwa półprzewodniki dają cały przewodnik? Rys. źródło: IBM Rys. źródło: Internet Nanotechnologia (II) Półprzewodniki a.studnie i.studnie i ekscytony ii.lasery iii.dwuwymiarowe gazy b.druty i.półprzewodniki ii.organika iii.laser z drutów c.kropki i.kropki planowane i nie ii.tranzystor na pojedynczym elektronie Nanotechnologia (III) Spintronika. Miniaturyzujemy III i IV. a. Nanorurki i. Wegiel i nie tylko ii. Pokręcone zasady b. Nanomaszyny c. nano+bio d. molekuły 3
14 Kwantowa kryptografia i teleportacja. Splątanie kwantowe a. Poplątane stany. i. Eksperyment EPR. ii. Eksperyment Bella b. Star-Trec, czyli teleportujcie mnie! i. Co wlasciwie teleportujemy ii. Ile kosztuje ubezpieczenie c. Kryptografia kwantowa i. Czy są szyfry nie do złamania ii. Klucze duŝe i małe iii. Alice i Bob w świecie kwantów iv. Ewa chce posłuchać Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Michał Heller Kwantowa kryptografia i teleportacja. Splątanie kwantowe Jacek Szczytko, Wydział Fizyki UW a. Poplątane stany. i. Eksperyment EPR. ii. Eksperyment Bella b. Star-Trec, czyli teleportujcie mnie! i. Co wlasciwie teleportujemy ii. Ile kosztuje ubezpieczenie c. Kryptografia kwantowa i. Czy są szyfry nie do złamania ii. Klucze duŝe i małe iii. Alice i Bob w świecie kwantów iv. Ewa chce posłuchać Quantum Computer I (QC) Quantum Computer II (QC). Komputery kwantowe a. Logika bramek b. Kwantowe algorytmy c. Jak zbudować taki komputer?. Komputery kwantowe a. Logika bramek b. Kwantowe algorytmy c. Jak zbudować taki komputer? HARDWARE Świat Nauki
15 Dr Piotr Wasylczyk Nieliniowo, adaptacyjnie i femtosekundowo, czyli ekstremalnie w optyce. Wesołych Świąt BoŜego Narodzenia! W smutnym kolorze blue Optoelektronika Kryształy fotoniczne Juliette Binoche Źródło:
16 NOWE TECHNOLOGIE Środy 7:5-9: Sala DuŜa Doświadczalna IBM W następnym tygodniu: Nanotechnologia (I) b a,b,c < nm a c Nanotechnologie JAK? Top-down, czyli (nano)technologia Bottom-up, czyli samoorganizacja Top-down CO? Studnie, druty, kropki Nanorurki i nanomaszyny Vincent Laforet/The New York Times 6
17 How do we make information processing circuits now?. Silicon technology predominates 2. Current circuits ~ 9 - transistors 3. Wafers - 3mm, ~ 3 chips 4. Photolithography, deposition, etching etc 5. Typically ~2 mask steps, 5-2 process steps Bottom-up Nanorurki, nanowąsy i kropki TiO2 nanotube materials W następnym tygodniu: Nanotechnologia (I) ZnO nanocząstka Au a Nanorurka Si b DNA a,b,c < nm c 7
NOWE TECHNOLOGIE. Wtorki17:30-19:00 Sala Duża Doświadczalna. Nowe technologie
NOWE TECHNOLOGIE Wtorki7:3-9: Sala Duża Doświadczalna IBM Nowe technologie Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Google: Jacek Szczytko Login: student Hasło: ****** Nowe technologie
http://www.fuw.edu.pl/~zfcs/ Nowe technologie
http://www.fuw.edu.pl/~zfcs/ Nowe technologie. Koniec technologii krzemowej? Prawo Moora i jego konsekwencje (czyli o postępie technologicznym) 2. Kwanty, stany, pasma (czyli mechanika kwantowa dla początkujących).
FIZYKA + CHEMIA. Wydział Fizyki UW. Wykłady FUW. od października 2009
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA od października 2009 wkrótce więcej informacji na stronie http://nano.fuw.edu.pl
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
FIZYKA + CHEMIA Uniwersytet Warszawski
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl
NanoTechnologia Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego
NanoTechnologia Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego. Nanotechnologia na codzień 2. Jak działa komputer? a) Trochę
Disruptive Technolgies technologie, które zmieniają świat.
Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski Nowe technologie Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt
Wykład pierwszy Rys historyczny rozwoju sprzętu komputerowego
Wykład pierwszy Rys historyczny rozwoju sprzętu komputerowego ARK: W1 SG 2005 1/7 Ważniejsze daty w historii rozwoju komputerów 1/5? komputery astronomiczne (Stonehenge)? abak (RYS1a, RYS1b) ok. 1400 astrolabium
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25
Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Edukacja przez badania Hoża 69: 1921 2014 r. Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Wydział
Technika mikroprocesorowa
Technika mikroprocesorowa zajmuje się przetwarzaniem danych w oparciu o cyfrowe programowalne układy scalone. Systemy przetwarzające dane w oparciu o takie układy nazywane są systemami mikroprocesorowymi
Systemy operacyjne i sieci komputerowe
Historia komputerów 1 1. Historia komputeryzacji 1620 suwak logarytmiczny narzędzie ułatwiające dokonywanie prostych obliczeń, logarytmowanie. Był stosowany przez inżynierów jeszcze w XX wieku. Wynalazca,
Wstęp do architektury komputerów
Wstęp do architektury komputerów Podręczniki: Willians Stallings: Organizacja i architektura systemu komputerowego, WNT Notatki z wykładu: http://zefir.if.uj.edu.pl/planeta/wyklad_architektura.htm Egzamin:
Technika cyfrowa Inżynieria dyskretna cz. 2
Sławomir Kulesza Technika cyfrowa Inżynieria dyskretna cz. 2 Wykład dla studentów III roku Informatyki Wersja 5.0, 10/10/2015 Generacje układów scalonych Stopień scalenia Liczba elementów aktywnych Zastosowania
HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin.
HISTORIA KOMPUTERÓW 2014/15 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Komputery w połowie lat 50tych - już nie unikalne urządzenia, bardzo kosztowne i delikatne - raczej drogie produkty,
2014-10-15. Historia komputera. Architektura komputera Historia komputera. Historia komputera. Historia komputera. Historia komputera
Architektura komputera dr inż. Tomasz Łukaszewski 1 2 500 p.n.e: pierwsze liczydło (abakus) Babilonia. 1614kostkiJohnaNapiera szkockiego matematyka pozwalające dodawać i odejmować 3 4 1621suwak logarytmicznyopracowany
Disruptive Technolgies technologie, które zmieniają świat.
Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski Wykład przygotowany w ramach IV Letniej Praktyki Badawczej
Architektura systemów komputerowych
Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 19 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 19 kwietnia
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Nanotechnologia Uniwersytet Warszawski 2015 T k E E e B c F e T m k n 2 3 2 0 * 2 2 T k E E
FIZYKA + CHEMIA. Technologie disruptive czyli ciężkie życie futurologa. Edukacja przez badania. Plan wykładu.
Technologie disruptive czyli ciężkie życie futurologa Uniwersytet Warszawski Interdyscyplinarny makrokierunek WydziałuFizyki i WydziałuChemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA http://nano.fuw.edu.pl
Świat klasyczny i kwantowy
Kwantowa kryptografia i teleportacja. Splątanie kwantowe Prawo Moore a Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt.4. Prace zaliczeniowe! Zadania Studenckie Do zaliczenia wykładu wymagana
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
PROJEKTOWANIE UKŁADÓW VLSI
prof. dr hab. inż. Andrzej Kos Tel. 34.35, email: kos@uci.agh.edu.pl Pawilon C3, pokój 505 PROJEKTOWANIE UKŁADÓW VLSI Forma zaliczenia: egzamin Układy VLSI wczoraj i dzisiaj Pierwszy układ scalony -
Lata 40-te. Powstaje pierwszy komputer (I generacja)
K OMPUTER - elektroniczna maszyna cyfrowa, urządzenie elektroniczne, służące do automatycznego przetwarzania informacji (danych) przedstawionych cyfrowo (tzn. za pomocą odpowiednio zakodowanych liczb).
Układy scalone. wstęp
Układy scalone wstęp Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy scalone Układ scalony (ang. intergrated
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
FIZYKA + CHEMIA. Kampus Ochota, Warszawa. Fizyka kwantowa dla początkujących. Kwantowy świat nanotechnologii
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego Kampus Ochota, Warszawa FIZYK + CHEMI od października 009 http://nano.fuw.edu.pl Fizyka
Fizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2. B. Ziętek, Optoelektronika,
Historia maszyn liczących
Historia maszyn liczących pierwsze potrzeby liczenia już w czasach, kiedy ludzie żyli w jaskiniach i lasach (religia, jesienne zbiory). Zaczęto liczyć nacięcia na drewnie, znaki na ścianach pierwszy kalendarz
Architektura komputerów Historia systemów liczących
Historia systemów liczących Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój
Scenariusz lekcji. omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku;
Scenariusz lekcji 1 TEMAT LEKCJI Historia informacji 2 CELE LEKCJI 2.1 Wiadomości Uczeń potrafi: omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku; omówić działanie i zastosowanie pierwszych
Technologia Informacyjna Wykład II Jak wygląda komputer?
Technologia Informacyjna Wykład II Jak wygląda komputer? A. Matuszak 18 października 2010 A. Matuszak Technologia Informacyjna Wykład II Jak wygląda komputer? A. Matuszak (2) Technologia Informacyjna Wykład
Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl
Wstęp do Informatyki dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura 1. Brookshear, J. G. (2003). Informatyka w ogólnym zarysie. WNT, Warszawa. 3. Małecki, R. Arendt D. Bryszewski A. Krasiukianis
Fizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy
Pytania do egzaminu część historyczna [Na podstawie: http://www.historiainformatyki.za.pl/kalendarium.html]
Pytania do egzaminu część historyczna [Na podstawie: http://www.historiainformatyki.za.pl/kalendarium.html] 1500 Leonardo da Vinci wykonuje szkic prostego kalkulatora mechanicznego. 1600 John Napier buduje
Architektury komputerów Architektury i wydajność. Tomasz Dziubich
Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych
Nanostruktury krystaliczne
Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy
"Podstawy układów mikroelektronicznych" dla kierunku Technologie Kosmiczne i Satelitarne
Materiały do wykładu "Podstawy układów mikroelektronicznych" dla kierunku Technologie Kosmiczne i Satelitarne Część 1. Technologia. dr hab. inż. Waldemar Jendernalik Katedra Systemów Mikroelektronicznych,
Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury
1976 r. Apple PC Personal Computer 1981 r. pierwszy IBM PC Komputer jest wart tyle, ile wart jest człowiek, który go wykorzystuje... Hardware sprzęt Software oprogramowanie Komputer IBM PC niezależnie
Zastosowanie technologii montażu powierzchniowego oraz nowoczesnych systemów inspekcji optycznej w przemyśle elektronicznym.
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI Zastosowanie technologii montażu powierzchniowego oraz nowoczesnych systemów inspekcji optycznej w przemyśle elektronicznym. RYS HISTORICZNY ROZWOJU ELEKTRONIKI Elektronika
Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) -
Chipset i magistrala Chipset - Układ ten organizuje przepływ informacji pomiędzy poszczególnymi podzespołami jednostki centralnej. Idea chipsetu narodziła się jako potrzeba zintegrowania w jednym układzie
Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami. Andrzej Materka, listopad 2010
Politechnika Łódzka Instytut Elektroniki Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami Andrzej Materka, listopad 2010 Jena Meeting, 12-14 December 2008 1/8 Plan wykładu - rozwój urządzeń
Mobilność - przyszłość zaczęła się wczoraj
Mobilność - przyszłość zaczęła się wczoraj Jacek Szczytko Wydział Fizyki Uniwersytetu Warszawskiego, Inżynieria nanostruktur 21 maja 2014 Warszawa 1994-2005 Wydział Fizyki UW 1997-2000(?) Fundacja Rozwoju
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Architektura komputerów
Architektura komputerów Jan Kazimirski 1 Opis zajęć Odrobina historii... Elementy techniki cyfrowej Maszynowa reprezentacja danych Budowa i zasady działania współczesnych komputerów Elementy programowania
Historia komputerów. Szkoła Podstawowa nr 8 im. Jana Wyżykowskiego w Lubinie
Historia komputerów Informatyka - dziedzina nauki, która zajmuje się przetwarzaniem informacji przy pomocy komputerów i odpowiedniego oprogramowania. Historia informatyki: Pierwszymi narzędziami, które
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Klasyfikacja sprzętu i oprogramowania nowoczesnego banku. Informatyka bankowa, AE w Poznaniu, dr Grzegorz Kotliński
1 Klasyfikacja sprzętu i oprogramowania nowoczesnego banku Informatyka bankowa, AE w Poznaniu, dr Grzegorz Kotliński 2 Podstawowe typy komputerów Mikrokomputery Minikomputery Mainframe Superkomputery Rodzaj
Przeszłość i przyszłość informatyki
Przeszłość i przyszłość informatyki Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Przeszłość i przyszłość informatyki Autor: prof. dr hab. Maciej M Sysło Redaktor merytoryczny: prof. dr hab. Maciej M Sysło
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC
Architektura Systemów Komputerowych Rozwój architektury komputerów klasy PC 1 1978: Intel 8086 29tys. tranzystorów, 16-bitowy, współpracował z koprocesorem 8087, posiadał 16-bitową szynę danych (lub ośmiobitową
Nowe technologie. Kwanty, stany, pasma mechanika kwantowa dla początkujących Jacek Szczytko, Wydział Fizyki UW. Trochę historii.
Kwanty, stany, pasma mechanika kwantowa dla początkujących Jacek Szczytko, Wydział Fizyki UW 1.. 3. Czy dwa półprzewodniki dają cały Rys. źródło: IM Nowe technologie 1. Koniec technologii krzemowej? Prawo
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Zasilacz pierwszego polskiego komputera UMC1 produkowanego seryjnie w ELWRO opracowanego w katedrze kierowanej
Technika mikroprocesorowa. Linia rozwojowa procesorów firmy Intel w latach
mikrokontrolery mikroprocesory Technika mikroprocesorowa Linia rozwojowa procesorów firmy Intel w latach 1970-2000 W krótkim pionierskim okresie firma Intel produkowała tylko mikroprocesory. W okresie
Komputery. Komputery. Komputery PC i MAC Laptopy
Komputery Komputery PC i MAC Laptopy 1 Spis treści: 1. Komputery PC i Mac...3 1.1 Komputer PC...3 1.2 Komputer Mac...3 2. Komputery przenośne...4 2.1 Laptop...4 2.2 Netbook...4 2.3 Tablet...5 3. Historia
Informatyka kwantowa. Karol Bartkiewicz
Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational
Programowanie Mikrokontrolerów
Programowanie Mikrokontrolerów Wstęp oraz historia systemów mikroprocesorowych. mgr inż. Paweł Poryzała Zakład Elektroniki Medycznej Marcin Byczuk Program wykładu Czym jest system wbudowany? Historia komputerów
Technologie Informacyjne Wykład 2
Technologie Informacyjne Wykład 2 Elementy systemu komputerowego Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 15 października
Podział komputerów. Wykład z Technologii Informacyjnych. Piotr Mika
Podział komputerów Wykład z Technologii Informacyjnych Piotr Mika Superkomputery Przeznaczone do wykonywania skomplikowanych obliczeń numerycznych, modelowania giełdy, symulacje, modelowanie atmosfery
Dydaktyka Informatyki budowa i zasady działania komputera
Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz
Bibliografia: pl.wikipedia.org Historia i rodzaje procesorów w firmy Intel
Bibliografia: pl.wikipedia.org www.intel.com Historia i rodzaje procesorów w firmy Intel Specyfikacja Lista mikroprocesorów produkowanych przez firmę Intel 4-bitowe 4004 4040 8-bitowe 8008 8080 8085 x86
Technologie informacyjne Wykład I-III
Technologie informacyjne -III dr inż. A. Matuszak 23 lutego 2013 A. Matuszak (1) Technologie informacyjne -III Po co? Dla inżyniera komputer nie jest ani maszyną do pisania, ani nie służy rozrywce. A.
Historia komputera. Narzędzia informatyki
Historia komputera Narzędzia informatyki 12 października 2015 dr inż. Bartłomiej Prędki Bartlomiej.Predki@cs.put.poznan.pl http://zajecia.predki.com http://ni.predki.com tel. 61 665 2932 pok. 124 CW Konsultacje
Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Elementy Elektroniczne
Elementy Elektroniczne dr hab. inż Piotr Płotka pok. 301 tel. 347-1634 e-mail: pplotka@eti.pg.gda.pl Nagroda Nobla w fizyce 2009 Za przełomowe osiągnięcia w dziedzinie przesyłania światła we włóknach optycznych
Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory
Tranzystory bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory -rodzaje Tranzystor to element, który posiada zdolność wzmacniania mocy sygnału elektrycznego. Z uwagi na tą właściwość,
Od Arystotelesa do Moora
Od Arystotelesa do Moora Zenon Gniazdowski * * Autor pracuje w Instytucie Technologii Elektronowej w Warszawie oraz w Warszawskiej Wyższej Szkole Informatyki Od Arystotelesa do Moora Motywacja Logika Algebra
12:00 1 MAJA 2015, CZWARTEK
Mój wymarzony zawód: 12:00 1 MAJA 2015, CZWARTEK Kacper Bukowski, Uczeń klasy III B Gimnazjum nr 164 z Oddziałami Integracyjnymi i Dwujęzycznymi im. Polskich Olimpijczyków w Warszawie www.kto-to-informatyk.pl
Przewodność elektryczna półprzewodników
Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym
Jerzy Nawrocki, Wprowadzenie do informatyki
Magistrala systemowa Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Organizacja komputera IBM PC Pamięć Od algebry Boole a do komputera Jerzy. Nawrocki,
Program studiów specjalistycznych
Program studiów specjalistycznych 5.1 Fizyka Cząstek i Oddziaływań Fundamentalnych I (do zaliczenia roku wymagane jest uzyskanie 60 ECTS) 1102-479 Fizyka statystyczna (przedmiot ogólny) 75 h 6 ECTS egzamin
Fizyka 3.3. dr hab. Ewa Popko, prof. P.Wr. www.if.pwr.wroc.pl/~popko ewa.popko@pwr.wroc.pl p.231a
Fizyka 3.3 dr hab. Ewa Popko, prof. P.Wr. www.if.pwr.wroc.pl/~popko ewa.popko@pwr.wroc.pl p.31a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995..W.Marciniak Przyrządy
Elementy historii INFORMATYKI
Elementy historii INFORMATYKI Wykład 2. Elementy historii informatyki HISTORIA INFORMATYKI HISTORIA KOMPUTERÓW Wykład 2. Elementy historii informatyki Prehistoria informatyki: PASCAL i LEIBNIZ (1623 1662)
Tranzystor JFET i MOSFET zas. działania
Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej
PRACA ZALICZENIOWA Z WORDA
PRACA ZALICZENIOWA Z WORDA Wykonał: mgr Henryk Janeczek Olesno, 2011 Test zaliczeniowy z Worda spis treści Numerowanie, punktory.. 3 Tabela. 4 Tekst wielokolumnowy, grafika... 5 Tekst matematyczny, rysunki,
PRZESŁANKI I PIERWSZE KONCEPCJE AUTOMATYCZNEGO LICZENIA
PRZESŁANKI I PIERWSZE KONCEPCJE AUTOMATYCZNEGO LICZENIA Pierwszą maszyną cyfrową, w której operacje wykonywane były za pomocą układów elektronicznych, był ENIAC (Electronic Numerioal Integrator And Computer)
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
Elektronika i techniki mikroprocesorowe
Elektronika i techniki mikroprocesorowe Technika cyfrowa Podstawowy techniki cyfrowej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 trochę historii
Wprowadzenie do współczesnej inżynierii. Rozwój komputerów i metod komunikacji człowieka z komputerem
Politechnika Łódzka Instytut Elektroniki http://amaterka.pl Wprowadzenie do współczesnej inżynierii Rozwój komputerów i metod komunikacji człowieka z komputerem Andrzej Materka, kwiecień 2013 Jena Meeting,
Świat klasyczny i kwantowy por. WYKŁAD nr 2. Splątane stany - EPR. por. WYKŁAD nr 2. Kwantowa kryptografia i teleportacja. Splątanie kwantowe
Kwantowa kryptografia i teleportacja. Splątanie kwantowe Świat klasyczny i kwantowy por. WYKŁAD nr a. Poplątane stany. i. Eksperyment EPR. ii. Eksperyment Bella b. Star-Trec, czyli teleportujcie mnie!
Nanostruktury, spintronika, komputer kwantowy
Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.
Jednostka centralna. dr hab. inż. Krzysztof Patan, prof. PWSZ
Jednostka centralna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Architektura i organizacja komputerów Architektura
Procesory firmy ARM i MIPS
Procesory firmy ARM i MIPS 1 Architektura procesorów ARM Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC.
HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin.
HISTORIA KOMPUTERÓW 2014/15 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Mikromoduły Komputery składane z pojedynczych tranzystorów? Lepiej: - standardowe układy bramek logicznych z tranzyst.
Wykaz specjalności na studiach magisterskich
Wykaz specjalności na studiach magisterskich Na Wydziale Fizyki UW prowadzone są studia magisterskie w ramach następujących specjalnościach: specjalności na kierunku fizyka fizyka cząstek i oddziaływań
Bibliografia: pl.wikipedia.org www.intel.com. Historia i rodzaje procesorów w firmy Intel
Bibliografia: pl.wikipedia.org www.intel.com Historia i rodzaje procesorów w firmy Intel Specyfikacja Lista mikroprocesorów produkowanych przez firmę Intel 4-bitowe 4004 4040 8-bitowe x86 IA-64 8008 8080
Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1
i sieci komputerowe Szymon Wilk Superkomputery 1 1. Superkomputery to komputery o bardzo dużej mocy obliczeniowej. Przeznaczone są do symulacji zjawisk fizycznych prowadzonych głównie w instytucjach badawczych:
Wstęp do algorytmiki kwantowej
Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki
Skalowanie układów scalonych Click to edit Master title style
Skalowanie układów scalonych Charakterystyczne parametry Technologia mikroelektroniczna najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Płyty główne rodzaje. 1. Płyta główna w formacie AT
Płyty główne rodzaje 1. Płyta główna w formacie AT Jest formatem płyty głównej typu serwerowego będącej następstwem płyty XT o 8-bitowej architekturze. Została stworzona w celu obsługi 16-bitowej architektury
Skalowanie układów scalonych
Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna