Przypadki toczenia okręgu
|
|
- Witold Cybulski
- 8 lat temu
- Przeglądów:
Transkrypt
1 ul. Konarskiego 2, Kraków Tel lub Przypadki toczenia okręgu Arkadiusz Biel Kraków 2012
2 Motywem do napisania pracy była obserwacja przyczepionej do szprychy roweru kolorowej kulki. Zastanawiałem się po jakim torze porusza się kulka, jaką drogę przebędzie, jeśli rowerzysta pokona określony odcinek trasy oraz jak zmienia się tor ruchu w zależności od odległości kulki od środka koła. Przy pomocy komputera udało mi się wykonać rysunki pokazujące sposób poruszania się kulki. Zauważyłem, że zmieniając odległość obserwowanego punktu od środka koła otrzymuję różne kształty krzywych. Przykład 1. Droga jaką przebywa punkt należący do obwodu koła toczonego bez poślizgu po odcinku prostej. Rysunek 1*. Podstawa cykloidy r Ta linia nazywa się cykloidą. Własności cykloidy. Badania nad cykloidą już w XVI w. rozpoczął włoski matematyk, fizyk i astronom Galileusz po czym napisał do Torricellego, by kontynuował jego badania gdyż przez 40 lat bezskutecznie szukał wzoru na pole obszaru zamkniętego przez tę krzywą. Torricelli znalazł ten wzór. Wzór na długość krzywej obliczył Christopher Wren w XVII w. Christian Huyghnes w roku 1673 opublikował dzieło pt. Horologium Oscillatorium ( Wahadło mechaniczne ), w którym podał własności mechaniczne cykloidy. Wykazał on że wahadło zegara niezależnie od wielkości swoich wychyleń wykonuje w tym samym czasie ruch po krzywej zwanej izochroną i że izochrona jest odwróconą wypukłością cykloidy. Na rysunku 2 przedstawiono wahadło między dwoma cykloidami. Ciężarek wahadła wykreśla taką samą cykloidę jak te, między którymi jest zawieszony. Wahadło to jest nazywane cykloidalne. 2
3 Rysunek 2*. Zwykłe zegarki wykonują ruch kolisty nie cykloidalny ale łuk wykonywany przez te wahadła jest bardzo mały, odpowiada on środkowej części cykloidy, którą (w środkowej części) można uznać za łuk koła.łuk cykloidy ma też inne własności techniczne, jest on najbardziej wytrzymałym łukiem na obciążenia. W związku z tym wiele mostów ma cykloidalne arkady. Koła zębate posiadają zęby cykloidalne w celu zmniejszenia tarcia w mechanizmach transmisyjnych. Amerykański inżynier S.C. Ogilvy odwrócił związek pomiędzy kołem, linią prostą i cykloidą. Zastanawiał się nad tym, po jakiej krzywej musi toczyć się bez poślizgu okrąg by tor poruszania się dowolnego punktu był odcinkiem prostej. Odpowiedź jest oczywista krzywa to odwrócona cykloida. Rysunek 3. Kolejnym etapem jest obserwacja zmian kształtu zależnie od zmiany położenia punktu względem środka okręgu. Gdy przesuniemy punkt bliżej środka okręgu, powstaje krzywa zademonstrowana poniżej. Rysunek 4*. Jest to cykloida skrócona. 3
4 Gdy punkt ten przesuniemy do środka okręgu, krzywa będzie się zawierała w prostej równoległej do podstawy. Rysunek 5. Na rysunku 6 punkt w którym zaczyna się toczenie został przesunięty na odległość większą niż promień toczonego okręgu. Rysunek 6*. Krzywa ta nazywa się cykloidą wydłużoną. Następie zająłem się obserwacją toczącego się bez poślizgu okręgu po innych krzywych. Tocząc bez poślizgu okrąg o promieniu r po okręgu o promieniu R otrzymamy różne odmiany -oid. Rysunek 7. Nazwy tych krzywych są zależne od stosunku promieni: kardioida (dla =1) nefroida (dla =2) 4
5 Aby stworzyć kardioidę zaznaczamy punkt na okręgu o takim samym promieniu jak okrąg, po którym będzie on toczony. Krzywa przedstawiona została na poniższym rysunku. Rysunek 8**. Aby wykreślić nefroidę zaznaczmy punkt na okręgu o promieniu dwukrotnie mniejszym niż promień okręg, po którym będzie on toczony, aż do to połączenia się punktu początkowego z końcowym. Krzywa przedstawiona została na rysunku 9 Rysunek 9**. Inny kształt ma epicykloida powstała poprzez toczenie okręgu o promieniu 3 razy mniejszym od promienia okręgu po którym go toczymy. Krzywa przedstawiona została na poniższym rysunku. 5
6 Rysunek 10**. Podobnie powstają krzywe jakie zakreśla punkt okręgu toczonego po wewnętrznej stronie okręgu. Ich kształty są związane z zależnością promienia dużego okręgu (w którym toczony jest mały) i małego okręgu. Zaznaczamy punkt na okręgu i toczymy go aż do zamknięcia się krzywej. Rysunek 11. Dla zależności =2 krzywa jest średnicą okręgu. Jest to przedstawione na poniższym rysunku. 6
7 Rysunek 12. Deltoida jest to krzywa, jaką zakreśla punkt okręgu o promieniu 3 razy mniejszym od okręgu wewnątrz którego jest toczony. Prowadzimy tę czynność aż do połączenia punktu końcowego i początkowego krzywej. Zostało to przedstawione poniżej. Rysunek 13**. Aby narysować asteroidę toczymy okrąg o promieniu 4 razy mniejszym od promienia dużego okręgu. Zaznaczamy dowolny punkt na małym okręgu i toczymy go po wewnętrznej stronie dużego okręgu aż do zamknięcia się krzywej. Przedstawione jest to na rysunku 14. Rysunek 14**. 7
8 W przypadku, gdy stosunek kształty krzywych, nie wszystkich jeszcze nazwanych oid. jest liczbą niewymierną, otrzymujemy kolejne ciekawe Rysunek 15**. Rysunek 16**. Moim zdaniem rodzina krzywych powstałych przez toczenie okręgu jest fascynująca i ich poznawanie było dla mnie ciekawym doświadczeniem. 8
9 Bibliografia 1. W. Krysicki, H. Pisarewska, T. Świątkowski Z geometrią za pan brat, Iskry, Warszawa Stanisław Kowal Przez rozrywkę do wiedzy Rozmaitości matematyczne, Wydawnictwo Naukowo-techniczne, Warszawa swiatmatematyki.pl artykuł o Cykloidach Przypisy: *Rysunki z fizyka.net.pl z artykułu o cykloidach ** Rysunki z Wikipedii z artykułów tematycznych 9
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt
DŁUGOŚĆ OKRĘGU. POLE KOŁA
Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole koła o promieniu długości 9 m A. 81π m 2 C. 18π m 2 B. 81 m 2 D. 9π m 2 Długość okręgu o średnicy 4 cm A. 4 cm C. 8π cm B. 4π cm D. 16π cm Zadanie 1.3 Zadanie
Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens
Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ODLEGŁOŚĆ NA POWIERZCHNI WIELOŚCIANU dr Michał Lorens 28.04.2012 Projekt
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz
W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH
ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Skrypt 29. Przygotowanie do egzaminu Koło i okrąg. Opracowanie: GIM3. 1. Obliczanie obwodów i pól kół - powtórzenie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Przygotowanie do egzaminu Koło i okrąg
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: klasa 1 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Symetria względem
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...
Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV
Odcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
Skrypt 20. Planimetria: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Planimetria: 1. Kąty w
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
WIELOKĄTY GWIAŹDZISTE. Paulina Bancerz
WIELOKĄTY GWIAŹDZISTE Paulina Bancerz Łamana Łamana to figura geometryczna utworzona ze skończonej liczby odcinków takich, że: żadne dwa następujące po sobie odcinki nie leżą na jednej prostej, koniec
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
Scenariusz lekcji matematyki w kl. IV
Scenariusz lekcji matematyki w kl. IV TEMAT LEKCJI: Okrąg i koło. Treści nauczania z podstawy programowej : Wielokąty, koła, okręgi. Uczeń wskazuje na rysunku, a także rysuje cięciwę, średnicę, promień
Konstrukcja i modelowanie form prochowca męskiego
Konstrukcja i modelowanie form prochowca męskiego Mgr inż Zbigniew Parafianowicz Modelowanie form prochowca przedstawiono na standardowej konstrukcji z prostą linią środka przodu dla typów figur A (opx-ot
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
GEOPLAN Z SIATKĄ TRÓJKĄTNĄ
TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan
ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!
Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Wymiarowanie i teksty. Polecenie:
11 Wymiarowanie i teksty Polecenie: a) Utwórz nowy rysunek z pięcioma warstwami, dla każdej warstwy przyjmij inny, dowolny kolor oraz grubość linii. Następnie narysuj pokazaną na rysunku łamaną warstwie
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
ZESTAWY PYTAŃ NA USTNY EGZAMIN SEMESTRALNY Z MATEMATYKI SEMESTR I
ZESTAWY PYTAŃ NA USTNY EGZAMIN SEMESTRALNY Z MATEMATYKI SEMESTR I I 1. Co to jest ułamek? Jakie znasz rodzaje ułamków? 2. Kiedy dwa odcinki są do siebie równoległe? 3. Kiedy dwie figury nazywamy przystającymi?
AUTOR : HANNA MARCINKOWSKA. TEMAT : Symetria osiowa i środkowa UWAGA:
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY I GIMNAZJUM PRZYGOTOWANY W PROGRAMIE NARZĘDZIOWYM EXE LEARNING - SYMETRIA OSIOWA I ŚRODKOWA. Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej AUTOR : HANNA
Definicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Skrypt 13. Koło i okrąg. Opracowanie: GIM3. 1. Okrąg i koło - podstawowe pojęcia (promień, średnica, cięciwa) 2. Wzajemne położenie dwóch okręgów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Koło i okrąg 1. Okrąg i koło - podstawowe
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Punktacja za zadania Zadanie Zadanie Zadanie Zadanie Zadanie Zadanie Zadanie Razem 1. 2. 3. 4. 5. 6. 7. 3 p. 4 p. 6 p. 6 p. 7 p. 7 p. 7 p. 40 p. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta
Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń.
Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń. Justyna Stefaniak V Liceum Ogólnokształcące Spis treści: 1. Twierdzenie Harcourt a 2. Dowód twierdzenia Harcourt a 3. Twierdzenie
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
KARTA PRACY NAUCZYCIELA
KARTA PRACY NAUCZYCIELA Przedmiot: Klasa: Temat: Data Uwagi: Matematyka III gimnazjum Objętość brył podobnych Nie wszystkie zadania muszą zostać wykonane. Wszystko zależy od poziomu wiadomości danej klasy.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
LIGA klasa 2 - styczeń 2017
LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grządziel Wykład 1; 1 października 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 08.03.2019 R. 1. Test konkursowy zawiera 14 zadań. Są to zadania zamknięte i otwarte. Na ich
K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.
3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku
w Kielcach, 2011 w Kielcach, 2011 Matematyka za pomocą igły i nitki.
Zeszyty Studenckiego Ruchu Materiały 20 Sesji Studenckich Naukowego Uniwersytetu Kół Naukowych Uniwersytetu Humanistyczno- Przyrodniczego Humanistyczno- Przyrodniczego Jana Kochanowskiego Jana Kochanowskiego
Narysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1
Narysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1 Jak zwykle, podczas otwierania nowego projektu, zaczynamy od ustawienia warstw. Poniższy rysunek pokazuje kolejne kroki potrzebne
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Konstrukcja i modelowanie form spodni i kamizelki dla figury tęgiej
Konstrukcja i modelowanie form spodni i kamizelki dla figury tęgiej Mgr inż Zbigniew Parafianowicz Modelowanie form spodni męskich przedstawiono na standardowej konstrukcji dla typów figur mężczyzn z dużymi
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. fig.1 F16H 55/17 E21C 31/00 F04C 2/24 RZECZPOSPOLITA POLSKA
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 181581 (21 ) Numer zgłoszenia: 317495 Urząd Patentowy (22) Data zgłoszenia: 12.12.1996 Rzeczypospolitej Polskiej (13) B1 (51) Int.Cl.7 F16H 55/17
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź
Kształtowanie w uczniach umiejętności identyfikowania zależności i analogii matematycznych w otaczającym świecie.
Tytuł Mity, magia i matematyka Autor Sławomir Dziugieł Dział Figury płaskie - symetrie i inne przekształcenia geometryczne Innowacyjne cele edukacyjne Kształtowanie w uczniach umiejętności identyfikowania
8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.
WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM
Lista zadań nr 5 Ruch po okręgu (1h)
Lista zadań nr 5 Ruch po okręgu (1h) Pseudo siły ruch po okręgu Zad. 5.1 Na cząstkę o masie 2 kg znajdującą się w punkcie R=5i+7j działa siła F=3i+4j. Wyznacz moment siły względem początku układu współrzędnych.
Zagadnienie tautochrony
AUTOMATYKA 2011 Tom 15 Zeszyt 1 Henryk Górecki Zagadnienie tautochrony 1. Wstęp Problem znalezienia krzywej zwanej tautochrona narodził się z potrzeby, by zegary na statkach wskazywały dokładny czas niezależnie
O kątach w wielokątach i nie tylko
Zespół Szkół nr 5 w Krakowie Samorządowe Przedszkole nr 30 Szkoła Podstawowa nr 109 im. Kornela Makuszyńskiego Gimnazjum nr 13 im. Adama Chmielowskiego- św. Brata Alberta Krakowskie Młodzieżowe Towarzystwo
Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna.
Spotkanie 2 Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna. Zajęcia rozpoczynamy od pytania, co oznacza nazwa projektu, w którym uczniowie biorą udział: Pi i sigma.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi
Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i
Kąty, trójkąty i czworokąty.
Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość
Równania miłości. autor: Tomasz Grębski
Równania miłości autor: Tomasz Grębski Tytuł pewnie trochę dziwnie brzmi, bo czy miłość da się opisać równaniem? Symbolem miłości jest niewątpliwie Serce, a zatem spróbujmy opisać kształt serca równaniem
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
WIELOKĄTY FOREMNE I ICH PRZEKĄTNE
WIELOKĄTY FOREMNE I ICH PRZEKĄTNE Krzysztof Lisiecki Kl. V a SP nr 6 im. Unii Europejskiej w Kłodzku Praca pod kierunkiem: mgr Moniki Chosińskiej Spis treści Lp. Tytuł Str. 1. Wstęp. 2 2. Pojęcia używane
WOJEWÓDZKI KONKURS FIZYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA
Nie przyznaje się połówek. WOJEWÓDZKI KONKURS FIZYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA Przykładowe poprawne odpowiedzi i schemat punktowania otwarte W ch, za które przewidziano maksymalnie jeden
KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 31 stycznia 2008 r.
KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 3 3 4 5 4 5 48 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap
INSTRUKCJA UŻYTKOWANIA PROGRAMU MEB EDYTOR 1. Dane podstawowe Program MEB edytor oblicza zadania potencjalne Metodą Elementów Brzegowych oraz umożliwia ich pre- i post-processing. Rozwiązywane zadanie
Doświadczenie. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego. I. CZĘŚĆ TEORETYCZNA
Doświadczenie Wyznaczanie przyspieszenia ziemskieo za pomocą wahadła matematyczneo. I. CZĘŚĆ TEORETYCZNA Wahadłem matematycznym nazywamy ciało o masie m skupionej w jednym punkcie, zawieszonej na nieważkiej
KONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 10 kwiecień 2015r.
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Materiały warsztatów z GeoGebry w ramach projektu Sztuki policzalne. Bolesław Mokrski. ZSO nr 3 Gliwice
Bolesław Mokrski ZSO nr 3 Gliwice Materiały warsztatów z Geogebry w ramach projektu Sztuki policzalne Opracowanie autorskie Pierwsze kroki. Poznajemy program Pod koniec ubiegłego roku pojawiła się nowa
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy
Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium 6 Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy Opis obiektu symulacji Przedmiotem
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym