Zaj cia komputerowe 1
|
|
- Feliks Niewiadomski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Test t-studenta dla par przykład Zaj cia komputerowe Podsumowanie:rozn: =przed-po K-S d=,577, p>.; Lilliefors p>. Shapiro-Wilk W=,99, p=,86, Wykres normalno ci: rozn,5,,5, -,5 -, -, , Statystyki:rozn N wa nych= 5, =, Minimum= -, Maksimum=, Odch.std=, rozn =, = (-,5, 8,698) ±,96*Odch.std = (-,88,,85) Podsumowanierozn Shapiro-Wilk p: n/a :, Odch.std:,565 Wariancja:,8 Bł.std.red.,79 Skono:,67 N wanych: 5, Mediana, rozst p kwartylowy, zakres nieodstaj cych, 95% przedział ufnoci, 95% przedział predykcji Minimum: -, Dolny kwartyl, Mediana:, Górny kwartyl 9, Maksimum:, 95% p. ufnoci dla odch.std. Dolny, Górny 7,99 95% p. ufnoci redniej Dolny,65 Górny 6,66 95% p. ufn. dla predykcji obserwacji Dolny -5,978 Górny,5 Test T dla prób zalenych (sstatpar.sta) Zmien Zaznaczone rónice s istotne z p <,5 na Odch.st. Wan Rónica Odch.st. t df p Ufno Ufno ych Rónica -95,% +95,% przed 75, ,75 po 7,5,8 5,,56876,5689,87,6589 6,6678
2 Test t-studenta dla par przykład Podsumowanie:rozn: =przed-po K-S d=,78, p>.; Lilliefors p>. Shapiro-Wilk W=,9598, p=,6776, Wykres normalno ci: rozn,5,,5, -,5 -, -, , Statystyki:rozn N wa nych=, = 5,857 Minimum=-7, Maksimum= 7, Odch.std=,78 rozn = 5,86 = (-,586, 5,7) ±,96*Odch.std = (-,97, 5,5) Podsumowanierozn Shapiro-Wilk p: n/a : 5, Mediana, rozst p kwartylowy, zakres nieodstaj cych, 95% przedział ufnoci, 95% przedział predykcji Odch.std:, Wariancja: Bł.std.red.,676 Skono : -,789 N wanych:, Minimum: -7, Dolny kwartyl -, Mediana: 7, Górny kwartyl 5, Maksimum: 7, 95% p. ufnoci dla odch.std. Dolny 7,59 Górny 6, 95% p. ufnoci redniej Dolny -,5 Górny, 95% p. ufn. dla predykcji obserwacji Dolny -6,96 Górny 7,8 Test T dla prób zalenych (sstatpar.sta) Zmien Zaznaczone rónice s istotne z p <,5 na Odch.st. Wan Rónica Odch.st. t df p Ufno Ufno ych Rónica -95,% +95,% przed 85,9 7,7 po 79,7857,869 5,857,8,85,657 -,5865,
3 Testy dla prób niezale nych przykład Test t-studenta dla prób niezale nych Bez podziału na grupy Podsumowanie: 7 K-S d=,885, p>.; Lilliefors p>. Shapiro-Wilk W=,965, p=,677, Bez podziału na grupy Wykres normalno ci: 6,5 5,,5, -,5 -, -, , Statystyki: N wa nych=, = 8,5 Minimum= 6, Maksimum= 9, Odch.std= 6, = 8,5 = (,667, 5,6) ±,96*Odch.std = (5,79, 5,95) K-S d=,89, p>.; Lilliefors p>. Shapiro-Wilk W=,956, p=,789 gr= Podsumowanie:, Wykres normalno ci:,5,,5, -,5 -, -, , Statystyki: N wa nych=, = 5, Minimum= 6, Maksimum= 6, Odch.std= 6, = 5 = (8,55,,875) ±,96*Odch.std = (,5788, 8,)
4 K-S d=,97, p>.; Lilliefors p>. Shapiro-Wilk W=,9, p=,598 gr= Podsumowanie:, Wykres normalno ci:,5,,5, -,5 -, -, , Statystyki: N wa nych=, =, Minimum= 5, Maksimum= 9, Odch.std= 5, = = (6,9668, 7,) ±,96*Odch.std = (,9, 5,865) Testy t; Grupujca: gr (sstatnzl.sta) Zmienna Grupa : Grupa t df p N wanyc N wanych Odch.std Odch.std 5,, -,67 8,79 6,8756 5, Testy t; Grupujca: gr (sstatnzl.sta) Zmienna Grupa : Grupa iloraz F p Ufno Ufno Wariancje Wariancje - -95,% +95,%,85877,766-7, -,66 -,59 6 Wykres ramka-w sy: 8 6 gr ±Bł d std ±,96*Bł d std
5 Test sumy rang Kruskala-Wallisa Zalena: ANOVA rang Kruskala-Wallisa; (sstatnzl.sta) Zmienna niezalena (grupujca): gr Test Kruskala-Wallisa: H (, N= ) =,986 p =,56 Kod N wanych Suma Rang 75,5,5 Zalena: Test mediany, ogólna mediana= 8,5; (sstatnzl.sta) Zmienna niezalena (grupujca): gr Chi kwadrat=, df = p =,76 Razem <=mediany:obserwow. 7,,, oczekiwane 5, 5, obs.-ocz., -, >mediany:obserwow., 7,, oczekiwane 5, 5, obs.-ocz. -,, Razem: obserwowane,,, Wykr. ramka-w sy wzgl dem grup 5 Zmienna: gr Mediana 5%-75% Min-Maks
6 Testy dla prób niezale nych przykład test t-studenta dla prób niezale nych K-S d=,786, p>.; Lilliefors p>. Shapiro-Wilk W=,979, p=,76 Bez podziału na grupy Podsumowanie:,5 Bez podziału na grupy Wykres normalno ci: 5,,5,,5, -,5 -, -, , Statystyki: N wa nych=, = 7,7777 Minimum=, Maksimum= 59, Odch.std= 9, = 7,777 = (8,, 7,) ±,96*Odch.std = (9,867, 56,587) gr= Podsumowanie: K-S d=,98, p>.; Lilliefors p>. Shapiro-Wilk W=,95, p=,7, Wykres normalno ci:,5,,5, -,5 -, -, Statystyki: N wa nych=, =,8 Minimum=, Maksimum=, Odch.std= 6,5 -, =,8 = (6,5675, 9,5) ±,96*Odch.std = (,58, 5,58)
7 K-S d=,965, p>.; Lilliefors p>. Shapiro-Wilk W=,997, p=,9999 gr= Podsumowanie:, Wykres normalno ci:,5,,5, -,5 -, -, , Statystyki: N wa nych=, =,96667 Minimum=, Maksimum= 59, Odch.std= 9, =,967 = (,6, 5,569) ±,96*Odch.std = (,997, 6,859) Testy t; Grupujca: gr (sstatnzl.sta) Zmienna Grupa : Grupa t df p N wanyc N wanych Odch.std Odch.std,8,9667 -,5686,88 6,5 9,6568 Testy t; Grupujca: gr (sstatnzl.sta) Zmienna Grupa : Grupa iloraz F p Ufno Ufno Wariancje Wariancje - -95,% +95,%,9865,997-9,667-6,5 -, Wykres ramka-w sy: gr ±Bł d std ±,96*Bł d std
8 Test sumy rang Kruskala-Wallisa Zalena: ANOVA rang Kruskala-Wallisa; (sstatnzl.sta) Zmienna niezalena (grupujca): gr Test Kruskala-Wallisa: H (, N= ) =5,65 p =,8 Kod N Suma Rang wanych 8, 7, Zalena: Test mediany, ogólna mediana= 7,; (sstatnzl.sta) Zmienna niezalena (grupujca): gr Chi kwadrat=,79 df = p =,86 Razem <=mediany:obserwow. 8,,, oczekiwane 5,555 6,555 obs.-ocz.,555 -,555 >mediany:obserwow., 8,, oczekiwane,555 5,555 obs.-ocz. -,555,555 Razem: obserwowane,,, 65 Wykr. ramka-w sy wzgl dem grup Zmienna: gr Mediana 5%-75% Min-Maks
Ćwiczenie komputerowe 2 testy t-studenta. Program Statistica
Ćwiczenie komputerowe testy t-studenta. Program Statistica Test t-studenta dla par. Przykład Podsumowanie:roznica: =przed-po K-S d=.69, p>.; Lilliefors p>. Shapiro-Wilk W=.98, p=. Wykres normalności: roznica
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Analizy wariancji ANOVA (analysis of variance)
ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych
Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja
Ścieżki dostępu do STATISTICA
Ścieżki dostępu do STATISTICA Spis treści Sprawdzanie zgodności z rozkładem normalnym test Shapiro-Wilka:... 2 Test t-studenta w modelu zmiennych niezależnych:... 3 Test t-studenta w modelu zmiennych powiązanych...
ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA
ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Statystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Statystyka matematyczna
Statystyka matematyczna Aleksandra Ki±lak-Malinowska akis@uwm.edu.pl http://wmii.uwm.edu.pl/ akis/ Czym zajmuje si statystyka? Statystyka zajmuje si opisywaniem i analiz zjawisk masowych otaczaj cej czªowieka
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
DiabControl RAPORT KOŃCOWY
DiabControl OCENA WSPÓŁPRACY PACJENTA CHOREGO NA CUKRZYCĘ TYPU 2 Z LEKARZEM PROWADZĄCYM W ZAKRESIE COMPLIANCE, OBSERWACJA ZJAWISKA DYSFAGII (TRUDNOŚCI W POŁYKANIU) RAPORT KOŃCOWY Październik 214 Autor
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
author: Andrzej Dudek
Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
KRZYSZTOF CHMIELEWSKI, STEFAN BERCZYŃSKI STATYSTYKA MATEMATYCZNA ĆWICZENIA LABORATORYJNE Z WYKORZYSTANIEM PAKIETU STATISTICA PL
KRZYSZTOF CHMIELEWSKI, STEFAN BERCZYŃSKI STATYSTYKA MATEMATYCZNA ĆWICZENIA LABORATORYJNE Z WYKORZYSTANIEM PAKIETU STATISTICA PL Szczecin 2001 Recenzent LEON KUKIEŁKA Opracowanie językowe Projekt okładki
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Analiza wariancji jednej zmiennej (UNIANOVA)
UNIANOVA ocena BY pĺ eä szkoĺ a doĺ wiadczenie /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=szkoĹ a(snk) /PLOT=PROFILE(szkoĹ a*doĺ wiadczenie*pĺ eä doĺ wiadczenie*szkoĺ a*pĺ eä szkoĺ a*pĺ eä *doĺ wiadczenie
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie
Prognoza sprawozdania finansowego Bilans
Prognoza sprawozdania go Bilans 31.12.24 31.12.25 31.12.26 Wartości niematerialne i prawne Rzeczowe aktywa trwałe Długoterminowe Zapasy Należności Inwestycje 594 3474 3528 954 52119 54 12 759 693 2259
Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...
Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań
Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.
Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną,
Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona
Nieparametryczne odpowiedniki testów T-Studenta stosujemy gdy zmienne mierzone są na skalach porządkowych (nie można liczyć średniej) lub kiedy mierzone są na skalach ilościowych, a nie są spełnione wymagania
Badanie zależności skala nominalna
Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność
Przykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia
Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Metody nieparametryczne Do tej pory omawialiśmy metody odpowiednie do opracowywania danych ilościowych, mierzalnych W kaŝdym przypadku zakładaliśmy
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku!
Pracownia statystyczno-filogenetyczna Liczba punktów (wypełnia KGOB) / 30 PESEL Imię i nazwisko Grupa Nr Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Czerwona Niebieska Zielona Żółta Zaznacz znakiem
In»ynierskie zastosowania statystyki wiczenia
Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych. Laboratorium VI: Testy nieparametryczne
1 Laboratorium VI: Testy nieparametryczne Spis treści Laboratorium VI: Testy nieparametryczne... 1 Testy nieparametryczne... 2 1. Tablica wielorozdzielcza... 3 2. Test χ 2 niezależności zmiennych... 3
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
3. Wskaźniki hodowlane i biometryczne pstrąga
Janusz Guziur, Anna Wiśniewska, Stefan Dobosz, Krzysztof Goryczko 3. Wskaźniki hodowlane i biometryczne pstrąga 3.1. Metodyka badań W projekcie przyjęto podział na dwa typy gospodarstw pstrągowych stosujących
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych.
Laboratorium z ekonometrii (GRETL) 2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych. 2.1 Zaimportuj dane z pliku zatrudnienie.csv z przecinkiem jako separatorem danych i kropką jako
Skąd te garby? Czyli o tym, co może być powodem nienormalności rozkładu wyników sprawdzianu dla szóstoklasistów z kwietnia 2006 roku
Anna Dubiecka, Skąd te garby? Anna Dubiecka Okręgowa Komisja Egzaminacyjna w Krakowie Skąd te garby? Czyli o tym, co może być powodem nienormalności rozkładu wyników sprawdzianu dla szóstoklasistów z kwietnia
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 6/15 Statystyki w języku SQL W różnych produktach SQL spotkamy rozmaite funkcje wbudowane ułatwiające analizy
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Analiza statystyczna. Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe
Analiza statystyczna Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe Dokument zawiera opracowanie wyników analizy statystycznej e-sprawdzianu Edyta Landkauf, Zdzisław Porosiński
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Podsumowanie konkursów przedmiotowych KURATORIUM OŚWIATY W RZESZOWIE, CZERWIEC 2015 R.
Podsumowanie konkursów przedmiotowych KURATORIUM OŚWIATY W RZESZOWIE, CZERWIEC 2015 R. Liczba uczniów na I etapie konkursów Gimnazjum Szkoły podstawowe 19553 17736 19470 2013-2014 15903 Dziewczęta i chłopcy
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
140, , ,000 80, ROK
140,000 PRODUKCJA 120,000 100,000 80,000 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 ROK 130,000 120,000 PRODUKCJA 110,000 100,000 90,000 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Oszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Fundacja Sportowo-Edukacyjna Infinity. OPRACOWANE WYNIKÓW WROCŁAWSKIEGO TESTU SPRAWNOŚCI FIZYCZNEJ (Badania: październik maj 2016)
Fundacja Sportowo-Edukacyjna Infinity www.wroclaw.pl OPRACOWANE WYNIKÓW WROCŁAWSKIEGO TESTU SPRAWNOŚCI FIZYCZNEJ (Badania: październik 2015 - maj 2016) Opracowali: dr inż. Krzysztof Przednowek mgr inż.
Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy
Klasówka po szkole podstawowej Historia Edycja 2006/2007 Raport zbiorczy Opracowano w: Gdańskiej Fundacji Rozwoju im. Adama Mysiora Informacje ogólne... 3 Raport szczegółowy... 3 Tabela 1. Podział liczby
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
System dokładnosci (ISO/DIS 15197) (wg miedzynarodowych standardow)
IDT-1245-IE -- CareSens N (A) vs. YSI 2300 -- Dokument: 1245_A_CareSensN_Sys_acc2_Y_130325.xls acc_report System dokładnosci (ISO/DIS 15197) (wg miedzynarodowych standardow) System testowany: System odniesienia:
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr
Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -
BIOSTATYSTYKA KARTA PRZEDMIOTU. 1. Nazwa przedmiotu. 2. Numer kodowy COM03c. 3. Język, w którym prowadzone są zajęcia polski. 4. Typ kursu obowiązkowy
Projekt OPERACJA SUKCES unikatowy model kształcenia na Wydziale Lekarskim Uniwersytetu Medycznego w Łodzi odpowiedzią na potrzeby gospodarki opartej na wiedzy współfinansowany ze środków Europejskiego
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia Przedmiot: Planowanie i Metody Doskonalenia Jakości Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 6 58-0_0 Rok: III Semestr:
SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Statystyka w badaniach medycznych. dr Bernard Sozański wykład, ćwiczenia konwersatoryjne
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2018-2020 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Statystyka w badaniach medycznych Kod przedmiotu/ modułu* Wydział (nazwa
dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.
dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Statystyczna analiza wyników przemysłowych testów trwałości noży strugarskich pokrytych powłokami przeciwzużyciowymi.
Dotacje na innowacje Statystyczna analiza wyników przemysłowych testów trwałości noży strugarskich pokrytych powłokami przeciwzużyciowymi. Paweł Szuman, Jan Walkowicz, Jan Staśkiewicz, Adam Gilewicz, Zbigniew
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące