CLUSTERING II. Efektywne metody grupowania danych
|
|
- Halina Czajka
- 7 lat temu
- Przeglądów:
Transkrypt
1 CLUSTERING II Efektywne metody grupowania danych
2 Plan wykładu Wstęp: Motywacja i zastosowania Metody grupowania danych Algorytmy oparte na podziałach (partitioning algorithms) PAM Ulepszanie: CLARA, CLARANS Hierarchiczne algorytmy (hierarchical algorithms) BIRCH Algorytmy oparte na gęstościach (density-based algorithms) DBSCAN
3 Motywacja i zastosowania Problem: wyznaczyć grupy podobnych obiektów na podstawie podanej z góry miary podobieństwa lub funkcji odległości Cel: Wyznaczyć grupy obiektów podobnych Redukcja zbioru danych: znaleźć obiekty reprezentatywne w homogenicznych grupach Odkrywanie nowych cech: szukanie naturalnych grup obiektów. Dla każdej grupy wyznaczyć (nieznaną) cechę opisującą obiekty w grupie Odkrywanie szumu (okłamania) w danych: Szukanie obiektów, które nie należą do żadnej grupy
4 Zastosowania WWW: Klasyfikacja dokumentów Grupowanie danych Weblog w celu odkrywaniu wzorców dostępu do sieci użytkownika Marketing: Odkrywanie grup klientów o podobnych zachowaniach Przetwarzanie obrazów: Kompresja obrazów Automatyczne uporządkowanie książek, dokumentów Odkrywanie oszust
5 Problem grupowania danych Dany jest: Zbiór N obiektów, każdy jest określony wektorem wartości o takiej samej długości Funkcja odległości (macierz odległości) Funkcja oceny jakości grupowania Problem: Podzielić zbiór obiektów na grupy, które optymalizują funkcję jakości.
6 Główne metody grupowania Algorytmy oparte na podziałach (partitioning algorithms): Konstrukcja różnych podziałów i potem ocenia się je za pomocą kryterium jakości Hierarchiczne algorytmy (hierarchical algorithms): Utworzy hierarchiczną dekompozycję zbioru danych Algorytmy oparte na gęstościach (density-based algorithms): oparte na funkcji gęstości i na lokalnych połączeniach.
7 Algorytm oparty na podziałach Dane są zbiór obiektów D i parametr k. Podziel zbiór D na k grup takich, że optymalizują one wybrane kryterium optymalizacji. Suma kwadratów błędu (square error criterion): E k dist i 1 p C i p, m 2 i m 1 m 2 C 1 C 2
8 Znane algorytmy podziałowe Algorytm optymalny Algorytmy aproksymacyjne: k-means (MacQueen): Każda grupa jest reprezentowana przez środek ciężkości obiektów w grupie k-medoids: Każda grupa jest reprezentowana przez jeden obiekt w grupie. PAM (Partition around medoids) (Kaufman i Rouseeuw) CLARA (Clustering Large Applications) CLARANS (Clustering Large Applications based on Randomized Search) (Raymont T. Ng i Jiawei Han )
9 Algorytm k centroidów Krok 1. Podziel zbiór danych na dowolnych k rozłącznych zbiorów Krok 2. Dla każdej grupy wyznacz centroid. Centroid jest środkiem ciężkości grupy. Krok 3. Podziel obiekty do najbliższego centroida. Krok 4. Jeśli grupy się nie zmieniają stop, wpp. Goto krok Zaleta: Efektywny: O(tkn), gdzie n: liczba obietów, k: liczba grup, i t: liczba iteracji Wada: Stosowalny tylko dla danych rzeczywistych Liczba grup k musi być podana Nie wykrywa szumu Nie pasuje, jeśli grupy nie są wypukłe
10 Algorytm k-medoidów - PAM Cel: wyznaczyć k reprezentatywnych obiektów. Krok 1. Wybierz dowolnie k reprezentatywnych obiektów Krok 2. Dla każdej pary: (obiekt zwykły h, obiekt reprezentatywny i ) wyznacz całkowity koszt zamiany TC ih Krok 3. Dla pary (i,h) o najmniejszym koszcie TC ih zamień zwykły obiekt h na medoid i medoid i na zwykły obiekt, jeśli TC ih < 0 Krok 4. Podziel obiekty do grup względem nowego układu medoidów, goto Krok 2 Złożoność: O(k(n-k) 2.t) n-liczba obiektów, k-liczba grup, t-liczba iteracji
11 Wyznaczanie TC ih = j C jih j i h t C jih = t i h j C jih = d(j, h) - d(j, i) t i h j C jih = d(j, h) - d(j, t) h i t j C jih = d(j, t) - d(j, i)
12 Algorytm CLARA (Clustering Large Applications) Algorytm CLARA Próbkuj wiele razy zbiór danych Dla każdej próbki szukaj obiektów reprezentatywnych (za pomocą PAM) Zwracaj najlepszy zbiór medoidów Zaleta: stosowalna dla dużego zbioru danych Wada: jakość zależy od wyniku próbkowania Modyfikacja CLARA: Próbkowanie za pomocą R*-drzewa
13 Algorytm CLARANS (Randomized CLARA) CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han 94) Interpretacja przestrzeni wyszukiwania: Graf pełny G n,k : wierzchołkami są zbiory k medoidów Dwa wierzchołki są połączone, jeśli odpowiednie zbiory medoidów mają (k-1) wspólnych elementów Zmiana jednego medoidu odpowiada przejściu z jednego węzła do węzła sąsiedniego.
14 Algorytm CLARANS (Randomized CLARA) (c.d.) Algorytm PAM: przeszukiwanie całego grafu Algorytm CLARANS: ma dwa parametry max_neighbor i num_local Startuje od dowolnego węzła Dla bieżącego węzła t, szukaj lepszego węzła wśród (max_neighbor) sąsiadów t i przejdź do lepszego sąsiada Powtórz proces wyszukiwania aż liczba cykli osiągnie num_local Jeśli lokalne minimum jest osiągalne, to algorytm losuje dowolny nowy węzeł i szuka innego minimum lokalnego zaczynając od tego węzła.
15 Algorytm CLARANS Wejście: max_neighbor, num_local, G n,k Wyjście: zbiór k medoidów Krok 1. current = dowolny węzeł w grafie G n,k ; j =1; best_node = current; Krok 2. Wybierz losowego sąsiada s i oceń jakość s (za pomocą funkcję TC) Krok 3. if (sąsiad s jest lepszy niż current) then current = s, else j = j+1; if (j < max_neighbor) goto Krok 2 else if (current jest lepszy niż best_node) then best_node = current; Krok 4. i = i+1; if (i > num_local) return best_node; else goto Krok 1
16 Hierarchiczne grupowanie Step 0 Step 1 Step 2 Step 3 Step 4 a a b b a b c d e c c d e d d e e Step 4 Step 3 Step 2 Step 1 Step 0 agglomerative (AGNES) Stopniowe grupowanie divisive (DIANA) Stopniowe podzielenie
17 AGNES (Agglomerative Nesting) Algorytm bottom-up Każdy obiekt należy do jednej grupy (do jednego liścia) Połącz węzły, które są bardziej podobne (odległość najmniejsza) Kontynuuj, aż wszystkie obiekty należą do jednej grupy (do korzenia)
18 Hierarchia grup - Dendrogram Dendogram: drzewo grup Grupowania: Grupy danych otrzymane przez obcięcie drzewa na dowolnym poziomie
19 DIANA (Divisive Analysis) Algorytm top-down Podziel węzeł na dwa węzły Kontynuuj, aż każdy obiekt znajduje się w jednym liściu
20 Hierarchiczne grupowanie- Obserwacja Zaleta: Liczba grup k nie musi być znana Wielkość grupy można dobrać Wada: Nie jest efektywne: O(n 2 ), gdzie n jest liczbą obiektów Struktura jest statyczna
21 Ulepszony algorytm hierarchiczny- BIRCH BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies): Działa efektywnie: decyzja dla jednej grupy (dzielenie czy połączenie z inną grupą) nie wymaga przeglądania całego zbioru danych I/O koszt jest liniowy względem rozmiaru danych: przeglądanie zbioru danych raz Algorytm działa dla danych dynamicznie zmienionych Wykrywa szumy w danych
22 BIRCH Struktura CF drzewa CF (Clustering Feature) drzewo: Zrównoważone drzewo Ma trzy parametry: B maksymalna liczba rozgałęzień, L maksymalna liczba obiektów w liściach T maksymalny promień (grup w liściach) Węzeł wewnętrzny: [CF i, child i ] i= 1,2,...,B Węzeł zewnętrzny (liść): [CF i ] i =1,2,...,L
23 Opis grupy Niech grupa G zawiera N punktów Środek, promień (R) i średnica (D) grupy są zdefiniowane: Parametry, R i D opisują grupę obiektów G. d i R x x ) ( ) ( ) ( N N x x D x N x N x x R N x x N i N j j i N i i N i i N i i
24 Opis grupy wektor CF CF = (5, (16,30),( )) Opis grupy : CF = (N, LS, SS) N: liczba punktów w grupie LS: N i=1=x i SS: N 2 i=1=x i (3,4) (2,6) (4,5) (4,7) (3,8) Twierdzenie: Niech CF 1 = (N 1, LS 1, SS 1 ) i CF 2 = (N 2, LS 2, SS 2 ) będą opisami dwóch grup G 1 i G 2, to CF = (N 1 +N 2, LS 1 + LS 2, SS 1 +SS 2 ) będzie opisem grupy, która jest połączeniem G 1 i G 2
25 CF - drzewo Root B = 7 L = 6 CF 1 CF 2 child 1 child 2 child 3 child 6 CF 3 CF 6 CF 1 CF 2 Non-leaf node child 1 child 2 child 3 child 5 CF 3 CF 5 Leaf node Leaf node prev CF 1 CF 2 CF 6 next prev CF 1 CF 2 CF 4 next
26 Wstawianie obiektu do drzewa Krok 1. Wybierz najbliższy liść l do wstawiania. Użyj jednej z funkcji odległości D do wyznaczenia najbliższej grupy do badanego punktu Krok 2. Jeśli w l jest miejsce to wstaw x do l, wpp. Podziel liść l na dwa liście Krok 3. Popraw ścieżkę od l do korzenia. Krok 4. Rekonstrukcja drzewo przez połączenie dwa najbliższe węzły i podzielić na dwa (w razie potrzeby): merge i resplite
27 Efekt splite, merge i resplite CF1 CF3 CF5 CF6 CF7 CF8 CF4 CF2 Splite CF1 CF3 CF5 CF6 CF7 CF8 CF4 CF2 CF9 Merge CF1 CF3 CF5 CF6 CF7 CF8 CF4 CF2 CF9 Resplite CF1 CF3 CF5 CF6 CF7 CF8 CF4 CF2 CF9
28 Algorytm BIRCH Schemat blokowy Dane Faza 1: Buduj CF - drzewo CF-drzewo Faza 2 (Opcjonalnie): Uprościć CF - drzewo przez łączenie najbliższych liści Uproszczone CF-drzewo Faza 3: Zastosuj istniejące algorytmy grupowania dla obiektów w liściach Dobre grupy Faza 4 (Opcjonalnie): Ulepszenie jakości grup przez przemieszczanie obiektów Lepsze grupy
29 Algorytm BIRCH Faza 3,4 Faza 3: Każda grupa w liściu jest reprezentowana przez środek ciężkości. Zastosuj dowolny algorytm grupowania dla zbioru środków Zastosuj dowolny algorytm grupowania bezpośrednio na obiektach w grupie. Faza 4 (ulepszenie jakości grup): Wyznaczaj środków grup generowanych przez fazę 3 Dla każdego obiektu o, przemieszczaj go do grupy, której środek jest najbliżej o.
30 BIRCH - Ocena Zaleta: Wyznacza grupy przez jedno przeglądanie zbiór danych. Proces wstępny dla wielu algorytmów grupowania Wada: Działa tylko dla danych numerycznych Wrażliwy na kolejność obiektów
31 Ograniczenie algorytmu grupowania oparte na odległości Każda grupa jest reprezentowana przez jeden obiekt lub środek ciężkość Grupy są wypukłymi figurami.
32 Grupowanie oparte na gęstości Grupa składa się z punktów sąsiednich o wysokiej gęstości w otoczeniu Regiony pokrywające grupy mają wyższą gęstość niż regiony na zewnątrz
33 Grupowanie oparte na gęstości Główne zalety: Odkrywa grupy o dowolnym kształcie Odkrywa szumy (okłamywanie) Jedno przeglądanie zbioru danych Interesujące algorytmy: DBSCAN: Ester, et al. (KDD 96) OPTICS: Ankerst, et al (SIGMOD 99). DENCLUE: Hinneburg & D. Keim (KDD 98) CLIQUE: Agrawal, et al. (SIGMOD 98)
34 Pojęcia podstawowe Dwa parametry: : promień definiujący otoczenie obiektu MinPts: minimalna liczba punktów w -otoczeniu Rdzeń: obiekt, który ma co najmniej q p MinPts = 5 = 1 cm MinPts w - otoczeniu Brzegowy obiekt: obiekt posiadający, mniej niż MinPts obiektów w - otoczeniu.
35 Pojęcia podstawowe (c.d.) -otoczenie: N (p): {q D dist(p,q) } Dane są parametry i MinPts. Punkt p jest bezpośrednio wyprowadzony z punktu q jeśli 1) p N (q) 2) N (q) MinPts q p MinPts = 5 = 1 cm
36 Density-Based Clustering: Background (II) Punkt p jest wyprowadzony z punktu q jeśli istnieje ciąg punktów p 1,, p n taki, że p 1 = q, p n = p i p i+1 jest bezpośrednio osiągalny z p i q p 1 p Punkt p i q są połączone jeśli istnieje punkt o taki, że p i q są wyprowadzone z o p o q
37 DBSCAN: Wykrywanie i usuwanie szumów Grupa: Maksymalny zbiór punktów połączonych Brzegowy punkt Szum = 1cm Rdzeń MinPts = 5
38 Algorytm DBSCAN Krok 1. Wybierz dowolny punkt p Krok 2. Wyszukiwać zbiór G wszystkich punktów osiągalnych z punktu p w sensie i MinPts. Krok 3. Jeśli p jest rdzeniem, return G (grupa była utworzona). Krok 4. jeśli p jest punktem brzegowym (żaden punkt nie jest osiągalny z p) to sprawdź następny nieodwiedzony punkt Krok 5. Kontynuuj aż wszystkie punkty są odwiedzone
39 Ulepszanie Użycie R*-drzewa do indeksowania zbioru danych Wyznaczanie sąsiadów w -otoczeniu danego punktu p: Przeglądaj drzewo od korzenia do liścia Dla węzła t, wybierz poddrzewo, którego prostokąt ma niepuste przecięcie z okręgiem o środku w p i promieniu. Złożoność czasowa Czas wyszukiwania sąsiadów Złożoność DBSCAN Bez indeksowania O(n) O(n 2 ) R*-drzewo O(log n) O(n*log n)
PRZYSPIESZENIE KNN. Ulepszone metody indeksowania przestrzeni danych: R-drzewo, R*-drzewo, SS-drzewo, SR-drzewo.
PRZYSPIESZENIE KNN Ulepszone metody indeksowania przestrzeni danych: R-drzewo, R*-drzewo, SS-drzewo, SR-drzewo. Plan wykładu Klasyfikacja w oparciu o przykładach Problem indeksowania przestrzeni obiektów
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska
Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie Algorytm DBSCAN Analiza gęstości
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Przykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami.
181 Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 3. D T(D) poprzez algorytm łączenia sąsiadów 182 D D* : macierz łącząca sąsiadów n Niech TotDist i = k=1 D i,k Definiujemy
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych
Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych JERZY STEFANOWSKI Inst. Informatyki PP Wersja dla TPD 2013 Część II Organizacja wykładu Przypomnienie wyboru liczby skupień Studium przypadku
Grupowanie. Iteracyjno-optymalizacyjne metody grupowania Algorytm k-średnich Algorytm k-medoidów. Eksploracja danych. Grupowanie wykład 2
Grupowanie Iteracyjno-optymalizacyjne metody grupowania Algorytm k-średnich Algorytm k-medoidów Grupowanie wykład 2 Tematem wykładu są iteracyjno-optymalizacyjne algorytmy grupowania. Przedstawimy i omówimy
Wyszukiwanie informacji w internecie. Nguyen Hung Son
Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Algorytmy klastujące Problem 3 Mając daną chmurę punktów chcielibyśmy zrozumieć ich
Indeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe
1 Plan rozdziału 2 Indeksy Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny Indeksy wielopoziomowe Indeksy typu B-drzewo B-drzewo B+ drzewo B* drzewo Wprowadzenie 3 Indeks podstawowy
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Analiza skupień. Idea
Idea Analiza skupień Analiza skupień jest narzędziem analizy danych służącym do grupowania n obiektów, opisanych za pomocą wektora p-cech, w K niepustych, rozłącznych i możliwie jednorodnych grup skupień.
CLUSTERING METODY GRUPOWANIA DANYCH
CLUSTERING METODY GRUPOWANIA DANYCH Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Algorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
DBSCAN segmentacja danych punktowych oraz rastrowych w środowisku wolnodostępnego oprogramowania R
DBSCAN segmentacja danych punktowych oraz rastrowych w środowisku wolnodostępnego oprogramowania R Mgr inż. Agnieszka Ochałek Narzędzia informatyczne w badaniach naukowych Wydział Geodezji Górniczej i
Algorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Lista 0. Kamil Matuszewski 1 marca 2016
Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy
Definicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
4.3 Grupowanie według podobieństwa
4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Analiza Skupień Cluster analysis
Metody Eksploracji Danych w wykładzie wykorzystano: 1. materiały dydaktyczne przygotowane w ramach projektu Opracowanie programów nauczania na odległość na kierunku studiów wyższych Informatyka http://wazniak.mimuw.edu.pl
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej
ALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Sortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana II stopień studiów Wykład 13b 2 Eksploracja danych Co rozumiemy pod pojęciem eksploracja danych Algorytmy grupujące (klajstrujące) Graficzna
liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:
Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych
Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych 1 Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Alexander Denisjuk Prywatna Wyższa Szkoła Zawodowa w Giżycku
Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Drzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Dynamiczne struktury danych
Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co
Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Sieci Kohonena Grupowanie
Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Drzewa czerwono-czarne.
Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Algorytmy stochastyczne laboratorium 03
Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z grupowania danych - Rough k-medoids Liczba osób realizuj cych projekt: 1 osoba 1. Wczytanie danych w formatach
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!
Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:
Wykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania