Politechnika Warszawska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Warszawska"

Transkrypt

1 Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, Warszawa

2 Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski Streszczenie W dokumencie przedstawiono sposób realizacji sieci neuronowej w środowisku programu Matlab oraz darmowego programu Octave. Pokazano sposób odczytu wag wytrenowanej sieci oraz funkcję obliczającą jej jakobian. Słowa kluczowe: sieci neuronowe, MATLAB, Octave

3 3 Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski SPIS TREŚCI WSTĘP DANE WEJŚCIOWE... 5 SIEĆ NEURONOWA W PROGRAMIE MATLAB UCZENIE SIECI ODCZYT WAG SIECI NEURONOWEJ SIEĆ NEURONOWA W PROGRAMIE OCTAVE UCZENIE SIECI ODCZYT WAG SIECI NEURONOWEJ OBLICZANIE JAKOBIANU... 5 LITERATURA... 6

4 4 Wstęp W niniejszym dokumencie pokazano sposób realizacji sieci neuronowej w środowisku programów Matlab i Octave. Zakłada się, że uczona sieć będzie miała architekturę taką jak pokazano na rys... Sieć składa się z warstwy wejść (oznaczonych jako x...x inputcount ), warstwy neuronów ukrytych oraz neuronu wyjściowego. Wagi na połączeniach pomiędzy wejściami, a neuronami ukrytymi oznaczone są jako w i,k. Indeks i odpowiada numerowi wejścia, zaś indeks k numerowi neuronu ukrytego. W każdym neuronie ukrytym uwzględniono przesunięcie (ang. bias) wagi tego wejścia oznaczone są jako b in k, gdzie indeks k oznacza numer neuronu ukrytego. x w, w, hidden neuron no. v input no. w, v x w, hidden neuron no. y input no. output x inputcount... input no.inputcount b in b in b in w, w, w inputcount,... hidden neuron no. v b out bias bias Inputs Hidden layer Output Rys.. Schemat sieci neuronowej Wagi połączeń pomiędzy neuronami ukrytymi, a neuronem wyjściowym oznaczono jako v k, gdzie indeks k oznacza numer neuronu ukrytego. Waga dla wejścia bias neuronu wyjściowego oznaczona jest jako b out. Zakłada się, że funkcja aktywacji neuronów ukrytych to tangens hiperboliczny, zaś neuron wyjściowy jest liniowy.

5 5 + v + v + b Wzór opisujący wyjście y z sieci neuronowej: y = v tanh + L + out tanh ( w, x + w, x + L + winputcount, xinputcount + bin ) ( w x + w x + L + w x + b ), tanh, ( w x + w x + L + w x + b ),. Dane wejściowe inputcount,, inputcount in + + inputcount, inputcount in _ Przykłady do uczenia sieci neuronowej znajdują się w pliku tekstowym w formacie przedstawionym na rys... Wiersze pliku dane.txt zawierają kolejne przykłady zbioru uczącego. Kolumny (z wyjątkiem ostatniej) odpowiadają wejściom x k sieci neuronowej. Ostatnia kolumna to etykieta (klasa) przykładu w zadaniach klasyfikacji lub wartość funkcji w zadaniach regresji e e e e e e e e e e e e e e e e e e e e e e e e Rys.. Przykładowe dane wejściowe zwartość pliku dane.txt

6 6 Sieć neuronowa w programie Matlab. Uczenie sieci Listing. przedstawia skrypt główny przygotowujący dane oraz wywołujący funkcje odpowiedzialną za uczenie. Funkcja importdata wczytuje dane z pliku tekstowego w formacie przedstawionym na rys... W przykładowym programie po wczytaniu danych tablica dane zawiera trzy kolumny kol. i zawierają wartości wejść, zaś kol. 3 wartości etykiet. Funkcja train_net przyjmuje trzy parametry. Pierwszy to tablica zawierająca wartości wejść x dla przykładów ze zbioru uczącego. Wiersze tablicy odpowiadają kolejnym przykładom. Drugi parametr to tablica zawierająca etykiety lub watości funkcji. Zaś ostatni parametr oznacza liczbę neuronów w warstwie ukrytej. Funcja zwraca obiekt reprezentujący sieć neuronową. Obiekt ten może być wykorzystany np. do odczytu wag sieci. Listing.. Uczenie sieci neuronowej plik main.m % plik: main.m % opis: przykładowy skrypt pokazujący użycie sieci neuronowych w % programie MATLAB % autor: Zbigniew Szymański <z.szymanski@ii.pw.edu.pl> % data: clc; clear; %wyczyszczenie okna komend Matlaba %czyści pamięć Matlaba % Import danych z pliku tekstowego dane=importdata('dane.txt'); % Opis tablicy 'dane': % kolumny, - współrzędne punktów do klasyfikacji % kolumna 3 - etykieta punktu {-,} % Uczenie sieci neuronowej liczba_neuronow_ukrytych=4; [net]=train_net(dane(:,:),dane(:,3),liczba_neuronow_ukrytych); Listing. przedstawia implementację funkcji train_net dokonującej uczenia sieci neuronowej. Funkcja newff tworzy nowy obiekt sieci typu feed-forward backpropagation network. Wywołanie funkcji init powoduje zainicjowanie wag sieci wartościami losowymi. W kolejnych liniach ustawiane są parametry algorytmu uczenia wartość błędu przy której przerywany jest proces uczenia (zbyt niski poziom błędu może mieć niekorzystny wpływ na generalizację sieci), oraz maksymalna liczba epok uczenia. Ustawienie właściwości net.trainparam.showwindow na wartość false powoduje, że podczas uczenia nie będzie wyświetlane okno prezentujące jego przenbieg. Wywołanie funkcji train rozpoczyna pierwszą fazę proces uczenia (dobór wag metodą propagacji wstecznej błędu). Po jej zakończeniu zmieniana jest funkcja ucząca na Levenberg a

7 7 Marquard a i uczenie jest kontynuowane, aż do osiągnięcia założonego poziomu błędu lub liczby epok. Listing.. Funkcja ucząca sieć neuronową function [net]= train_net(train_set,labels,hidden_neurons_count) %Opis: funkcja tworząca i ucząca sieć neuronową %Parametry: % train_set: zbiór uczący - kolejne punkty w kolejnych wierszach % labels: etykiety punktów - {-,} % hidden_neurons_count: liczba neuronów w warstwie ukrytej %Wartość zwracana: % net - obiekt reprezentujący sieć neuronową %inicjalizacja obiektu reprezentującego sieć neuronową %funkcja aktywacji: neuronów z warstwy ukrytej - tangens hiperboliczny, % neuronu wyjściowego - liniowa %funkcja ucząca: gradient descent backpropagation - propagacja wsteczna % błędu net=newff(train_set',labels',hidden_neurons_count,... {'tansig', 'purelin'},'traingd'); rand('state',sum(00*clock)); net=init(net); net.trainparam.goal = 0.0; net.trainparam.epochs = 00; net.trainparam.showwindow = false; net=train(net,train_set',labels'); %inicjalizacja generatora liczb %pseudolosowych %inicjalizacja wag sieci %warunek stopu poziom błędu %maksymalna liczba epok %nie pokazywać okna z wykresami %w trakcie uczenia %uczenie sieci %zmiana funkcji uczącej na: Levenberg-Marquardt backpropagation net.trainfcn = 'trainlm'; net.trainparam.goal = 0.0; %warunek stopu poziom błędu net.trainparam.epochs = 00; %maksymalna liczba epok net.trainparam.showwindow = false; %nie pokazywać okna z wykresami %w trakcie uczenia net=train(net,train_set',labels'); %uczenie sieci. Odczyt wag sieci neuronowej Do analizy sieci neuronowej konieczna jest znajomość jej wag. Na listingu. pokazano w jaki sposób można je odczytać. Listing.. Odczyt wag sieci neuronowej %NN weights w = net.iw{} ; bin=net.b{}; v = net.lw{,}'; bout = net.b{}; %weights inputs->hidden neurons %input bias %weights hidden neurons->output %output bias Tablica zawierająca wagi połączeń wejść z neuronami ukrytymi zapisana jest w składowej IW{} obiektu reprezentującego sieć neuronową. Tablica ta na potrzeby niniejszego przykładu została transponowana, aby oznaczenia były zgodne z rys... Kolejne wiersze tablicy

8 8 odpowiadają kolejnym wejściom sieci, zaś kolumny neuronom ukrytym. Np. w(,) oznacza wagę połączenia pierwszego wejścia z drugim neuronem ukrytym Rys.. Przykładowa zawartość zmiennej w z listingu. Bias neuronów ukrytych zapisany jest w składowej b{} obiektu reprezentującego sieć neuronową Rys.. Przykładowa zawartość zmiennej bin z listingu. Tablica zawierająca wagi połączeń pomiędzy neuronami ukrytymi, a neuronem wyjściowym zapisana jest w składowej LW{,} obiektu reprezentującego sieć neuronową. Tablica ta na potrzeby niniejszego przykładu została transponowana, aby oznaczenia były zgodne z rys Rys.3. Przykładowa zawartość zmiennej v z listingu. Bias neuronu wyjściowego zapisany jest w składowej b{} obiektu reprezentującego sieć neuronową.

9 9 3 Sieć neuronowa w programie Octave Program Octave można pobrać ze strony [4]. Do realizacji sieci neuronowych (w sposób odpowiadający realizacji w programie Matlab) wymagane jest pobranie pakietu nnet[6] i zainstalowanie w programie Octave komendą pkg install nnet-0..3.tar.gz. 3. Uczenie sieci Listing 3. przedstawia skrypt główny przygotowujący dane oraz wywołujący funkcje odpowiedzialną za uczenie. Funkcja loaddata wczytuje dane z pliku tekstowego w formacie przedstawionym na rys... W przykładowym programie po wczytaniu danych tablica dane zawiera trzy kolumny kol. i zawierają wartości wejść, zaś kol. 3 wartości etykiet. Funkcja train_net przyjmuje trzy parametry. Pierwszy to tablica zawierająca wartości wejść x dla przykładów ze zbioru uczącego. Wiersze tablicy odpowiadają kolejnym przykładom. Drugi parametr to tablica zawierająca etykiety lub watości funkcji. Zaś ostatni parametr oznacza liczbę neuronów w warstwie ukrytej. Funcja zwraca obiekt reprezentujący sieć neuronową. Obiekt ten może być wykorzystany np. do odczytu wag sieci. 3. Odczyt wag sieci neuronowej Odczyt wag sieci neuronowej odbywa się tak samo jak w programie Matlab i jest opisany w pkt...

10 0 Listing 3.. Uczenie sieci neuronowej plik main.m % plik: main.m % opis: przykładowy skrypt pokazujący użycie sieci neuronowych w % programie Octave % autor: Zbigniew Szymański <z.szymanski@ii.pw.edu.pl> % data: clc; clear; %wyczyszczenie okna komend %usunięcie wszystkich zmiennych % Import danych z pliku tekstowego dane=load('dane.txt'); % Opis tablicy 'dane': % kolumny, - współrzędne punktów do klasyfikacji % kolumna 3 - etykieta punktu {-,} % Uczenie sieci neuronowej liczba_neuronow_ukrytych=4; [net]=train_net(dane(:,:),dane(:,3),liczba_neuronow_ukrytych); %klasyfikacja danych ze zbioru uczącego wyniki=sign(sim(net,dane(:,:)')'); %analiza wyników klasyfikacji TP=size(find(dane(idx_poz,3)==),) %liczba True Positives TN=size(find(dane(idx_neg,3)==-),) %liczba True Negatives FP=size(find(dane(idx_poz,3)==-),) FN=size(find(dane(idx_neg,3)==),) %liczba False Positives %liczba False Negatives %TP+TN+FP+FN == rozmiar zbioru %Wizualizacja wyników klasyfikacji idx_poz=find(wyniki(:)==); idx_neg=find(wyniki(:)==-); idx_blad=find(wyniki(:)~=dane(:,3)); %indeksy przykladow %zaklasyfikowanych jako pozytywne %indeksy przykladow %zaklasyfikowanych jako negatywne %indeksy błędnie zaklasyfikowanych %przykładów figure(00); plot(dane(idx_blad,),dane(idx_blad,),'ob'); %wykreślenie błędnie %zaklasyfikowanych próbek hold on; %wyniki klasyfikacji - klasa pozytywna plot(dane(idx_poz,),dane(idx_poz,),'.r'); %wyniki klasyfikacji - klasa negatywna plot(dane(idx_neg,),dane(idx_neg,),'.k'); hold off;

11 Listing 3.. Funkcja ucząca sieć neuronową function [net]= train_net(train_set,labels,hidden_neurons_count) %Opis: funkcja tworząca i ucząca sieć neuronową %Parametry: % train_set: zbiór uczący - kolejne punkty w kolejnych wierszach % labels: etykiety punktów - {-,} % hidden_neurons_count: liczba neuronów w warstwie ukrytej %Wartość zwracana: % net - obiekt reprezentujący sieć neuronową %inicjalizacja obiektu reprezentującego sieć neuronową %funkcja aktywacji: neuronów z warstwy ukrytej - tangens hiperboliczny, % neuronu wyjściowego - liniowa %funkcja ucząca: Levenberg-Marquard input_count=size(train_set,); pr=min_max(train_set'); %określenie minimalnych i %maksymalnych wartości dla %każdego wejścia net=newff(pr, [hidden_neurons_count ],{'tansig', 'purelin'}, 'trainlm'); rand('state',sum(00*clock)); %inicjalizacja generatora liczb %pseudolosowych %inicjalizacja wag sieci net.iw{} = (rand(hidden_neurons_count, input_count)-0.5)/(0.5/0.5); net.lw{} = (rand(, hidden_neurons_count) - 0.5) / (0.5 / 0.5); net.b{} = (rand(hidden_neurons_count, ) - 0.5) / (0.5 / 0.5); net.b{} = (rand() - 0.5) / (0.5 / 0.5); net.trainparam.goal = 0.0; net.trainparam.epochs = 300; net=train(net,train_set',labels'); %warunek stopu - poziom błędu %maksymalna liczba epok %uczenie sieci

12 4 Obliczanie Jakobianu Jakobian jest macierzą, której kolejne kolumny zawierającą pochodne wyjścia sieci względem jej parametrów. Kolejne wiersze odnoszą się do kolejnych próbek zbioru uczącego. parametry (wagi) próbki Rys 3.. Struktura Jakobianu Wzór na wartość y wyjścia sieci neuronowej przedstawiono w pkt.. Wzory na pochodne wyjścia sieci względem kolejnych wag przedstawione są na kolejnej stronie. Do obliczenia pochodnych wykorzystano poniższe wzory: Pochodna funkcji złożonej: [f(g(x))] =f (g(x)) g (x) Pochodna funkcji tangens hiperboliczny: tanh (x)=-tanh (x) Funkcja realizująca obliczanie Jakobianu sieci neuronowej została przedstawiona na listingu 3. (kod funkcji jest taki sam zarówno dla środowiska Matlab jak i Octave). Parametrami funkcji są obiekt reprezentujący sieć neuronową i tablica zawierająca w kolejnych wierszach próbki zbioru uczącego (kolumny tablicy odpowiadają wejściom sieci neuronowej).

13 3 Pochodne po wagach -szego neuronu ukrytego: = v ( tanh ( w, x + w, x + L + winputcount, xinputcount + bin ) x w,... = v tanh w, x + w, x + L + winputcount, xinputcount + b w inputcount, [ ] [( ( ) x ] Pochodna po bias ie -szego neuronu ukrytego: = v tanh w, x + w, x + L + w b... in [( ( x + b )] inputcount, inputcount in Pochodne po wagach ostatniego neuronu ukrytego: = w v... v, w in inputcount [( tanh ( w x + w x + L + w x + b ) x ] = inputcount,,, inputcount, inputcount in _ [( tanh ( w x + w x + L+ w x + b ) x ],, Pochodna po bias ie ostatniego neuronu ukrytego: = b v in _ inputcount, inputcount in _ [( tanh ( w x + w x + L+ w x + b )],, inputcount, inputcount Pochodne po wagach neuronu wyjściowego: v = tanh( w, x + w, x + L + winputcount, xinputcount + bin )... v = tanh w, x + w, x + L + winputcount, xinputcount + b Pochodna po bias ie neuronu wyjściowego: = b out in _ ( ) in _ inputcount

14 4 Listing 3.. Funkcja obliczająca Jakobian sieci neuronowej function Z = calc_jacobian(net, trainset) %calc_jacobian calculates jacobian for a NN with: % hidden tansig layer ('' neurons) % output linear neuron % input layer ('inputcount' inputs) % author: Zbigniew Szymański <z.szymanski@ii.pw.edu.pl> = net.layers{}.dimensions; %NN weights w = net.iw{}'; %weights inputs->hidden neurons bin=net.b{}; %input bias v = net.lw{,}'; %weights hidden neurons->output bout = net.b{}; %output bias inputcount= net.inputs{}.size; paramscount = numel(w)+numel(bin)+numel(v)+numel(bout); samplescount = size(trainset, ); Z = zeros(samplescount,paramscount); for sample_no=:samplescount param_no=; %partial derivatives of the output with respect to %hidden neuron weights for hidden_no=: tanh_param=0; for i=:inputcount tanh_param=tanh_param+w(i,hidden_no)*... trainset(sample_no,i); end tanh_param=tanh_param+bin(hidden_no); end for input_no=:inputcount Z(sample_no,param_no)=... v(hidden_no)*(-tanh(tanh_param).^)*... trainset(sample_no,input_no); param_no=param_no+; end %partial derivatives of the output with respect to %hidden neuron biases for hidden_no=: tanh_param=0; for i=:inputcount tanh_param=tanh_param+w(i,hidden_no)*... trainset(sample_no,i); end tanh_param=tanh_param+bin(hidden_no); end Z(sample_no,param_no)=... v(hidden_no)*(-tanh(tanh_param).^); param_no=param_no+; kontynuacja na następnej stronie

15 5 end %partial derivatives of the output with respect to %output neuron weights for hidden_no=: tanh_param=0; for i=:inputcount tanh_param=tanh_param+w(i,hidden_no)*... trainset(sample_no,i); end tanh_param=tanh_param+bin(hidden_no); end Z(sample_no,param_no)=tanh(tanh_param); param_no=param_no+; %partial derivatives of the output with respect to %output neuron bias Z(sample_no,param_no)=; kontynuacja z poprzedniej strony

16 6 5 Literatura. Dokumentacja Neural Network Toolbox, Matlab, 03 Dokumentacja funkcji z Neural Network Toolbox, Matlab, Stanisław Jankowski, Statystyczne systemy uczące się modelowanie i klasyfikacja; Materiały do wykładu i projektu, Instytut Systemów Elektronicznych PW, Strona projectu GNU - Octave 5. Pakiety do programu Octave - Octave-Forge - Extra packages for GNU Octave 6. Pakiet nnet programu Octave Najaktualniejsza wersja niniejszego opracowania wraz z plikami przykładowymi jest do pobrania ze strony:

Podstawy Sztucznej Inteligencji

Podstawy Sztucznej Inteligencji Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab

Bardziej szczegółowo

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie)

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) WYKŁAD Piotr Ciskowski Neural Network Toolbox: NEURAL NETWORK TOOLBOX NOTACJA Neural Network Toolbox - notacja: pojedynczy neuron: z jednym wejściem

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych

Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 3 Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Podstawowe funkcje biblioteki narzędziowej Neural Network Toolbox. Version 5 pakietu MATLAB v. 6

Podstawowe funkcje biblioteki narzędziowej Neural Network Toolbox. Version 5 pakietu MATLAB v. 6 Podstawowe funkcje biblioteki narzędziowej Neural Network Toolbox. Version 5 pakietu MATLAB v. 6 I. Funkcje przeznaczone do tworzenia jednokierunkowej sieci neuronowej newff newp newlin - tworzenie wielowarstwowej

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których

Bardziej szczegółowo

Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak

Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak 2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski

sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS

MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Jerzy TCHÓRZEWSKI* Maciej PYTEL ** MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy

Bardziej szczegółowo

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu

Bardziej szczegółowo

Wielowarstwowy perceptron jako klasyfikator

Wielowarstwowy perceptron jako klasyfikator Część teoretyczna Ćwiczenie WPK Wielowarstwowy perceptron jako klasyfikator Wykład 6: Sztuczne sieci neuronowe klasyfikacja. Zadania pomocnicze Zapoznaj się z funkcjami newff, train i sim (dokumentacja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Laboratorium nr 2. Identyfikacja systemu i detekcja uszkodzeń na podstawie modelu

Laboratorium nr 2. Identyfikacja systemu i detekcja uszkodzeń na podstawie modelu Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Diagnostyka procesów i systemów Prowadzący: Marcel Luzar 1 Laboratorium nr 2 Identyfikacja systemu i detekcja uszkodzeń na podstawie

Bardziej szczegółowo

MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH

MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH Inżynieria Rolnicza 7(125)/2010 MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH Jerzy Langman, Norbert Pedryc Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy

Bardziej szczegółowo

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Ćwiczenie WPK Wielowarstwowy perceptron jako klasyfikator

Ćwiczenie WPK Wielowarstwowy perceptron jako klasyfikator Część teoretyczna Ćwiczenie WPK Wielowarstwowy perceptron jako klasyfikator Wykład 6: Sztuczne sieci neuronowe klasyfikacja. Zadania pomocnicze 1. Zapoznaj się z programem nnd4db, który pozwala ręcznie

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sieci neuronowe Bartłomiej Goral ETI 9.1 INTELIGENCJA Inteligencja naturalna i sztuczna. Czy istnieje potrzeba poznania inteligencji naturalnej przed przystąpieniem do projektowania układów sztucznej

Bardziej szczegółowo

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej

Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej Podstawy matlaba cz.ii Funkcje Dotychczas kod zapisany w matlabie stanowił skrypt który pozwalał na określenie kolejności wykonywania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

1 Podstawy programowania sieci neuronowych w programie Matlab 7.0

1 Podstawy programowania sieci neuronowych w programie Matlab 7.0 1 Podstawy programowania sieci neuronowych w programie Matlab 7.0 1.1 Wczytanie danych wejściowych Pomocny przy tym będzie program Microsoft Excel. W programie tym obrabiamy wstępnie nasze dane poprzez

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

ĆWICZENIE 5: Sztuczne sieci neuronowe

ĆWICZENIE 5: Sztuczne sieci neuronowe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold

Bardziej szczegółowo

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1.

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1. Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Mateusz Błażej Nr albumu: 130366 Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Optymalizacja optymalizacji

Optymalizacja optymalizacji 7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Elementy metod numerycznych - zajęcia 9

Elementy metod numerycznych - zajęcia 9 Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie

Bardziej szczegółowo

Metody eksploracji danych Laboratorium 2. Weka + Python + regresja

Metody eksploracji danych Laboratorium 2. Weka + Python + regresja Metody eksploracji danych Laboratorium 2 Weka + Python + regresja KnowledgeFlow KnowledgeFlow pozwala na zdefiniowanie procesu przetwarzania danych Komponenty realizujące poszczególne czynności można konfigurować,

Bardziej szczegółowo

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Widzenie komputerowe

Widzenie komputerowe Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych.

Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Spis treści 1 Wstęp 1.1 Importy 2 Zbiór uczący 3 Klasyfikacja 3.1 Rysunki dodatkowe 4 Polecenia dodatkowe Wstęp Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Importy

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI

DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule

Bardziej szczegółowo

Podstawowe operacje graficzne.

Podstawowe operacje graficzne. Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów

Bardziej szczegółowo

Algorytmy wstecznej propagacji sieci neuronowych

Algorytmy wstecznej propagacji sieci neuronowych Algorytmy wstecznej propagacji sieci neuronowych Mateusz Nowicki, Krzysztof Jabłoński 1 Wydział Inżynierii Mechanicznej i Informatyki Politechnika Częstochowska Kierunek Informatyka, Rok III 1 krzysztof.jablonski@hotmail.com

Bardziej szczegółowo

> C++ dynamiczna alokacja/rezerwacja/przydział pamięci. Dane: Iwona Polak. Uniwersytet Śląski Instytut Informatyki

> C++ dynamiczna alokacja/rezerwacja/przydział pamięci. Dane: Iwona Polak. Uniwersytet Śląski Instytut Informatyki > C++ dynamiczna alokacja/rezerwacja/przydział pamięci Dane: Iwona Polak iwona.polak@us.edu.pl Uniwersytet Śląski Instytut Informatyki 1429536600 > Dzisiejsze zajęcia sponsorują słówka: new oraz delete

Bardziej szczegółowo

Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe.

Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe. Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe. Na dzisiejszych laboratoriach poznamy kolejny algorytm inspirowany biologicznie (wcześniej mieliśmy algorytmy genetyczne), który pozwoli na klasyfikowanie

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW

Bardziej szczegółowo

SID Wykład 8 Sieci neuronowe

SID Wykład 8 Sieci neuronowe SID Wykład 8 Sieci neuronowe Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Sztuczna inteligencja - uczenie Uczenie się jest procesem nastawionym na osiaganie rezultatów opartych o

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,

Bardziej szczegółowo

Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych

Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH

Bardziej szczegółowo

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5]; 4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo