KOMUNIKACYJNEGO W LUBLINIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "KOMUNIKACYJNEGO W LUBLINIE"

Transkrypt

1 PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 112 Transport 2016, Iwona Rybicka Instytut Transportu, Silników Spalinowych i Ekologii KOMUNIKACYJNEGO W LUBLINIE : maj 2016 Streszczenie: okresu za 2015 rok. b o, komunikacja, autobusy sy dro Niezaw eksploatacyjnej [8]. jest definiowana jako rakterystykami ty) [7,9,10]. W

2 72 Rybicka tu decyzji. niniejszym artykule autorzy przedstawili wyniki takiej analizy dla cji w Lublinie 1. BADANIA GRUPY POJAZDÓW z punktu widzenia planowanych zakupów nowych autobusów. Wprowadzenie nowych typów pojazd wych czy okresie jednego roku kalendarzowego przeprowadzono dla grupy 22 pojazdów jednej marki eksploat- Lublinie (MPK Lublin). W celu nie wskazywa pojazdu w tabeli 1 wskazano tylko ich wybrane dane techniczne. Tablica 1 Wybrane dane techniczne analizowanych pojazdów [5] Silnik Rodzaj paliwa cm 3 Moc maksymalna/przy obr./min. 210 kw/ 285 KM przy 2200 obr/min. Moment maksymalny/przy obr./min Nm przy 1100 obr/min Mechanizm hamulców Rodzaj tarczowe mechaniczno - pneumatyczny Wymiary pojazdu mm mm mm Rozstaw osi I - II mm

3 utobusów Miejskiego 73 W badanych pojazdach u podzielono na trzy grupy wg klasyfika- transportowym. oraz tarcze hamulcowe; ; system ABS. kolumna kierownicza; pompa wspomagania oraz amortyzatory; wieszak stabilizatora [11]. 2. ANALIZY STATYSTYCZNE Dane do kart drogowych oraz wykazu napraw autobusów podczas ocenianego okresu czasu. i rocznego przebiegu kilometrowego pojazdów, rocznej oraz. statystyczny tych danych wykonano przy wykorzystaniu programu STATISTICA PL [2]. W pierwszym etapie tej analizowane zmienne, co przedstawiono w tablicy 2. badanych zmiennych Tablica 2 Zmienna wy [km] Przebieg roczny [km] -] Roczna liczba -] Odchylenie standardowe Mediana Kurtoza dardowy min max , , ,0 0,0114-1, , ,3 7912, ,5-0,4548-0, , ,8 2,15 3,0 0,8146 0,3771 0, ,7 13, ,8307 5,4902 2, ,8 2480, ,51 2,4363 8, ,

4 74 Rybicka W kolejnym kroku przeprowadzonych analiz statystycznych, przy wykorzystaniu te- Shapiro-Wilka S-W mogorowa-smirnowa K-S, sprawdzono dopasowanie uzyskanych wyników empirycznych analizowanych zmiennych do u normalnego lub innego teoretycznego w tablicy 3. Wyniki po- w =0,05) nor- dów. Na rysunku 1 zaprezentowano histogramy empiryczne analizowanych zmiennych wraz z ich teoretycznym dopasowaniem. 2 i 3 oraz wykresy przedstawione na stwier- go) przez MPK Lublin do po- okresu obserwacji. Analiza rocznych kilometrowych przebiegów pojazdów wskazuje na tych przebiegów Tablica 3 ów teoretycznych dopasowanych do empirycznych analizowanych zmiennych Zmienna Przebieg po- [km] Przebieg roczny [km] liczba uszko- [-] Roczna liczba [-] [km] Statystyka Shapiro- Wilka S-W Poziom prawdopodo- - p Normalny 0,9435 0,2342 TAK 0,9484 0,2942 TAK Statystyka - Smirnowa K-S Poziom prawdopodo- - p 0,9230 0,00001 NIE 0,1225 p>0,20 0,8342 0,0018 NIE 0,1673 p>0,20 0,7404 0,00001 NIE 0,0717 p>0,20 parametry nych skala=1,6790 Log-normalny próg=0,0000 skala=3,4512 próg=0,0000 skala=2128,809

5 utobusów Miejskiego 75 Rys. 1. Histogramy empiryczne analizowanych zmiennych oraz ich dopasowania teoretyczne wg tablicy 2; a) l usów MPK Lublin rocznej liczby usów MPK Lublin; 1 do danych empirycznych Statystki opisowe oraz histogram empiryczny przebiegu kilometrowego w co zilustrowano na rysunku 2. du dopasowana do danych empirycznych

6 76 Rybicka stwa dla badanej grupy pojazdów MPK Lublin - stwa. Wynika to prawdopodobnie z faktu w tych m zmienno- autobusami. (wymuszonego tymi warunkami) W celu sprawdzenia, czy w liczby uszko- wariancji braku normalnym l w. Zastosowano przy tym testy: Kruskala- Wallisa K-W, mediany oraz Chi-kwadrat., statystyki K-W = 11,72103 przy p = 0,3850, testu mediany = 3,00 oraz Chi-kwadrat = 0,4373 i poziomie p = 0 = 0,05), ami pojazdów w Ostatnie analizy y sprawdzenia czy istnieje e nej analizy korelacji p z w czynników: Spearmana R, tau Kendalla oraz gamma. a kilometrowym a Spearmana R = 0,1182 przy p = a tau Kendalla = 0, oraz a

7 utobusów Miejskiego 77 gamma = 0,09333 przy poziomie (p = 0,5485). Wyniki te W liczby rocznym kilometrowym ich przebiegiem odpowiednie : Spearmana R=0,0509 przy p=0,8220, tau Kendalla=0, dla p=0,6682 oraz gamma=0, przy p=0,6682. Pokazuje to na rocznym kilometrowym przebiegiem pojazdów a nieanalizowanych w tym Na rysunku 4 zaprezentowano wykres rozrzutu przebiegiem kilometrowym pojazdów. 95%. a) b) Rys. 4. Wykres rozrzutu dla: ) kilometrowego przebiegu rocznego oraz liczby uszko- ; 1 prosta regresji, 2 prze 3. PODSUMOWANIE grupy pojazdów omunikacji 1. Autobusy przez MPK Lublin równomiernie, sposobie planowania i organizacji ich dziennych tras przejazdu;

8 78 Rybicka 2. Obserwowane uszkodzenia. pojawie- warunki atmosferyczn ania przejazdów autobusami; 3. roz- przy prognozowaniu ich w badanych autobusów. obserwowanych i y pojazdów przysz Bibliografia 1. Berdica K.: An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy, Vol. 9, 2012, pp Bobrowski D.: Probabilistyka w zastosowaniach technicznych. WNT, Warszawa DoD Guide for Achieving Reliability, Availability and Maintainability. Department of Defense, Washington D.C Jodejko A., Molecki B.: Method for definition of the number of spare vehicles on case of tram network in Wroclaw. City and Regional Transportation, No. 1, Nowakowski T.: Problemy mo ci sieci transportowych. [w]: Strategie i logistyka organizacji sieciowych. Witkowski J. ( 8. Rymarz J., utobusów komunikacji miejskiej, Problemy Eksploatacji 2012 nr 1, s systemów technicznych. PWN, Warszawa Wicher 12. Yatskiv I., Pticina I., Savrasovs M.: Urban public transport system s reliability estimation using microscopic simulation. Transport and Telecomunication, Vol. 43, No. 9, STATISTICS REPAIR SAFETY SYSTEMS FOR EXAMPLE BUSES MUNICIPAL TRANSPORT COMPANY IN LUBLIN Summary: The article presents analysis related to repairs safety systems transport vehicles. These include steering, brakes and suspension. The study group vehicles are the city buses. Repair information relates to the period for 2015 years. Keywords: safety, communication, buses

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ 1-2012 PROBLEMY EKSPLOATACJI 79 Joanna RYMARZ, Andrzej NIEWCZAS Politechnika Lubelska OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ Słowa kluczowe Niezawodność, autobus miejski. Streszczenie

Bardziej szczegółowo

[Analysis of safety systems damage in public transport vehicles on the example of trolleybuses the Municipal Transport Company in Lublin] Streszczenie

[Analysis of safety systems damage in public transport vehicles on the example of trolleybuses the Municipal Transport Company in Lublin] Streszczenie Pawel Droździel*, Henryk Komsta**, Iwona Rybicka*** *Politechnika Lubelska, Wydział Mechaniczny; 20-618 Lublin; ul. Nadbystrzycka 36. Tel: + 48 81 538-42-58, Fax: + 48 538-42-58, E-mail: p.drozdziel@pollub.pl

Bardziej szczegółowo

Analiza kosztów eksploatacji pojazdów komunikacji miejskiej na przykładzie Miejskiego Przedsiębiorstwa Komunikacyjnego w Lublinie

Analiza kosztów eksploatacji pojazdów komunikacji miejskiej na przykładzie Miejskiego Przedsiębiorstwa Komunikacyjnego w Lublinie RYBICKA Iwona 1 DROŹDZIEL Paweł 2 Analiza kosztów eksploatacji pojazdów komunikacji miejskiej na przykładzie Miejskiego Przedsiębiorstwa Komunikacyjnego w Lublinie WSTĘP W dziedzinie komunikacji miejskiej

Bardziej szczegółowo

OCENA GOTOWOŚCI TECHNICZNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ NA PRZYKŁADZIE MIEJSKIEGO PRZEDSIĘBIORSTWA KOMUNIKACYJNEGO W LUBLINIE

OCENA GOTOWOŚCI TECHNICZNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ NA PRZYKŁADZIE MIEJSKIEGO PRZEDSIĘBIORSTWA KOMUNIKACYJNEGO W LUBLINIE JOANNA RYMARZ, ANDRZEJ NIEWCZAS * OCENA GOTOWOŚCI TECHNICZNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ NA PRZYKŁADZIE MIEJSKIEGO PRZEDSIĘBIORSTWA KOMUNIKACYJNEGO W LUBLINIE TECHNICAL AVAILABILITY ANALYSIS OF THE

Bardziej szczegółowo

WYZNACZANIE KOSZTÓW TRANSPORTU Z WYKORZYSTANIEM OCTAVE 3.4.3

WYZNACZANIE KOSZTÓW TRANSPORTU Z WYKORZYSTANIEM OCTAVE 3.4.3 PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 111 Transport 2016 Joanna Szkutnik-, Wojskowa Akademia Techniczna, W WYZNACZANIE KOSZTÓW TRANSPORTU Z WYKORZYSTANIEM OCTAVE 3.4.3 : maj 2016 Streszczenie: samochodowej.

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 1/15/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.1.1 ROMAN RUMIANOWSKI Statystyczna analiza awarii pojazdów

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

JAS-FBG S.A. ransportowych. Podstawowym kryterium 1. WPROWADZENIE

JAS-FBG S.A. ransportowych. Podstawowym kryterium 1. WPROWADZENIE PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 111 Transport 2016 Kamila Sojka, JAS-FBG S.A. Streszczenie: i ransportowych. Podstawowym kryterium u u : sys, 1. WPROWADZENIE -logistycznych i powstanie sektora

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście

Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście KASYK Lech 1 Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście Tor wodny, strumień ruchu, Zmienna losowa, Rozkłady dwunormalne Streszczenie W niniejszym artykule przeanalizowano prędkości

Bardziej szczegółowo

Jakość płynu hamulcowego a bezpieczeństwo w ruchu drogowym

Jakość płynu hamulcowego a bezpieczeństwo w ruchu drogowym CABAN Jacek 1 DROŹDZIEL Paweł 2 Jakość płynu hamulcowego a bezpieczeństwo w ruchu drogowym WSTĘP Zaobserwowany wzrost liczby samochodów, jaki dokonał się w krajach tzw. nowej Unii do których zaliczyć możemy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Przykład 1. (A. Łomnicki)

Przykład 1. (A. Łomnicki) Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Karol Andrzejczak MIEJSKIEGO

Karol Andrzejczak MIEJSKIEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 114 Transport 2016 Karol Andrzejczak Franciszek Tomaszewski, METODYCZNE ASU PORTU MIEJSKIEGO : czerwiec 2016 Streszczenie: W artykule przedstawiono zastosowanie

Bardziej szczegółowo

Wykład 7 Testowanie zgodności z rozkładem normalnym

Wykład 7 Testowanie zgodności z rozkładem normalnym Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę

Bardziej szczegółowo

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 112 Transport 2016 Piotr Wasilewski FRIMATRAIL Frenoplast S.A. PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TYPU K TOWAROWEGO : Streszczenie: Dane zbierane

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę) PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012 Jacek Caban 1, Marek Opielak 2, Iwona Rybicka 3 PRZYCZYNY ZDARZEŃ DROGOWYCH I STAN BEZPIECZEŃSTWA W MIEJSKIM RUCHU DROGOWYM NA PRZYKŁADZIE MPK W LUBLINIE 1.

Bardziej szczegółowo

Regresja logistyczna (LOGISTIC)

Regresja logistyczna (LOGISTIC) Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim

Bardziej szczegółowo

dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L

Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Zadania ze statystyki cz.5 I rok socjologii miary związków między zmiennymi jakościowymi

Zadania ze statystyki cz.5 I rok socjologii miary związków między zmiennymi jakościowymi Zadania ze statystyki cz.5 I rok socjologii miary związków między zmiennymi jakościowymi Zadanie 1 Zdaniem wielu komentatorów, kobiety częściej niż mężczyźni głosują na partię rządzącą. Wyniki badań przedstawia

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

author: Andrzej Dudek

author: Andrzej Dudek Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez

Bardziej szczegółowo

PROJEKTOWANIE SYSTEMU INFORMATYCNEGO

PROJEKTOWANIE SYSTEMU INFORMATYCNEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 Andrzej Czerepicki, Piotr Tomczuk Anna Wytrykowska Politechnika Warszawska, iki w Systemach Transportowych PROJEKTOWANIE SYSTEMU INFORMATYCNEGO

Bardziej szczegółowo

PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ

PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 111 Transport 2016 dostarczono: Streszczenie: W artykule prawnych i dokumentów normalizacyjnych w zakresie transportu produktów mleczarskich. W diagram Pareto-Lorenza,

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

RACJONALIZACJA PROCESU EKSPLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA PRZEJAZDACH KOLEJOWYCH

RACJONALIZACJA PROCESU EKSPLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA PRZEJAZDACH KOLEJOWYCH RACE NAUKOWE OLITECHNIKI WARSZAWSKIEJ z. Transport 6 olitechnika Warszawska, RACJONALIZACJA ROCESU EKSLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA RZEJAZDACH KOLEJOWYCH dostarczono: Streszczenie

Bardziej szczegółowo

NPR85 P Série Bleu

NPR85 P Série Bleu 3.0 Série Bleu - 7,5 t NPR85 3.0 Série Bleu Wymiary oraz zalecane rozmiary tylnej zabudowy P75 H P75 K P75 M Wymiary (mm) Rozstaw osi X 3365 3815 4475 D min. 650 Długość całkowita K 6040 6690 7870 Zwis

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X

Bardziej szczegółowo

ZWROTNICOWY ROZJAZD.

ZWROTNICOWY ROZJAZD. PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 EKSPLOATACJA U ZWROTNICOWY ROZJAZD. DEFINICJ, 6 Streszczenie: ruchem kolejowym. Is rozjazd, W artykule autor podj w rozjazd. 1. sterowania

Bardziej szczegółowo

NLR85A - Ls 35. długość podana z uwzględnieniem pojazdu równomiernie załadowanego oraz obciążonego zgodnie z dopuszczalnym naciskiem na oś (2)

NLR85A - Ls 35. długość podana z uwzględnieniem pojazdu równomiernie załadowanego oraz obciążonego zgodnie z dopuszczalnym naciskiem na oś (2) LS 35 3,5 t NLR85A - Ls 35 Wymiary oraz zalecane rozmiary tylnej zabudowy Ls 35 E Wymiary (mm) Rozstaw osi X 2490 D min. 650 Długość całkowita K 4735 Zwis przedni A 1100 Długość zabudowy (min/max) (1)

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)

Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metody probabilistyczne w transporcie Nazwa modułu w języku angielskim Probabilistic

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

MODELOWANIE HAMULCA TARCZOWEGO SAMOCHODU OSOBOWEGO Z WYKORZYSTANIEM ZINTEGROWANYCH SYSTEMÓW KOMPUTEROWYCH CAD/CAE

MODELOWANIE HAMULCA TARCZOWEGO SAMOCHODU OSOBOWEGO Z WYKORZYSTANIEM ZINTEGROWANYCH SYSTEMÓW KOMPUTEROWYCH CAD/CAE Marta KORDOWSKA, Zbigniew BUDNIAK, Wojciech MUSIAŁ MODELOWANIE HAMULCA TARCZOWEGO SAMOCHODU OSOBOWEGO Z WYKORZYSTANIEM ZINTEGROWANYCH SYSTEMÓW KOMPUTEROWYCH CAD/CAE Streszczenie W artykule omówiona została

Bardziej szczegółowo

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.

Bardziej szczegółowo

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII Streszczenie W artykule przedstawiono

Bardziej szczegółowo

Opisowe charakterystyki rozkładów cech statystycznych. Descriptive Characteristics of Distributions of Statistical Variables

Opisowe charakterystyki rozkładów cech statystycznych. Descriptive Characteristics of Distributions of Statistical Variables Wydawnictwo UR 2018 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 3/25/2018 www.eti.rzeszow.pl DOI: 10.15584/eti.2018.3.46 WIESŁAWA MALSKA Opisowe charakterystyki rozkładów cech

Bardziej szczegółowo

2008-03-18 wolne wolne 2008-03-25 wolne wolne

2008-03-18 wolne wolne 2008-03-25 wolne wolne PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

MATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta

MATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 MATEMATYKA3 Mathematics3 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Z-LOG-033I Statystyka Statistics

Z-LOG-033I Statystyka Statistics KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOG-033I Statystyka Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Charakterystyki techniczne

Charakterystyki techniczne Charakterystyki techniczne SILNIK FIRE 1.4 Turbo Jet 120KM Liczba cylindrów, układ 4 w linii, poprzecznie z przodu Średnica x skok (mm) 72x84 Pojemność (cm 3 ) 1368 Stosunek sprężania 9,8±0,2 Moc max CE:

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYPADKÓW KOLEJOWYCH I DROGOWYCH ORAZ ICH KOSZTÓW

ANALIZA STATYSTYCZNA WYPADKÓW KOLEJOWYCH I DROGOWYCH ORAZ ICH KOSZTÓW PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 119 Transport 2017 Franciszek Tomaszewski Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu Sylwin Tomaszewski Instytut Pojazdów Szynowych TABOR ANALIZA

Bardziej szczegółowo

Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow

Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,

Bardziej szczegółowo

www.renaultdostawcze.pl RENAULT TRAFIC WYMIARY FURGONY Maksymalna objętość przestrzeni ładunkowej (m 3 ) 5,2 6,0 Wymiary zewnętrzne (mm) Długość całkowita 4 999 5 399 Szerokość całkowita / z lusterkami

Bardziej szczegółowo

PRĘDKOŚĆ A NATĘŻENIE RUCHU NA DRODZE WIELOPASOWEJ SPEED AND TRAFFIC VOLUME ON THE MULTILANE HIGHWAY

PRĘDKOŚĆ A NATĘŻENIE RUCHU NA DRODZE WIELOPASOWEJ SPEED AND TRAFFIC VOLUME ON THE MULTILANE HIGHWAY ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol.1807 Aleksander SOBOTA PRĘDKOŚĆ A NATĘŻENIE RUCHU NA DRODZE WIELOPASOWEJ Streszczenie. Celem artykułu jest analiza zależności pomiędzy

Bardziej szczegółowo

Z-0033z Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta

Z-0033z Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Z-0033z Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Przedmiot: Niezawodność środków transportu Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: TR 1 S 0 6 42-0_1 Rok: III Semestr: 6 Forma studiów:

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Analiza intensywności uŝytkowania pojazdów (Część I)

Analiza intensywności uŝytkowania pojazdów (Część I) DROŹDZIEL Paweł 1 KOMSTA Henryk 2 KRZYWONOS Leszek 3 Analiza intensywności uŝytkowania pojazdów (Część I) Słowa kluczowe: transport samochodowy, intensywność uŝytkowania, analizy statystyczne Streszczenie

Bardziej szczegółowo

Analiza kosztów napraw samochodów w firmie transportowej

Analiza kosztów napraw samochodów w firmie transportowej KRZYWONOS Leszek 1 NIEOCZYM Aleksander 2 SIŁUCH Dariusz 3 KRZYSIAK Zbigniew 4 Analiza kosztów napraw samochodów w firmie transportowej WSTĘP Ekonomiczną efektywność eksploatacji samochodów wykorzystywanych

Bardziej szczegółowo

TRANSPORTU MIEJSKIEGO

TRANSPORTU MIEJSKIEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 111 Transport 2016 Norbert Chamier- W Technologii i Edukacji WYBRANY TRANSPORTU MIEJSKIEGO : Streszczenie: transportu miejskiego i W artykule przedstawiono oceny

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

Test t-studenta dla jednej średniej

Test t-studenta dla jednej średniej Test t-studenta dla jednej średniej Hipoteza zerowa: Średnia wartość zmiennej w populacji jest równa określonej wartości a 0 (a = a 0 ). Hipoteza alternatywna 1.: Średnia wartość zmiennej w populacji jest

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie... Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ

PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 Politechnika Warszawska, W Transportu UNKCJONALNO - : Streszczenie: no og zadania i funkcjonalnej funkcjonalnych. Wyniki -. 1. w warunkach

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA

Bardziej szczegółowo

System pomiaru a ocena niezawodności przewozów świadczonych przez przedsiębiorstwa drogowego transportu pasażerskiego.

System pomiaru a ocena niezawodności przewozów świadczonych przez przedsiębiorstwa drogowego transportu pasażerskiego. TUBIS Agnieszka 1 WERBIŃSKA-WOJCIECHOWSKA Sylwia 2 System pomiaru a ocena niezawodności przewozów świadczonych przez przedsiębiorstwa drogowego transportu pasażerskiego. Studium przypadku WSTĘP Jednym

Bardziej szczegółowo

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości

Bardziej szczegółowo