Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego
|
|
- Irena Łuczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie
2 DANE INFORMACYJNE Naukowa Grupa Projektowa, Uniwersytet Szczeciński ID grupy: 97_USZ Opiekun: Grzegorz Szkibiel Kompetencja: Matematyka i fizyka Temat projektowy: Kongruencje i ich zastosowania. Rok szkolny 2010/2011, semestr II.
3 Organizacja 1. Definicja i podstawowe własności kongruencji 2. Wyznaczanie dni tygodnia 3. Dzielenie 4. Kongruencje z jedną niewiadomą 5. Kongruencje z dwiema niewiadomymi 6. Zastosowania w kryptografii 7. Kongruencje a wielomiany, cechy podzielności 8. Potegowanie modulo m 9. Chińskie twierdzenie o resztach ŹRÓDŁO : pl.euabc.com
4 Podział pracy, odpowiedzialni Część 1: Karolina Nowaczewska, LO Tow. Sal. Szczecin Część 2: Clarissa i Tiziana Burdzy, LO Tow. Sal. Szczecin oraz Ewa Krzysztanowicz, III LO Szczecin Część 3: Nina Szostak, XI LO Szczecin Część 4: Agnieszka Mosińska, VIII LO Szczecin Część 5: Joanna Mosińska, VIII LO Szczecin Część 6: Paweł Bacławski, LO Tow. Sal. Szczecin Część 7: Paweł Kowerski i Sebastian Kurek, II LO Szczecin Część 8: Paweł Kowerski i Bartłomiej Mazan, II LO Szczecin Część 9: Ewa Krzysztanowicz, III LO Szczecin
5 1. Definicja i podstawowe własności kongruencji Karolina Nowaczewska, LO Tow. Sal. Szczecin
6 Definicja kongruencji Mówimy, że a przystaje do b modulo m, co zapisujemy a b (mod m), jeśli m jest dzielnikiem liczby a b. Zakładamy przy tym, że m > 1.
7 Własności kongruencji symetria: jeżeli dla liczb całkowityc a i b, a b (mod n), to b a (mod n) przechodniość: jeżeli dla liczb całkowityc a, b i c, a b mod n, b c mod n, to a c (mod n) kongruencja sumy: jeżeli a p mod n i b q mod n, to (a + b) p + q (mod n) kongruencja iloczynu: jeżeli a p mod n i b q mod n, to a b p q (mod n)
8 Kongruencje: czyli o podzielności Zapis a b, czytamy a dzieli b, oznacza to to samo co a*k=b gdzie k jest liczbą całkowitą. Idąc tym tropem zdefiniujmy resztę z dzielenia, np. 11/2= 5 i reszty 1. Matematycy uważają że resztą z dzielenia a/b jest r takie że b*k+r=a i r C dodatnich, niby proste, ale trzeba tu zwrócić uwagę na to że r musi być dodatnie.
9 Kongruencje, czyli o podzielności - przykałdy 11 / 2 11=2* / 2-11=2* / -2 11=-2*6+5 Czyli jak widać jeśli jest dzielenie gdzie dzielnik lub dzielna są z "-" to reszta nie jest tak oczywista, można to rozwiązywać ze wzoru b*k+r=a
10 2. Wyznaczanie dni tygodnia Clarissa i Tiziana Burdzy, LO Tow. Sal. Szczecin oraz Ewa Krzysztanowicz, III LO Szczecin
11 Zjazd gnieźnieński Zadanie. Zjazd gnieźnieński odbył się w niedzielę pomiędzy 10. a 16. kwietnia roku Wiemy, że w dzień bitwy pod Grunwaldem, tj. 15 VII 1410 był wtorek. Jaka była data zjazdu gnieźnieńskiego? 15 VII > wtorek (2) Rozwiązanie. Przydzielamy liczbę do dnia tygodnia: Niedziela = 0, Poniedziałek = 1, Wtorek = 2, Środa = 3, Czwartek = 4, Piątek = 5, Sobota = 6.
12 Zjazd gnieźnieński Wiedząc, że 15.VII.1410 roku był wtorek (2) liczymy, jaki dzień tygodnia był 15.VII.1000 roku. Te dwie daty dzieli 410 lat, z których 102 były przestępne. Stąd wyrażenie, 2-410* z którego musimy obliczyć resztę z dzielenia przez 7. Obliczamy najpierw, że -410 Ξ 3(mod 7), 365 Ξ 1(mod 7) oraz -102 Ξ 3(mod 7). Stąd 2-410* Ξ 2+3*1+3 Ξ 1 (mod 7) Zatem 15.VII.1000 był poniedziałek.
13 Zjazd gnieźnieński Dalej obliczamy na palcach : 15.VII.1000 poniedziałek 1.VII.1000 poniedziałek 30.VI.1000 niedziela 2.VI.1000 niedziela 27.V.1000 niedziela 6.V.1000 niedziela 29.IV.1000 niedziela 15.IV.1000 niedziela Odp. Zjazd gnieźnieński odbył się w niedzielę 15.IV.1000r.
14 6. Zastosowania w kryptografii Paweł Bacławski LO Tow. Sal. Szczecin
15 Przykłady szyfrów, w których możemy użyć kongruencji: szyfry afiniczne szyfr Cezara szyfr Beauforta Szyfry zazwyczaj pokazuje się w blokach po 5 liter i tak też w tej prezentacji będzie to pokazane.
16 Szyfry afiniczne Aby móc zastosować szyfry afiniczne musimy każdej z 26 liter przyporządkować kolejno jedną liczbę: A 0, B 1, C 2 ( ) Z 25. Pozwoli nam to na wykonywanie działań arytmetycznych na liczbach. Wiedząc, że alfabet bez polskich znaków ma 26 liter oraz zakładając, że p będzie oznaczało pozycję litery, n i k klucze (n, k), a l literę po przekształceniu, tworzymy równanie (szyfr afiniczny): np + k l mod 26 Liczby, który możemy podstawić pod n to: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25
17 Znając już budowę szyfru afinicznego, spróbujmy coś zaszyfrować. Przykładem, który zaszyfrujemy jest Neal Koblitz (twórca szyfru afinicznego). Zastosujemy klucz (3, 6). Litery jakie mamy do zaszyfrowania to: a, b, e, i, k, l, n, o, t, z. Odpowiadają im pozycję: a 0, b 1, e 4, i 8, k 10, l 11, n 13, o 14, t 19, z 25. Stosując klucz, mnożymy każdą pozycję przez 3 i dodajemy 6, po czym stosujemy (mod 26).
18 NEAL KOBLITZ ->??? [a] (mod 26) [g] [b] (mod 26) [j] [e] (mod 26) [s] [i] (mod 26) [e] [k] (mod 26) [k] [l] (mod 26) [n] [n] (mod 26) [t] [o] (mod 26) [w] [t] (mod 26) [l] [z] (mod 26) [d] A więc, po zaszyfrowaniu, NEAL KOBLITZ, to TSGNK WJNEL D.
19 Szyfr cezara Szyfr Cezara, działa podobnie jak szyfry afiniczne, które są jakby rozszerzoną wersją tego pierwszego. Tak samo do każdej litery alfabetu łacińskiego podstawiamy liczbę, czyli: A 0, B 1, C 2 ( ) Z 25. Jednak tu sprawa jest prostsza, gdyż nie musimy mnożyć pozycji naszej liczby przez n, które w szyfrze Cezara nie występuje. Dlatego, jak łatwo się domyślić, równaniem tego szyfru jest: p + k l mod 26 Tak samo jak poprzednio, p to pozycja litery, k klucz, a l to litera po przekształceniu.
20 Kości zostały rzucone Jako, iż twórcą tego szyfru był sam Juliusz Cezar, używając klucza 3, zaszyfrujmy jedno z jego słynnych powiedzeń: Alea iacta est ( Kości zostały rzucone ) Litery, który mamy do zaszyfrowania to: a, c, e, i, l, s, t. Ponownie, jak w szyfrach afinicznych dobieramy odpowiednią pozycję: a 0, c 2, e 4, i 8, l 11, s 18, t 19. Tutaj sprawa jest prostsza, gdyż jedyne co musimy zrobić, to do pozycji liczby (p) dodać liczbę, czyli klucz (k), po czym zastosować (mod 26).
21 ALEA IACTA EST [a] (mod 26) [d] [c] (mod 26) [f] [e] (mod 26) [] [l] (mod 26) [o] [s] (mod 26) [v] [t] (mod 26) [w] [i] (mod 26) [l] Stąd wiemy, że ALEA IACTA EST, po zaszyfrowaniu kluczem 3, to: DOHDL DFWDH VW.
22 Szyfr Beauforta W szyfrze Beauforta, podobnie jak w dwóch poprzednich, pod każdą liczbę alfabetu łacińskiego podstawiamy liczbę: A 0, B 1, C 2 ( ) Z 25. Chcąc zastosować szyfr Beauforta musimy znaleźć liczby przeciwne do alfabetu łacińskiego. Aby to zrobić odejmujemy od zera pozycję każdej litery, po czym dodajemy 26, czyli liczbę, która określa liczbę liter w alfabecie. Stąd też, tak będzie wyglądał alfabet po przekształceniu: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Z Y X W V U T S R Q P O N M L K J I H G F E D C B Patrząc na powyższe przekształcenie możemy zauważyć, że A oraz N są swoimi przeciwnościami.
23 Szyfr Beauforta Aby wykonać szyfrowanie, należy poznać równanie tego szyfru, które wygląda następująco: p + k l (mod 26) Wiemy, że p oznacza liczbę przeciwną (np.: B->Z, D->X), k klucz, l liczba otrzymana po zaszyfrowaniu, która jest odpowiednikiem w alfabecie łacińskim. Klucz, w praktyce przesuwa liczby przeciwne o k pozycji, dzięki czemu można zaszyfrować, żądane wyrażenie.
24 Zaszyfrujemy teraz nazwę miejsca urodzenia samego Beauforta: County Meath. Użyjemy klucza 7. Litery jakie mamy do zaszyfrowania to: a, c, e, h, m, n, o, t, u, y. Odnajdujemy ich położenie w przeciwnym alfabecie: a 0, c 24, e 22, h 19, m 14, n 13, o 12, t 7, u 6, y 2. Znając już ich położenie, przesuwamy je o 7, czyli nasze k.
25 [a] (mod 26) [] [c] (mod 26) [f] [e] (mod 26) [d] [] (mod 26) [a] [m] (mod 26) [v] [n] (mod 26) [u] [o] (mod 26) [t] [t] (mod 26) [o] [u] (mod 26) [n] [y] (mod 26) [j] Dlatego COUNTY MEATH, po zaszyfrowaniu kluczem 7, to FTNUO JVDHO A
26 ? XDUFQ IJEGI UOXQJ QRKFC? Co jest zaszyfrowane w tytule?! Szyfry afiniczne, klucz (3, 4). Powodzenia! ; )
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
Szyfry afiniczne. hczue zfuds dlcsr
Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Kongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym
Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,
Kongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
Kongruencje. Sławomir Cynk. 24 września Nowy Sącz. Instytut Matematyki Uniwersytetu Jagiellońskiego
Instytut Matematyki Uniwersytetu Jagiellońskiego 24 września 2008 Nowy Sącz Przykłady W. Sierpiński, 250 zadań z elementarnej teorii liczb, Biblioteczka Matematyczna 17. Zadanie 3. Pokazać, że jeżeli 7
Monoalfabetyczny szyfr Beauforta. omnma pvazw hcybn cibcv jzwag vmjha
Monoalfabetyczny szyfr Beauforta omnma pvazw hcybn cibcv jzwag vmjha Litery i ich pozycja w alfabecie Aby wykonywać działania na literach, przypisujemy im odpowiedniki liczbowe. A B C D E F G H I 0 1 2
Joanna Kluczenko 1. Spotkania z matematyka
Do czego moga się przydać reszty z dzielenia? Joanna Kluczenko 1 Spotkania z matematyka Outline 1 Co to sa 2 3 moje urodziny? 4 5 Jak tworzona jest liczba kontrolna w kodach towarów w sklepie? 6 7 TWIERDZENIE
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.
Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26
Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji
Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Klasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Pendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI
zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych
0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
KLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
SCENARIUSZ LEKCJI MATEMATYKI. Temat: Podzielność liczb całkowitych Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność
SCENARIUSZ LEKCJI MATEMATYKI Temat: Podzielność liczb całkowitych Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność Czas: 1 godzina dydaktyczna Cele zajęć: Uczeń po zajęciach: przedstawia
KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Paweł Gładki. Algebra. pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ
MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ ocena dopuszczająca (wymagania konieczne), : rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie 3000, porównuje
Kilka bardziej złożonych zadań z informatyki. I. Podczas wyszukiwania plików i folderów często stosujemy symbole wieloznaczne.
Kilka bardziej złożonych zadań z informatyki. I. Podczas wyszukiwania plików i folderów często stosujemy symbole wieloznaczne. 1 Zapis *.* oznacza: a) pliki mające określoną długość nazwy i dowolne rozszerzenie
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna:
Ewa Koralewska LP... OGÓLNA PODSTA- WA PROGRA MOWA b c PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Liczby.
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
PONIEDZIAŁEK 16.02.2015 WTOREK 17.02.2015
PONIEDZIAŁEK 16.02.2015 WTOREK 17.02.2015 ŚRODA 18.02.2015 CZWARTEK 19.02.2015 14.00-16.00 AQUAPARK: ZABAWY KOSMICZNE Z DZIEĆMI Z MUZYKĄ PIĄTEK 20.02.2015 SOBOTA 21.02.2015 NIEDZIELA 22.02.2015 PONIEDZIAŁEK
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Procenty % % oznacza liczbę 0, 01 czyli / 100
% oznacza liczbę 0, 01 czyli / 100 p p % oznacza iloczyn p 0,01 100 Procenty % Wyrażenie p % liczby x oznacza iloczyn 1 Łacińskie pro cent oznacza na 100 Stosuje się także oznaczający 0,001 Łacińskie pro
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
MADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:
Zakres tematyczny - PINGWIN Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania: zapisywanie i porównywanie liczb rachunki pamięciowe porównywanie
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie
2. DZIAŁANIA NA WIELOMIANACH
WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to
PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001
Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Boisko piłkarskie: stycznia
Boisko piłkarskie: 11 17 stycznia 11.01 poniedziałek 12.01 wtorek 13.01 środa 14.01 czwartek 15.01 piątek 16.01 sobota 17.01 niedziela Organizator: rugby Boisko wielofunkcyjne: 11 17 stycznia 11.01 poniedziałek
Równania wielomianowe
Instytut Matematyki Uniwersytetu Jagiellońskiego 20 marca 2009 Kraków Równanie z jedną niewiadomą Wielomian jednej zmiennej to wyrażenie postaci P(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, gdzie współczynniki
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Liczby całkowite. Zadania do pierwszych dwóch lekcji
Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Sumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,