Srinivasa Ramanujan. Artykuł pobrano ze strony eioba.pl

Wielkość: px
Rozpocząć pokaz od strony:

Download "Srinivasa Ramanujan. Artykuł pobrano ze strony eioba.pl"

Transkrypt

1 Artykuł pobrano ze strony eioba.pl Srinivasa Ramanujan Srinivasa Ramanujan był najdziwniejszym człowiekiem w całej historii matematyki, może nawet w całej historii nauki...

2 Jedna z najgłębszych tajemnic teorii strun, ciągle jeszcze niezbyt dobrze rozumiana, wiąże się z pytaniem, dlaczego jest ona zdefiniowana tylko w dziesięciu i dwudziestu sześciu wymiarach. Gdyby była trójwymiarowa, nie mogłaby zjednoczyć znanych praw fizyki w żaden sensowny sposób. Dlatego główną cechą tej teorii jest geometria wyższych wymiarów. Gdy obliczamy, jak struny rozpadają się i łączą w N-wymiarowej przestrzeni, ciągle natrafiamy na nic nieznaczące wyrazy, które niszczą wspaniałe własności tej teorii. Na szczęście te przeszkadzające wyrazy wydają się być wielokrotnością (N - 10). Aby zatem pozbyć się tych anomalii, musimy przyjąć, że N jest równe 10. W rzeczywistości teoria strun to jedyna znana teoria kwantowa, która wymaga, aby wymiar czasoprzestrzeni był równy określonej liczbie. Niestety, teoretycy strun są obecnie bezsilni i nie potrafią wyjaśnić, dlaczego I wybór został ograniczony tylko do dziesięciu wymiarów. Odpowiedź tkwi głęboko w matematyce, w dziedzinie zwanej funkcje modularne. Zawsze, gdy manipulujemy diagramami KSV pętlą, przedstawiającymi oddziałujące struny, natrafiamy na dziwne funkcje modularne, w których liczba dziesięć pojawia się w najbardziej nieoczekiwanych miejscach. Funkcje modularne są tak tajemnicze, jak człowiek, który je badał 1 mistyk ze Wschodu. Może, jeśli lepiej zrozumiemy prace tego hinduskiego geniusza, pojmiemy, dlaczego żyjemy w naszym Wszechświecie.

3 Srinivasa Ramanujan był najdziwniejszym człowiekiem w całej historii matematyki, może nawet w całej historii nauki. Porównywano go do supernowej: rozświetlił ciemne, najgłębsze zakamarki matematyki, zanim zmarł na gruźlicę w wieku 33 lat (podobnie jak Riemann przed nim). Pracując w całkowitej izolacji od głównych prądów zachodniej matematyki, potrafił samodzielnie odtworzyć jej stuletni dorobek. Tragedią życia Ramanujana było to, że większość swego wysiłku poświęcił na ponowne odkrywanie znanych twierdzeń. W jego notatnikach znajdują się, porozrzucane wśród niejasnych równań, funkcje modularne, należące do najdziwniejszych tworów, jakie kiedykolwiek istniały w matematyce. Pojawiają się one w najbardziej odległych i nie związanych ze sobą gałęziach matematyki. Jedna z funkcji, która często występuje w teorii funkcji modularnych, jest dzisiaj zwana funkcją Ramanujana. Ten dziwaczny obiekt zawiera pewien składnik podniesiony do dwudziestej czwartej potęgi. W pracach Ramanujana ciągle powtarza się liczba 24. Jest to przykład na to, co matematycy nazywają magicznymi liczbami. Pojawiają się one tam, gdzie się ich najmniej oczekuje, z powodów, których nikt nie rozumie. Funkcja Ramanujana występuje również w cudowny sposób w teorii strun. Związana z tą funkcją liczba 24 jest źródłem niespodziewanych uproszczeń w teorii strun. Każdy z dwudziestu czterech modów w funkcji Ramanujana odpowiada w tej teorii fizycznym drganiom struny. Za każdym razem, gdy struna wykonuje skomplikowane ruchy w czasoprzestrzeni, dzieląc się i łącząc, musi zostać spełniona olbrzymia liczba bardzo skomplikowanych tożsamości matematycznych. Tożsamości te zostały od- kryte przez Ramanujana. (Ponieważ fizycy dodają dwa wymiary, gdy obliczają sumę drgań pojawiających się w teorii relatywistycznej, czasoprzestrzeń musi mieć = 26 wymiarów). Gdy uogólni się funkcję Ramanujana, liczbę 24 zastępuje liczba 8, dlatego krytyczną liczbą dla superstruny jest 8 + 2, czyli 10. Takie jest pochodzenie dziesięciu wymiarów. Struna wibruje w dziesięciu wymiarach, ponieważ musi być spójna, a do tego potrzebuje uogólnionych funkcji Ramanujana. Innymi słowy, fizycy nie mają najmniejszego pojęcia, dlaczego liczby 10 i 26 określają wymiary struny. Wygląda to tak, jak gdyby w tych funkcjach objawiał się rodzaj głębokiej numerologii, której nikt nie rozumie. Te same magiczne liczby pojawiają się w eliptycznej funkcji modularnej, ustalającej liczbę wymiarów czasoprzestrzeni na 10.

4 Podsumowując, można powiedzieć, że pochodzenie dziesięciowymiarowej teorii jest tak tajemnicze, jak sam Ramanujan. Jeśli ktoś zapyta fizyka, dlaczego natura miałaby istnieć w dziesięciu wymiarach, usłyszy: Nie wiem". Przeczuwamy niejasno, dlaczego musimy wybrać niektóre wymiary czasoprzestrzeni (w przeciwnym wypadku struna nie mogłaby wibrować w kwantowo spójny sposób), ale nie wiemy, dlaczego muszą to być akurat te liczby. Być może odpowiedź skrywają zagubione notatniki Ramanujana. Srinivasa Ramanujan urodził się w 1887 roku w Erode, w pobliżu Madrasu w Indiach. Choć należał do kasty braminów, najwyższej kasty hinduskiej, jego rodzina była biedna, utrzymywała się z niewielkich zarobków ojca, który pracował ja ko urzędnik w biurze handlarza tekstyliami. Gdy Srinivasa miał dziesięć lat, stało się jasne, że nie jest podobny do innych dzieci, jak Riemann przed nim, Ramanujan zyskał sławę w całej wiosce dzięki zadziwiającym zdolnościom rachunkowym. Już jako dziecko odkrył na nowo tożsamość Eulera pomiędzy funkcjami trygonometrycznymi I wykładniczymi. W życiu każdego młodego naukowca jest punkt zwrotny, pojedyncze wydarzenie, które całkowicie zmienia jego bieg. Einsteina zafascynowała Igła kompasu. Na Riemanna wpłynęła lektura książki Legendre'a o teorii liczb. Ramanujan natknął się na nieznaną, zapomnianą książkę George'a Carra o matematyce. Książka ta stała się w ten sposób nieśmiertelna, jako jedyny znany kontakt Ramanujana

5 z nowoczesną matematyką Zachodu. Ta właśnie książka rozbudziła jego geniusz. Zaczął sam udowadniać twierdzenia w niej podane. Ponieważ nie korzystał z pomocy innych książek, każde rozwiązanie było dla niego ważnym odkryciem. (...) Ramanujan zwykł mówić, że to bogini Namakkal podsuwała mu rozwiązania w snach" 1 wspomina jego siostra. Dzięki niezwykłej inteligencji udało mu się zdobyć stypendium, by kontynuować naukę w szkole średniej. Ale ponieważ nudziły go pracochłonne zadania domowe i cały swój czas poświęcał równaniom wirującym w jego głowie, nie dostał się do następnej klasy i stypendium cofnięto. Zawiedziony, uciekł z domu. W końcu wrócił, ale zachorował i ponownie nie zdał egzaminów. Dzięki pomocy przyjaciół Ramanujan objął posadę niższego urzędnika w Port Trust w Madrasie. Była to nudna praca, dająca jedynie nędzne dwadzieścia funtów rocznie, ale pozwoliła Ramanujanowi, jak poprzednio Einsteinowi w szwajcarskim urzędzie patentowym, oddawać się w wolnym czasie marzeniom. Pragnąc nawiązać kontakt z innym matematycznym umysłem, wysłał niektóre z rezultatów swoich marzeń" do trzech znanych brytyjskich matematyków. Dwóch z nich od razu wyrzuciło do kosza list napisany przez nieznanego hinduskiego urzędnika bez żadnego wykształcenia. Trzecim był znakomity matematyk z Cambridge, Godfrey H. Hardy. Z powodu swojej wysokiej pozycji społecznej w Anglii był on przyzwyczajony do tego, że otrzymuje listy od szaleńców. Kiedy jednak pobieżnie przeglądał list od Ramanujana, pomiędzy gęstymi gryzmołami zauważył wiele twierdzeń matematycznych, które były już znane. Potraktował to jako oczywisty plagiat i również wyrzucił list. Coś jednak tu nie pasowało. Coś niepokoiło Hardy'ego, nie mógł przestać myśleć o tym dziwnym liście.

6 Podczas obiadu, wieczorem 16 stycznia 1913 roku, Hardy opowiedział o tym wydarzeniu swemu przyjacielowi Johnowi Littlewoodowi; zdecydowali, że przyjrzą się ponownie treści listu. Zaczynał się całkiem niewinnie: Chciałbym się panu przedstawić jako urzędnik, pracujący w księgowości w biurze Port Trust w Madrasie z pensją jedynie dwudziestu funtów rocznie". List od biednego urzędnika z Madrasu zawierał jednak twierdzenia zupełnie nieznane matematykom z Zachodu. W sumie znalazło się w nim 120 twierdzeń. Hardy był oszołomiony. Wspomina, że dowody kilku z tych twierdzeń rzuciły go na kolana". Jak to sam ujął: Nigdy nie widziałem niczego, co choć trochę by je przypominało. Jedno spojrzenie na nie wystarczało, aby przekonać się, że mogły zostać zapisane tylko przez matematyka najwyższej klasy". Littlewood i Hardy doszli do podobnego zadziwiającego wniosku: nie ulegało wątpliwości, że jest to praca geniusza, który rekonstruuje osiągnięcia ostatnich stu lat europejskiej matematyki. Był niesamowicie obciążony: biedny, samotny Hindus próbujący swoich sił w zmaganiach z nagromadzoną w Europie mądrością" wspomina Hardy. Hardy po wielu trudnościach zorganizował pobyt Ramanujana w Cambridge w 1914 roku. Po raz pierwszy mógł on komunikować się regularnie z równymi sobie z europejskimi matematykami. Wtedy nastąpił rozkwit jego sił twórczych: trzy krótkie, intensywne lata współpracy z Hardym w Trinity

7 College w Cambridge. Hardy próbował później ocenić umiejętności matematyczne Ramanujana. Davidowi Hilbertowi, powszechnie uznawanemu za jednego z największych matematyków XIX wieku, przyznał osiemdziesiąt punktów. Ramanujanowi - sto. (Siebie oceniał na dwadzieścia pięć). Niestety, ani Hardy, ani Ramanujan nie interesowali się psychologią i procesami myślowymi, dzięki którym Ramanujan odkrył te niewiarygodne twierdzenia choć jego marzenia" produkowały je w tak wielkiej obfitości. Nie miało sensu wypytywać go, w jaki sposób odkrył to lub tamto znane twierdzenie, skoro pokazywał mi pół tuzina nowych niemal każdego dnia" - stwierdził Hardy. Hardy przypomina sobie wyraźnie: Pamiętam, jak kiedyś poszedłem odwiedzić go, gdy leżał chory w Putney. Przyjechałem taksówką numer 1729, podzieliłem się z nim spostrzeżeniem, że ten numer wydaje się raczej nieciekawy, i mam nadzieję, iż nie jest to zły omen.»ależ nie - odpowiedział - to bardzo interesująca liczba. Jest to najmniejsza liczba wyrażająca sumę dwóch sześcianów na dwa różne sposoby«".19 (Jest to suma I x I x I i 12 x 12 x 12, jak również suma 9x9x9 i 10x10x10). Ramanujan potrafił recytować z marszu złożone twierdzenia arytmetyczne, do których udowodnienia potrzeba nowoczesnego komputera. Zawsze był słabego zdrowia, a niedostatki targanej wojnami ekonomii brytyjskiej uniemożliwiały mu utrzymanie ścisłej wegetariańskiej diety, ciągle więc zmuszony był jeździć do sanatoriów. Po trzyletniej współpracy z Hardym Ramanujan zachorował i już nigdy nie powrócił do zdrowia. Pierwsza

8 wojna światowa uniemożliwiła podróże między Anglią a Indiami i dopiero w 1919 roku udało mu się powrócić do domu, gdzie w rok później zmarł. Spuścizną Ramanujana są jego prace, na które składa się cztery tysiące równań na czterystu stronach, wypełniających trzy tomy notatek: wszystkie zawierają gęsto zapisane twierdzenia o wielkiej wadze, ale bez jakiegokolwiek komentarza lub - co gorsza - bez dowodu. W 1976 roku w Trinity College znaleziono pudełko, w którym Ramanujan na stu trzydziestu stronach luźnych kartek zgromadził wyniki pracy ostatniego roku swego życia. Zwie się je teraz Zaginionym notatnikiem Ramanujana. Wypowiadając się na jego temat, matematyk Richard Askey stwierdził: Praca jednego roku, gdy był umierający, jest równoważna dorobkowi życia wielu znakomitych matematyków. Jego osiągnięcia są niewiarygodne. Gdyby to była powieść, nikt by w to nie uwierzył". Aby podkreślić trudności, jakie towarzyszą odszyfrowywaniu Notatnika, matematycy Jonathan Borwein i Peter Borwein zauważyli: Według nas nikt nigdy nie redagował matematycznego tekstu tego kalibru i o takim stopniu trudnośći. Gdy spoglądamy na równania Ramanujana, odnosimy wrażenie, ze po latacn ćwiczeń w słuchaniu muzyki Ludwiga van Beethovena, zostaliśmy nagle wystawieni na działanie zupełnie innego rodzaju, urzekająco pięknej muzyki Wschodu, będącej mieszaniną harmonii i rytmów nigdy wcześniej przez nas nie słyszanych. Jonathan Borwein powiedział: Wydaje się, że funkcjonował zupełnie inaczej niż wszyscy ludzie, których znamy. Miał takie wyczucie rzeczy, że one po prostu wypływały z jego umysłu. Prawdopodobnie nie postrzegał ich w żaden sposób, który nadawałby się do wyjaśnienia. To jak przyglądanie się komuś w czasie uczty, na którą samemu nie zostało się zaproszonym".

9 Fizycy doskonale zdają sobie sprawę z tego, że przypadki" nie zdarzają się bez powodu. Gdy przeprowadzają długie i skomplikowane obliczenia i nagle tysiące niepotrzebnych wyrazów w cudowny sposób sumuje się do zera, fizycy wiedzą, że nie dzieje się to bez głębszej przyczyny. Jest to wskazówka, że mamy do czynienia z symetrią. W przypadku strun zwie się ona symetrią konforemną - symetrią rozciągania i deformowania powierzchni świata struny. W tym miejscu pojawia się praca Ramanujana. Aby uchronić pierwotną symetrię konforemną przed zniszczeniem przez teorię kwantową, musi zostać spełniona pewna liczba tożsamości matematycznych. Są one dokładnie tożsamościami funkcji modularnych Ramanujana. Na zakończenie tego rozdziału chciałbym przypomnieć, że przyjmujemy za pewnik, iż prawa natury stają się prostsze, gdy wyrazimy je w wyższych wymiarach. Jednak w świetle teorii kwantowej musimy teraz dokonać poprawek w tym podstawowym stwierdzeniu. Poprawnie sformułowane powinno teraz brzmieć: prawa natury upraszczają się, gdy zostaną spójnie wyrażone w wyższych wymiarach. Dodanie słowa spójnie" ma kluczowe znaczenie. To ograniczenie zmusza nas do użycia funkcji modularnych Ramanujana, z których wynika, że czasoprzestrzeń jest dziesięciowymiarowa. A to z kolei może mieć decydujące znaczenie dla wyjaśnienia pochodzenia Wszechświata.

10 Einstein zadawał sobie często pytanie, czy Bóg stwarzając Wszechświat, miał jakiś wybór. Według teoretyków superstrun, jeśli wymagamy unifikacji teorii kwantowej i ogólnej teorii względności, Bóg nie miał wyboru. Uważają oni, że sama spójność zmusiła Boga do stworzenia takiego właśnie Wszechświata. Chociaż matematyczna złożoność teorii superstrun osiągnęła zawrotne wyżyny i przeraziła matematyków, krytycy tej teorii ciągle uderzają w jej najsłabszy punkt. Twierdzą oni, że każda teoria musi być sprawdzalna. Ponieważ żadnej teorii zdefiniowanej przy energii Plancka wynoszącej I019 miliardów elektronowoltów nie da się sprawdzić, teoria superstrun nie jest w ogóle teorią naukową! Główny jednak problem, jak starałem się wykazać, jest raczej natury teoretycznej niż eksperymentalnej. Gdybyśmy byli wystarczająco mądrzy, potrafilibyśmy uzupełnić tę teorię i znaleźć jej prawdziwe, nieperturbacyjne rozwiązanie. Nie zwalnia nas to jednak z poszukiwania eksperymentalnych sposobów jej zweryfikowania. Aby ją sprawdzić, musimy poczekać na sygnały z dziesiątego wymiaru. Uwaga: Tekst pochodzi z ksiązki "Hiperprzestrzeń" autorstwa Michio Kaku.

11 Autor: Michio Kaku Artykuł pobrano ze strony eioba.pl

Krótki kurs historii matematyki Autorzy: Michał Maciąg Mateusz Ciecierski Maksim Vasilevich Piotr Lewandowski

Krótki kurs historii matematyki Autorzy: Michał Maciąg Mateusz Ciecierski Maksim Vasilevich Piotr Lewandowski Krótki kurs historii matematyki Autorzy: Michał Maciąg Mateusz Ciecierski Maksim Vasilevich Piotr Lewandowski Urodził się w 1887 roku w Erode w pobliżu Madrasu w Indiach. Choć należał do kasty barminów,

Bardziej szczegółowo

SRINIVASA RAMANUJAN. Aleksandra Kuzko Joanna Lewandowska Beata Pawlikowska wydział MiNI rok 2018/19 semestr 5 Krótki Kurs Historii Matematyki

SRINIVASA RAMANUJAN. Aleksandra Kuzko Joanna Lewandowska Beata Pawlikowska wydział MiNI rok 2018/19 semestr 5 Krótki Kurs Historii Matematyki SRINIVASA RAMANUJAN Aleksandra Kuzko Joanna Lewandowska Beata Pawlikowska wydział MiNI rok 2018/19 semestr 5 Krótki Kurs Historii Matematyki ur. 22 grudnia 1887r. w Erode zm. 26 kwietnia 1920 syn braminów

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

mnw.org.pl/orientujsie

mnw.org.pl/orientujsie mnw.org.pl/orientujsie Jesteśmy razem, kochamy się. Oczywiście, że o tym mówimy! Ale nie zawsze jest to łatwe. agata i marianna Określenie bycie w szafie nie brzmi specjalnie groźnie, ale potrafi być naprawdę

Bardziej szczegółowo

7. Pętle for. Przykłady

7. Pętle for. Przykłady . Pętle for Przykłady.1. Bez użycia pętli while ani rekurencji, napisz program, który wypisze na ekran kolejne liczby naturalne od 0 do pewnego danego n. 5 int n; 6 cin >> n; 8 for (int i = 0; i

Bardziej szczegółowo

ARGUMENTY KOSMOLOGICZNE. Sformułowane na gruncie nauk przyrodniczych

ARGUMENTY KOSMOLOGICZNE. Sformułowane na gruncie nauk przyrodniczych ARGUMENTY KOSMOLOGICZNE Sformułowane na gruncie nauk przyrodniczych O CO CHODZI W TYM ARGUMENCIE Argument ten ma pokazać, że istnieje zewnętrzna przyczyna wszechświata o naturze wyższej niż wszystko, co

Bardziej szczegółowo

OLIMPIADA MATEMATYCZNA

OLIMPIADA MATEMATYCZNA OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z

Bardziej szczegółowo

Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska

Sortowanie. Tomasz Żak  zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak

Bardziej szczegółowo

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY Witaj w podróży. Jest to podróż matematyczna oparta na historii mojej, Jamesa, która jednak nie wydarzyła się naprawdę. Kiedy byłem dzieckiem, wynalazłem maszynę -

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Wzór na rozwój. Karty pracy. Kurs internetowy. Nauki ścisłe odpowiadają na wyzwania współczesności. Moduł 3. Data rozpoczęcia kursu

Wzór na rozwój. Karty pracy. Kurs internetowy. Nauki ścisłe odpowiadają na wyzwania współczesności. Moduł 3. Data rozpoczęcia kursu 2 slajd Cele modułu 3 Kurs internetowy Wzór na rozwój Nauki ścisłe odpowiadają na wyzwania współczesności Poznasz przykładowy przebieg działań w projekcie edukacyjnym zrealizowanym w ramach projektu Wzór

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Dzięki ćwiczeniom z panią Suzuki w szkole Hagukumi oraz z moją mamą nauczyłem się komunikować za pomocą pisma. Teraz umiem nawet pisać na komputerze.

Dzięki ćwiczeniom z panią Suzuki w szkole Hagukumi oraz z moją mamą nauczyłem się komunikować za pomocą pisma. Teraz umiem nawet pisać na komputerze. Przedmowa Kiedy byłem mały, nawet nie wiedziałem, że jestem dzieckiem specjalnej troski. Jak się o tym dowiedziałem? Ludzie powiedzieli mi, że jestem inny niż wszyscy i że to jest problem. To była prawda.

Bardziej szczegółowo

XXI Konferencja SNM UKŁADY RÓWNAŃ. Kilka słów o układach równań.

XXI Konferencja SNM UKŁADY RÓWNAŃ. Kilka słów o układach równań. 1 XXI Konferencja SNM UKŁADY RÓWNAŃ Piotr Drozdowski (Józefów), piotr.trufla@wp.pl Krzysztof Mostowski (Siedlce), kmostows@o.pl Kilka słów o układach równań. Streszczenie. 100 układów równań w 5 min, jak

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

Zatem może wyjaśnijmy sobie na czym polega różnica między człowiekiem świadomym, a Świadomym.

Zatem może wyjaśnijmy sobie na czym polega różnica między człowiekiem świadomym, a Świadomym. KOSMICZNA ŚWIADOMOŚĆ Kiedy mowa jest o braku świadomi, przeciętny człowiek najczęściej myśli sobie: O czym oni do licha mówią? Czy ja nie jesteś świadomy? Przecież widzę, słyszę i myślę. Tak mniej więcej

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Porozumiewanie się z użytkownikami aparatów słuchowych. Rady dotyczące udanego porozumiewania się

Porozumiewanie się z użytkownikami aparatów słuchowych. Rady dotyczące udanego porozumiewania się Porozumiewanie się z użytkownikami aparatów słuchowych 5 Rady dotyczące udanego porozumiewania się Jest to piąta w serii broszur firmy Widex dotyczących słuchu i problemów z nim związanych. Porozumiewanie

Bardziej szczegółowo

Pewien młody człowiek popadł w wielki kłopot. Pożyczył 10 tyś. dolarów i przegrał je na wyścigach konnych.

Pewien młody człowiek popadł w wielki kłopot. Pożyczył 10 tyś. dolarów i przegrał je na wyścigach konnych. Artykuł pobrano ze strony eioba.pl Zmienić osobowość Pewien młody człowiek popadł w wielki kłopot. Pożyczył 10 tyś. dolarów i przegrał je na wyścigach konnych. Afirmacja to w działaniu potęga ale... Pewien

Bardziej szczegółowo

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko

Bardziej szczegółowo

Einstein na półmetku. Projekt współfinansowany jest ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Einstein na półmetku. Projekt współfinansowany jest ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Einstein na półmetku Przy pisaniu kolejnego artykułu o projekcie postanowiliśmy wykorzystać opinie uczestników, czyli uczniów szkół Powiatu Lubańskiego. Oto co sądzą o Einsteinie: Na zajęciach byliśmy

Bardziej szczegółowo

Ankieta. Instrukcja i Pytania Ankiety dla młodzieży.

Ankieta. Instrukcja i Pytania Ankiety dla młodzieży. Ankieta Instrukcja i Pytania Ankiety dla młodzieży www.fundamentywiary.pl Pytania ankiety i instrukcje Informacje wstępne Wybierz datę przeprowadzenia ankiety w czasie typowego spotkania grupy młodzieżowej.

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas

Bardziej szczegółowo

Podział sieci na podsieci wytłumaczenie

Podział sieci na podsieci wytłumaczenie Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże

Bardziej szczegółowo

3a. Wstęp: Elementarne równania i nierówności

3a. Wstęp: Elementarne równania i nierówności 3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Programowanie w Baltie klasa VII

Programowanie w Baltie klasa VII Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.

Bardziej szczegółowo

W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1

W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

EDUWAŻKA - sposób na pokazanie dzieciom jak matematyka opisuje zjawiska i prawa przyrody. Edutronika Sp. z o.o.

EDUWAŻKA - sposób na pokazanie dzieciom jak matematyka opisuje zjawiska i prawa przyrody. Edutronika Sp. z o.o. EDUWAŻKA - sposób na pokazanie dzieciom jak matematyka opisuje zjawiska i prawa przyrody. Edutronika Sp. z o.o. EDUWAŻKA wskazówki edukacyjne EDUWAŻKA to plastikowa waga w postaci symetrycznej listwy o

Bardziej szczegółowo

ROZUMIENIE ZE SŁUCHU

ROZUMIENIE ZE SŁUCHU Imię i nazwisko: Data urodzenia: Kraj: Kierunek studiów: punkty: / 70 p. ROZUMIENIE ZE SŁUCHU Proszę wysłuchać tekstu i wykonać zadania. Tekst zostanie odczytany dwa razy. 1. Proszę wybrać jedną poprawną

Bardziej szczegółowo

Droga do obliczenia stałej struktury subtelnej.

Droga do obliczenia stałej struktury subtelnej. Artykuł pobrano ze strony eioba.pl Droga do obliczenia stałej struktury subtelnej. Stała struktury subtelnej, jest równa w przybliżeniu 1/137,03599976. α jest bezwymiarową kombinacją ładunku, stałej Plancka,

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

Jesper Juul. Zamiast wychowania O sile relacji z dzieckiem

Jesper Juul. Zamiast wychowania O sile relacji z dzieckiem Jesper Juul Zamiast wychowania O sile relacji z dzieckiem Dzieci od najmłodszych lat należy wciągać w proces zastanawiania się nad różnymi decyzjami i zadawania sobie pytań w rodzaju: Czego chcę? Na co

Bardziej szczegółowo

Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego

Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań

Bardziej szczegółowo

Można Kraussa też ujrzeć w video debacie z teologiem filozofem Williamem Lane Craigiem pod tytułem Does Science Bury God (Czy nauka grzebie boga ).

Można Kraussa też ujrzeć w video debacie z teologiem filozofem Williamem Lane Craigiem pod tytułem Does Science Bury God (Czy nauka grzebie boga ). Profesor Lawrence Krauss z Uniwersytetu w Arizonie jest fizykiem teoretycznym, który specjalizuje się w kosmologii, szczególnie w problemie powstania i ewolucji wszechświata. Jest on też jednym z naukowców

Bardziej szczegółowo

Liczba i Reszta czyli o zasadach podzielności

Liczba i Reszta czyli o zasadach podzielności Liczba i Reszta czyli o zasadach podzielności Klara Maria Zgliński Ogólnokształcąca Szkoła Muzyczna I stopnia im. Ignacego J. Paderewskiego w Krakowie 31-134 Kraków, ul. Basztowa 8 Klasa Vb Nauczyciel:

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

Co to jest niewiadoma? Co to są liczby ujemne?

Co to jest niewiadoma? Co to są liczby ujemne? Co to jest niewiadoma? Co to są liczby ujemne? Można to łatwo wyjaśnić przy pomocy Edukrążków! Witold Szwajkowski Copyright: Edutronika Sp. z o.o. www.edutronika.pl 1 Jak wyjaśnić, co to jest niewiadoma?

Bardziej szczegółowo

na egzaminach z matematyki

na egzaminach z matematyki Błędy studentów na egzaminach z matematyki W opracowaniu omówiłem typowe błędy popełniane przez studentów na kolokwiach i egzaminach z algebry oraz analizy. Ponadto podaję błędy rzadziej spotykane, które

Bardziej szczegółowo

Spotkanie z Jaśkiem Melą

Spotkanie z Jaśkiem Melą Spotkanie z Jaśkiem Melą 20 października odwiedził nas Jasiek Mela najmłodszy zdobywca dwóch biegunów. Jednocześnie pierwszy niepełnosprawny, który dokonał tego wyczynu. Jasiek opowiedział o swoim wypadku

Bardziej szczegółowo

Spis treści. Co to znaczy dla ciebie jako uczestnika kursu?...40

Spis treści. Co to znaczy dla ciebie jako uczestnika kursu?...40 Spis treści Przedmowa...11 Wstęp...13 Liczy się twoja intencja...15 O tobie i o tej książce...17 Jak korzystać z książki?...19 Oświadczenie...21 Część I Przygotowanie się do kursu...24 Medytacja... 24

Bardziej szczegółowo

Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj!

Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj! Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień Tom I: Optymalizacja Nie panikuj! Autorzy: Iwo Błądek Konrad Miazga Oświadczamy, że w trakcie produkcji tego tutoriala nie zginęły żadne zwierzęta,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest

Bardziej szczegółowo

Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum

Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum 1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,

Bardziej szczegółowo

Rodzaje argumentów za istnieniem Boga

Rodzaje argumentów za istnieniem Boga Rodzaje argumentów za istnieniem Boga Podział argumentów argument ontologiczny - w tym argumencie twierdzi się, że z samego pojęcia bytu doskonałego możemy wywnioskować to, że Bóg musi istnieć. argumenty

Bardziej szczegółowo

Konstrukcja odcinków niewymiernych z wykorzystaniem. Twierdzenia Pitagorasa.

Konstrukcja odcinków niewymiernych z wykorzystaniem. Twierdzenia Pitagorasa. 1 Konstrukcja odcinków niewymiernych z wykorzystaniem Twierdzenia Pitagorasa. Czas trwania zajęć: ok. 40 minut + 5 minut na wykład Kontekst w jakim wprowadzono doświadczenie: Doświadczenie warto zrealizować

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) = Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,

Bardziej szczegółowo

Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację

Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację Coraz więcej dowodów wskazuje na to, że nasza rzeczywistość nie jest tak realna jak wydaje

Bardziej szczegółowo

Hektor i tajemnice zycia

Hektor i tajemnice zycia François Lelord Hektor i tajemnice zycia Przelozyla Agnieszka Trabka WYDAWNICTWO WAM Był sobie kiedyś chłopiec o imieniu Hektor. Hektor miał tatę, także Hektora, więc dla odróżnienia rodzina często nazywała

Bardziej szczegółowo

Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π

Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π 3,141592653589793238462643383279502884 Używany dzisiaj symbol π wprowadzony został

Bardziej szczegółowo

TRENER MARIUSZ MRÓZ - JEDZ TO, CO LUBISZ I WYGLĄDAJ JAK CHCESZ!

TRENER MARIUSZ MRÓZ - JEDZ TO, CO LUBISZ I WYGLĄDAJ JAK CHCESZ! TRENER MARIUSZ MRÓZ - JEDZ TO, CO LUBISZ I WYGLĄDAJ JAK CHCESZ! Witaj! W tym krótkim PDFie chcę Ci wytłumaczyć dlaczego według mnie jeżeli chcesz wyglądać świetnie i utrzymać świetną sylwetkę powinieneś

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Dominik Matuszek, V Liceum Ogólnokształcące w Bielsku-Białej. Liczby pierwsze

Dominik Matuszek, V Liceum Ogólnokształcące w Bielsku-Białej. Liczby pierwsze Dominik Matuszek, V Liceum Ogólnokształcące w Bielsku-Białej Liczby pierwsze Czym są liczby pierwsze? Na początku powiedzmy sobie, czym są liczby pierwsze. Jak powszechnie wiadomo, liczba pierwsza jest

Bardziej szczegółowo

AUDIO / VIDEO (A 2 / B1 ) (wersja dla studenta) ROZMOWY PANI DOMU ROBERT KUDELSKI ( Pani domu, nr )

AUDIO / VIDEO (A 2 / B1 ) (wersja dla studenta) ROZMOWY PANI DOMU ROBERT KUDELSKI ( Pani domu, nr ) AUDIO / VIDEO (A 2 / B1 ) (wersja dla studenta) ROZMOWY PANI DOMU ROBERT KUDELSKI ( Pani domu, nr 4-5 2009) Ten popularny aktor nie lubi udzielać wywiadów. Dla nas jednak zrobił wyjątek. Beata Rayzacher:

Bardziej szczegółowo

BĄDŹ SOBĄ, SZUKAJ WŁASNEJ DROGI - JANUSZ KORCZAK

BĄDŹ SOBĄ, SZUKAJ WŁASNEJ DROGI - JANUSZ KORCZAK BĄDŹ SOBĄ, SZUKAJ WŁASNEJ DROGI - JANUSZ KORCZAK Opracowała Gimnazjum nr 2 im. Ireny Sendlerowej w Otwocku Strona 1 Młodzież XXI wieku problemy stare, czy nowe, a może stare po nowemu? Co jest największym

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.

operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je. Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie

Bardziej szczegółowo

W MOJEJ RODZINIE WYWIAD Z OPĄ!!!

W MOJEJ RODZINIE WYWIAD Z OPĄ!!! W MOJEJ RODZINIE WYWIAD Z OPĄ!!! W dniu 30-04-2010 roku przeprowadziłem wywiad z moim opą -tak nazywam swojego holenderskiego dziadka, na bardzo polski temat-solidarność. Ten dzień jest może najlepszy

Bardziej szczegółowo

Instrukcja warunkowa i złoŝona.

Instrukcja warunkowa i złoŝona. Instrukcja warunkowa i złoŝona. Budowa pętli warunkowej. JeŜeli mielibyśmy przetłumaczyć instrukcję warunkową to brzmiałoby to mniej więcej tak: jeŝeli warunek jest spełniony, to wykonaj jakąś operację

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11 Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Dane są liczby naturalne m, n. Wówczas dla dowolnej liczby naturalnej k, liczba k jest podzielna

Bardziej szczegółowo

Ile waży arbuz? Copyright Łukasz Sławiński

Ile waży arbuz? Copyright Łukasz Sławiński Ile waży arbuz? Arbuz ważył7kg z czego 99 % stanowiła woda. Po tygodniu wysechł i woda stanowi 98 %. Nieważne jak zmierzono te %% oblicz ile waży arbuz teraz? Zanim zaczniemy, spróbuj ocenić to na wyczucie...

Bardziej szczegółowo

III. Wstęp: Elementarne równania i nierówności

III. Wstęp: Elementarne równania i nierówności III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS. Wielkie umysły. Fizycy. Jan Kowalski, FT gr

POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS. Wielkie umysły. Fizycy. Jan Kowalski, FT gr POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS Wielkie umysły Fizycy Jan Kowalski, FT gr.1 2013-09-28 Zaprezentowano wybrane wiadomości dotyczące kilku znanych wybitnych fizyków. A tak naprawdę, to chodzi tu o przećwiczenie

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Olaf Tumski: Tomkowe historie 3. Copyright by Olaf Tumski & e-bookowo Grafika i projekt okładki: Zbigniew Borusiewicz ISBN

Olaf Tumski: Tomkowe historie 3. Copyright by Olaf Tumski & e-bookowo Grafika i projekt okładki: Zbigniew Borusiewicz ISBN Olaf Tumski Olaf Tumski: Tomkowe historie 3 Copyright by Olaf Tumski & e-bookowo Grafika i projekt okładki: Zbigniew Borusiewicz ISBN 978-83-63080-60-0 Wydawca: Wydawnictwo internetowe e-bookowo Kontakt:

Bardziej szczegółowo

Kazanie na uroczystość ustanowienia nowych animatorów. i przyjęcia kandydatów do tej posługi.

Kazanie na uroczystość ustanowienia nowych animatorów. i przyjęcia kandydatów do tej posługi. SŁUŻYĆ JEDNEMU PANU. Kazanie na uroczystość ustanowienia nowych animatorów i przyjęcia kandydatów do tej posługi. Katowice, krypta katedry Chrystusa Króla, 18 czerwca 2016 r. "Swojemu słudze Bóg łaskę

Bardziej szczegółowo

Autorefleksja Budzącej się szkoły Wersja dla nauczycieli

Autorefleksja Budzącej się szkoły Wersja dla nauczycieli Autorefleksja Budzącej się szkoły Wersja dla nauczycieli Zapraszamy do wypełnienia kwestionariusza Autorefleksji Budzącej się szkoły. Wypełniając go proszę pamiętać, że wszystkie pytania dotyczą Państwa

Bardziej szczegółowo

Warunek wielokrotnego wyboru switch... case

Warunek wielokrotnego wyboru switch... case Warunek wielokrotnego wyboru switch... case Działanie instrukcji switch jest zupełnie inne niż w przypadku instrukcji if o czym będziesz mógł się przekonać w niniejszym rozdziale. Różnice pomiędzy instrukcjami

Bardziej szczegółowo

Teoria grawitacji. Grzegorz Hoppe (PhD)

Teoria grawitacji. Grzegorz Hoppe (PhD) Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości

Bardziej szczegółowo

Twierdzenie Pitagorasa

Twierdzenie Pitagorasa Imię Nazwisko: Paweł Rogaliński Nr indeksu: 123456 Grupa: wtorek 7:30 Data: 10-10-2012 Twierdzenie Pitagorasa Tekst artykułu jest skrótem artykułu Twierdzenie Pitagorasa zamieszczonego w polskiej edycji

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest

Bardziej szczegółowo

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić.

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarne dziury są to obiekty nie do końca nam zrozumiałe. Dlatego budzą ciekawość

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

SKALA ZDOLNOŚCI SPECJALNYCH W WERSJI DLA GIMNAZJUM (SZS-G) SZS-G Edyta Charzyńska, Ewa Wysocka, 2015

SKALA ZDOLNOŚCI SPECJALNYCH W WERSJI DLA GIMNAZJUM (SZS-G) SZS-G Edyta Charzyńska, Ewa Wysocka, 2015 SKALA ZDOLNOŚCI SPECJALNYCH W WERSJI DLA GIMNAZJUM (SZS-G) SZS-G Edyta Charzyńska, Ewa Wysocka, 2015 INSTRUKCJA Poniżej znajdują się twierdzenia dotyczące pewnych cech, zachowań, umiejętności i zdolności,

Bardziej szczegółowo

Część 11. Rozwiązywanie problemów.

Część 11. Rozwiązywanie problemów. Część 11. Rozwiązywanie problemów. 3 Rozwiązywanie problemów. Czy jest jakiś problem, który trudno Ci rozwiązać? Jeżeli tak, napisz jaki to problem i czego próbowałeś, żeby go rozwiązać 4 Najlepsze metody

Bardziej szczegółowo

Ćwiczenia do pobrania z Internetu

Ćwiczenia do pobrania z Internetu 1 Ćwiczenia do pobrania z Internetu styczeń 2012 2 Trzej Królowie... Magiczne prezenty Trzej Królowie przynieśli Jezusowi prezenty. Zapisz i narysuj, jakie prezenty przydałyby się Twojej rodzinie. 3 Droga

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

Wiedza o powstaniu w getcie warszawskim i jego znaczenie

Wiedza o powstaniu w getcie warszawskim i jego znaczenie KOMUNIKAT Z BADAŃ ISSN 2353-5822 Nr 49/2018 Wiedza o powstaniu w getcie warszawskim i jego znaczenie Kwiecień 2018 Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą. Wykorzystanie

Bardziej szczegółowo

Fizyka a fizykoteologia. Współczesne problemy.

Fizyka a fizykoteologia. Współczesne problemy. Fizyka a fizykoteologia. Współczesne problemy. Janusz Mączka Ośrodek Badań Interdyscyplinarnych Wydział Filozoficzny Papieskiej Akademii Teologicznej w Krakowie 2 1. Definicje 2. Powstanie fizykoteologii

Bardziej szczegółowo

Chen Prime Liczby pierwsze Chena

Chen Prime Liczby pierwsze Chena Chen Prime Liczby pierwsze Chena Chen Jingrun Data urodzenia: 22 maj 1933 Data śmierci: 19 marzec 1996 Pochodzi z wielodzietnej rodziny z Fuzhou, Fujian, Chiny. W 1953 roku skończył wydział matematyki

Bardziej szczegółowo

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze

Bardziej szczegółowo