Dynamiczny model układu napędowego samochodu elektrycznego 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dynamiczny model układu napędowego samochodu elektrycznego 2"

Transkrypt

1 KOPCZYŃSKI Artur 1 Dynamiczny model układu napędowego samochodu elektrycznego 2 WSTĘP W ostatnich latach zauważalny jest dynamiczny rozwój alternatywnych układów napędowych dla pojazdów drogowych, spowodowany w dużej mierze regulacjami definiującymi dozwoloną emisję szkodliwych substancji przez samochody, jak również ceną paliwa. Należy również zwrócić uwagę na rosnące wymogi bezpieczeństwa stawiane współczesnym samochodom. Systemy ABS (Antilock Brake System) oraz ESP (Electronic Stability Program) to już standardowe wyposażenie każdego nowego pojazdu, który pojawia się na rynku. Obecnie alternatywą dla pojazdów klasycznych są pojazdy czysto elektryczne i hybrydowe spalinowo-elektryczne. W zależności od konfiguracji napędu mogą się one charakteryzować różnymi właściwościami. Przykładem mogą być pojazdy z niezależnym napędem osi (dwa silniki elektryczne niezależnie napędzają przednią oraz tylną oś kół) lub niezależnym napędem kół (koła jednej osi są sterowane niezależnie za pomocą dwóch maszyn elektrycznych, bez klasycznego mechanizmu różnicowego), w których dzięki odpowiedniemu sterowaniu można poprawić np. stateczność ruchu [2], czy sprawność rekuperacji energii [3]. Większość dotychczasowych badań symulacyjnych, którym poddawano elektryczne i hybrydowe układy napędowe pojazdów, nie wymagały dynamicznego modelu komponentów takich jak opona, czy elastyczność wałów napędowych, gdyż miały na celu wyznaczenie takich parametrów jak zużycie energii w cyklu, poziom naładowania baterii, czy dobór poszczególnych komponentów dla układu napędowego. Nowe możliwości, jakie niosą ze sobą nowe konfiguracje układów napędowych stwarzają potrzebę głębszej analizy i modeli pozwalających na dynamiczną analizę zachowania pojazdu na drodze. W tym celu pomocne może być modelowanie układu napędowego pojazdu elektrycznego na podłożu dynamiki opisane w niniejszej pracy. 1. OGÓLNA STRUKTURA MODELU 1.1. Schemat blokowy elektrycznego układu napędowego pojazdu u s R s L s τ s i s e J s ω s τ k ic i c τ k K τ k m v x F op ωs i c B v x r d Rys. 1. Schemat blokowy elektrycznego układu napędowego pojazdu [źródło: opracowanie własne] Rysunek 1 prezentuje schemat blokowy elektrycznego układu napędowego pojazdu. W niniejszej pracy nie jest prezentowane podejście przy modelowaniu baterii elektrochemicznej, jednak można je znaleźć w opracowaniu [12]. Model baterii może być przydatny przy badaniach mających na celu określenia zużycia energii przez pojazd, jednak przy badaniach mających na celu np. analizę trakcyjną pojazdu można go pominąć. W niniejszej pracy przyjęto stałą wartość napięcia pochodzącego z baterii akumulatorów. 1 Politechnika Warszawska, Wydział Samochodów i Maszyn Roboczych, ul. Narbutta 84, Warszawa, Tel:+48-(22) , artur.kopczynski@simr.pw.edu.pl 2 Niniejsza praca jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego, projekt Program Rozwojowy Politechniki Warszawskiej. 2276

2 Pozostałe elementy widoczne na rysunku 1 zostały opisane w podrozdziale 1.2, a ich modele w środowisku Matlab/Simulink w podrozdziale Modele matematyczne poszczególnych elementów układu napędowego Model elektrycznego silnika trakcyjnego W niniejszej pracy przyjęto, że rolę jednostki napędowej pojazdu pełni silnik prądu stałego z magnesami trwałymi, co opisują równania (1) oraz (2). Na podstawie pracy [10] można zbudować model maszyny synchronicznej z magnesami trwałymi, a na podstawie pracy [13] model maszyny indukcyjnej. gdzie: prąd silnika [A] napięcie na zaciskach maszyny elektrycznej [V] indukcyjność uzwojeń [H] rezystancja uzwojeń wirnika [Ω] siła elektromotoryczna [V] stała maszyny elektrycznej, zależna od strumienia stojana i liczby zwojów wirnika [-] zredukowany moment bezwładności elementów wirujących (wirnik, wały napędowe) prędkość kątowa wirnika moment obciążenia (1) (2) Model elementów przenoszących moment napędowy (wałów napędowych) Równanie (3) prezentuje zbiorczy model wszystkich wałów i reduktorów występujących pomiędzy silnikiem, a kołem jezdnym. Jest jednak możliwe wykonanie bardziej dokładnego modelu poszczególnych elementów jak sprzęgło [5], przekładnia planetarna [4], czy synchronizatory [11] niemniej jednak modelowanie powinno się odbywać w sposób świadomy i dostosowany do planowanych badań symulacyjnych. (3) gdzie: przełożenie całkowite moment na kołach jezdnych moment na wirniku silnika sztywność elementów przenoszących moment (wałów) tłumienie wiskotyczne elementów przenoszących moment (wałów) promień dynamiczny opony prędkość pojazdu (4) 2277

3 Model opony W niniejszej pracy przyjęto podstawowy klasyczny model opony, uwzględniający jedynie ruch postępowy (wzdłużny). Równanie (5) opisuje poślizg opony podczas przyspieszania pojazdu, wynikający z elastyczności opony [8], [9]. Natomiast poślizg podczas hamowania pojazdu wyraża zależność (6). (5) gdzie: poślizg opony [-] prędkość kątowa koła jezdnego Gdy na koła jezdne dostarczany jest moment napędowy, bądź hamujący, dochodzi do odkształcenia opony. Oznacza to, że w takiej sytuacji ma ona mniejszą zdolność do przenoszenia siły. Przykładowa charakterystykaopisująca zależność współczynnika przyczepności w funkcji poślizgu opony została zaprezentowana na rysunku 2. (6) μ X 0,8 μ X gr 0 S gr x 0,1 1 s x Rys. 2. Zależność współczynnika przyczepności wzdłużnej opony w funkcji poślizgu opony [źródło: opracowanie własnena podstawie pracy 1] Po uwzględnieniu poślizgu, siła przenoszona przez oponę jest wyrażona poprzez równanie (7). gdzie; siła wzdłużna przenoszona przez oponę siła pionowa nacisku koła na podłoże, w analizowanym przypadku współczynnik przyczepności wzdłużnej opony [-] (7) W celu analizy ruchu pojazdu po łuku drogi, należy rozbudować model o odkształcalność poprzeczną opony. W tym celu można być przydatna praca [7], w której opisano modelowanie opony w obu kierunkach. Równania ruchu pojazdu Równania ruchu pojazdu (8) i (9) otrzymuje się z II-go prawa dynamiki Newtona. 2278

4 (8) gdzie: masa pojazdu siła oporów ruchu siła oporu aerodynamicznego siła oporu toczenia moment bezwładności koła (9) W niniejszym modelu uwzględniono siłę oporu aerodynamicznego oraz siłę oporu toczenia. W zależności od potrzeb można uwzględnić pozostałe siły działające przeciwnie do siły napędowej, takie jak siły oporu wzniesienia, uciągu, czy skrętu Model pojazdu w środowisku Matlab/Simulink Ogólna globalna struktura dynamicznego modelu pojazdu elektrycznego została zaprezentowana na rysunku 3. Blok "Step" reprezentuje parametr sterujący dla całego układu i oznacza zapotrzebowanie na moment napędowy/hamujący zadany przez kierowcę, poprzez zmianę położenia dźwigni przyspieszenia, bądź dźwigni hamulca. Rys. 3. Globalna struktura modelu [źródło: opracowanie własne] Model maszyny elektrycznej został zamieszczony na rysunku 4. Powstał on na podstawie złożenia równania (1) oraz równania (2). Natomiast na rysunku 5 został zaprezentowany model układu regulacyjnego dla tego silnika. Regulator z rysunku 5 wykorzystuję informację ze sprzężenia zwrotnego o tym, jaki moment generuje maszyna elektryczna. Porównuje go z momentem wymaganym (zadanym przez kierowcę) i poprzez proporcjonalny regulator zadaje odpowiednią wartość napięcia na maszynę elektryczną. 2279

5 Rys. 4. Model maszyny elektrycznej [źródło: opracowanie własne] Rys. 5. Regulator maszyny elektrycznej [źródło: opracowanie własne] Model elementów przenoszących moment napędowy, czyli elementów sprężystych został zaprezentowany na rysunku 6. Odnosi się on do równań (3) oraz (4), w których kąt oznaczą skręt tych elementów. W praktyce można powiedzieć, że ten kąt jest równy różnicy w obrocie wirnika maszyny elektrycznej i koła jezdnego. Rys. 6. Model elementów przenoszących moment[źródło: opracowanie własne na podstawie pracy 6] Na podstawie równań (5-9) opracowano model opony oraz model ruchu pojazdu, co prezentuje rysunek 7. Należy zwrócić uwagę na to, że w zależności od tego czy pojazd jest rozpędzany, czy hamowany poślizg jest wyrażony innymi zależnościami, co zostało opisane w rozdziale 1.2. Zmianę równania w Simulinku można wykonać za pomocą przełącznika "switch", bądź za pomocą funkcji "if and else".w obu przypadkach, jako parametr sterujący lepiej jest przyjąć moment dostarczony na koła jezdne niż wartość przyspieszenia. W zależności czy pojazd będzie napędzany, czy hamowany moment ten będzie miał inny znak. Rys. 7. Model opony i pojazdu [źródło: opracowanie własne] 2280

6 2. ZAGADNIENIE WARUNKÓW POCZĄTKOWYCH Jeżeli jako warunek początkowy przyjmiemy, że zarówno prędkość pojazdu oraz prędkość kątowa koła jezdnego są równe zero, oprogramowanie nie będzie w stanie wykonać obliczeń. Rozwiązaniem tego problemu może być zadanie bardzo małej prędkości początkowej pojazdu np. rzędu (0.1 m/s). W tym celu w bloku całkującym przyspieszenie (patrz rysunek 7.) należy wpisać tę wartość, jako "initialcondition". Podobny zabieg należy przeprowadzić w członie całkującym przyspieszenie kątowe koła jezdnego. Jednakże w tym przypadku należy wpisać wartość prędkości pojazdu podzielonej przez promień dynamiczny opony. Po przeprowadzeniu takiego zabiegu jest możliwe przeprowadzenie symulacji, jednak w celu zadania prawidłowych warunków początkowych dla całego modelu powinno się uwzględnić również prędkość początkową wirnika maszyny elektrycznej. Należy pamiętać o uwzględnieniu przełożenia całkowitego pomiędzy wirnikiem, a kołami jezdnymi. Odpowiednią wartość należy wpisać w bloku całkującym przyspieszenie kątowe wirnika (patrz rysunku 4). Ponieważ wymuszenie momentowe następuje w czasie "1s" warto się przyjrzeć na zachowanie modelu w przedziale czasu od t=0 do t=1 s. Charakterystyka zmian prędkości pojazdu w tym przedziale czasowym została zaprezentowana na rysunku 8. Rys. 8. Wpływ warunków początkowych na prędkości pojazdu [źródło: opracowanie własne] Widoczne jest, iż w czasie t=0 prędkość pojazdu wynosi 0,36 km/h, co odpowiada zadanemu 0.1m/s, jako warunek początkowy. Następnie prędkość pojazdu maleje, gdyż zadany moment napędowy wynosi 0, a opory ruchu mają wartość większą od zera. Sytuacja taka jest analogiczna do wybiegu pojazdu. W momencie dostarczenia momentu napędowego na koła jezdne (po czasie t=1s) pojazd zaczyna przyspieszać. 3. BADANIASYMULACYJNE 3.1. Dane wejściowe do badań symulacyjnych Parametry wejściowe wykorzystane w badaniach symulacyjnych zostały zaprezentowane w tabeli 1. Tab. 1. Dane wykorzystane w badaniach symulacyjnych [źródło: opracowanie własne] Parametr Masa pojazdu + dwóch pasażerów i bagaż Powierzchnia czołowa pojazdu Współczynnik oporu aerodynamicznego Promień dynamiczny opony Współczynnik oporu toczenia Sztywność skrętna wałów napędowych Wartość 2281

7 Tłumienie wiskotyczne wałów napędowych Przełożenie całkowite Stała maszyny elektrycznej Rezystancja uzwojeń wirnika Indukcyjność cewek Moment bezwładności wirnika i wałów napędowych Moment bezwładności kół jezdnych Współczynnik proporcjonalności Napięcie nominalne baterii 3.2. Przykładowe wyniki badań symulacyjnych Na rysunkach 9, 10, 11 oraz 12 zostały zaprezentowane przykładowe wyniki badań symulacyjnych przeprowadzonych na opisywanym w rozdziale 1 modelu. Charakterystyki prezentują odpowiedź poszczególnych elementów na nagłe wymuszenie momentowe maszyny elektrycznej, co odpowiada intensywnemu rozpędzaniu pojazdu.rysunek 9 prezentuje zmianę prędkości i przyspieszenia pojazdu. Rys. 9. Przebieg czasowy zmian prędkości i przyspieszenia pojazdu [źródło: opracowanie własne] W czasie t=1s następuje wymuszenie momentowe i pojazd zaczyna gwałtownie przyspieszać, co jest widoczne na charakterystyce przyspieszenia. W przedziale czasu przyspieszenie osiąga wartość ok., gdy prędkość pojazdu się stabilizuje i osiąga wartość 120 km/h przyspieszenie pojazdu spada do zera. Rys. 10. Przebieg mocy maszyny elektrycznej [źródło: opracowanie własne] Na rysunku 10 została zaprezentowana charakterystyka mocy silnika elektrycznego. Moc silnika osiąga maksymalną wartość odpowiednio dla końcowej fazy największego przyspieszenia pojazdu, gdy wartość oporów ruchu przyjmuje duże wartości wywołane oporem siły bezwładności, a prędkość zdecydowanie wzrasta. Analogicznie do wykresu mocy maszyny elektrycznej największa wartość 2282

8 momentu napędowego na kołach jezdnych przypada dla największej wartości przyspieszenia pojazdu. Wraz z zanikaniem oporu bezwładności wartość momentu napędowego maleje i równoważy się sumie momentów oporu aerodynamicznego i oporu toczenia, co zostało przedstawione na rysunku 11. Rys. 11. Charakterystyka zmian momentu napędowego na kołach jezdnych oraz prędkości kątowej kół [źródło: opracowanie własne] Jednym z istotniejszych parametrów, jaki można uzyskać przy użyciu zaprezentowanego modelu jest poślizg koła ogumionego. Na rysunku 2 została zaprezentowana teoretyczna zależność współczynnika przyczepności wzdłużnej opony w funkcji poślizgu opony. Wartość poślizgu w przedziale 0-10% odpowiada poślizgowi wewnętrznemu opony wynikającemu z jej elastyczności. Natomiast przekroczenie wartości oznacza poślizg występujący pomiędzy bieżnikiem opony, a nawierzchnią. Przebieg zmian poślizgu względnego opony dla omawianych wyników badań symulacyjnych został zaprezentowany na rysunku 12. Maksymalnym wartościom dostarczonego momentu napędowego na koła jezdne odpowiada poślizg ogumienia o wartości niespełna 5%. Oznacza to, iż podczas symulowanego procesu rozpędzania pojazdu nie doszło do utraty przyczepności koła ogumionego z nawierzchnią i ruch pojazdu był stateczny. Rys. 12. Przebieg poślizgu opony koła trakcyjnego pojazdu [źródło: opracowanie własne] PODSUMOWANIE W pracy zostało zaprezentowane podejście do matematycznego modelowania elektrycznego układu napędowego. Prezentowane opisy matematyczne uwzględniają dynamiczne właściwości poszczególnych elementów napędu. Następnie opisano budowę modelu w środowisku Matlab/Simulink oraz wskazano rozwiązanie aspektu zagadnień początkowych. Wyniki badań symulacyjnych potwierdzają właściwe odzwierciedlenie zjawisk fizycznych, a charakter zmian poszczególnych przebiegów czasowych odpowiada przewidywanym rezultatom. Za pomocą opisanego modelu można przeprowadzać badania symulacyjne o różnym charakterze. Przykładem mogą być prezentowane w niniejszej pracy wyniki weryfikujące parametry trakcyjne pojazdu. Inne badania mogą mieć na celu oszacowanie zużycia energii przez pojazd, czy wyznaczenie parametrów 2283

9 pracy poszczególnych komponentów układu napędowego. Należy również zwrócić uwagę, iż modele dynamiczne pozwalają na projektowanie układów sterowania i doboru jego nastaw. Streszczenie Wzrost popularności alternatywnych układów napędowych pojazdów oraz zaostrzające się wymogi bezpieczeństwa stawiane współczesnym pojazdom drogowym stwarzają potrzebę interdyscyplinarnego spojrzenia na problematykę projektowania pojazdów. W niniejszej pracy zostało zaprezentowane podejście do modelowania elektrycznego układu napędowego z uwzględnieniem dynamicznych właściwości takich komponentów jak: maszyna elektryczna, koło ogumione, czy wały napędowe. Rozważania teoretyczne podparto wynikami z przykładowych badań symulacyjnych. Wskazano również możliwości rozbudowy prezentowanego modelu matematycznego o inne elementy, takie jak sprzęgła, synchronizatory, baterie elektrochemiczne, czy przekładnie obiegowe. Słowa kluczowe:model dynamiczny pojazdu, pojazdy elektryczne, modelowanie Electric vehicle driveline modelling and analysis Abstract The growing popularity of alternative propulsion systems and stricter requirements of safety of modern road vehicles create a need for interdisciplinary view for vehicle design issue. This paper presents approach for mathematical modelling of electric propulsion systems including the dynamic properties of elements such as: electric machine, tyre wheel or drive shafts. The theoretical consideration were supported by sample results from simulating study. Then the possibility of model enlargement by elements such as: clutches, synchronizer, electrochemical battery or planetary gear were presented. Keywords:vehicle dynamic model, electric vehicle, modelling BIBLIOGRAFIA 1. Genta G., Motor Vehicle Dynamics: Modeling and Simulation, World Scientific Publishing Co. Pte. Ltd Hongwen H., Jiankun P., Rui X., Hao F., An Acceleration Slip Regulation Strategy for Four- Wheel Drive Electric Vehicles Based on Sliding Mode Control, Energies 2014, 7, ,ISSN Kopczyński A., Sekrecki M., Krawczyk P., Oszacowanie efektywności rekuperacji energii dla różnych konfiguracji układu napędowego pojazdów elektrycznych, Logistyka 6/2014, ISSN , strony Krawczyk P., Sekrecki M., Kopczyński A.,Model matematyczny przekładni planetarnej o dwóch stopniach swobody do zastosowania w badaniach symulacyjnych napędów wieloźródłowych, Logistyka 6/ Liu Z., Analysis of Hybrid Power Train Equipped with Zero Steady-states Energy Consumptions Clutches, rozprawa doktorska, Politechnika Warszawska, Norton, Robert L., Machine Design, Prentice Hall, Pacejka H. B., Bakker, E. The magic formula tyre model. Vehicle System Dynamics Prochowski L., Mechanika ruchu, WKŁ, Reński A., Bezpieczeństwo czynne samochodu, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa Roszczyk P., Analiza Pracy przekształtnikowego źródła napięcia z silnikiem spalinowym i elektromechanicznym magazynem energii przeznaczonego dla pojazdu hybrydowego, Rozprawa Doktorska, Politechnika Warszawska, Sekrecki M., Krawczyk P., Kopczyński A., Modelowanie synchronizatora do analizy warunków pracy i sterowania skrzynią biegów w układzie napędowym samochodu elektrycznego, Logistyka 6/ Sekrecki M., Krawczyk P., Kopczyński A., Nieliniowy model symulacyjny akumulatora Li-Ion do obliczeń napędów pojazdów elektrycznych, Logistyka 6/

10 13. Szumanowski A., Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation, Engineering Science Reference, USA

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, 2016 Spis treści Wykaz ważniejszych oznaczeń 11 Od autora 13 Wstęp 15 Rozdział 1. Wprowadzenie 17 1.1. Pojęcia ogólne. Klasyfikacja pojazdów

Bardziej szczegółowo

MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE POJAZDU

MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE POJAZDU Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2016 (111) 73 Karol Tatar, Piotr Chudzik Politechnika Łódzka, Łódź MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE

Bardziej szczegółowo

Matematyczny opis układu napędowego pojazdu szynowego

Matematyczny opis układu napędowego pojazdu szynowego GRZESIKIEWICZ Wiesław 1 LEWANDOWSKI Mirosław 2 Matematyczny opis układu napędowego pojazdu szynowego WPROWADZENIE Rozważmy model układu napędowego pojazdu szynowego. Model ten dotyczy napędu jednej osi

Bardziej szczegółowo

Teoria ruchu pojazdów samochodowych

Teoria ruchu pojazdów samochodowych Opis przedmiotu: Teoria ruchu pojazdów samochodowych Kod przedmiotu Nazwa przedmiotu TR.SIP404 Teoria ruchu pojazdów samochodowych Wersja przedmiotu 2013/14 A. Usytuowanie przedmiotu w systemie studiów

Bardziej szczegółowo

Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Zastosowanie modelu matematycznego synchronicznej maszyny elektrycznej z magnesami trwałymi do obliczeń energetycznych pojazdów drogowych 4

Zastosowanie modelu matematycznego synchronicznej maszyny elektrycznej z magnesami trwałymi do obliczeń energetycznych pojazdów drogowych 4 KOPCZYŃSKI Artur 1 KRAWCZYK Paweł 2 SEKRECKI Michał 3 Zastosowanie modelu matematycznego synchronicznej maszyny elektrycznej z magnesami trwałymi do obliczeń energetycznych pojazdów drogowych 4 WSTĘP We

Bardziej szczegółowo

Dynamika samochodu Vehicle dynamics

Dynamika samochodu Vehicle dynamics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu PRACA DYPLOMOWA BADANIA I MODELOWANIE PRACY UKŁADU NAPĘDOWEGO SAMOCHODU Z AUTOMATYCZNĄ SKRZYNIĄ BIEGÓW Autor: inŝ. Janusz Walkowiak Promotor:

Bardziej szczegółowo

Modelowanie wpływu niezależnego sterowania kół lewych i prawych na zachowanie dynamiczne pojazdu

Modelowanie wpływu niezależnego sterowania kół lewych i prawych na zachowanie dynamiczne pojazdu Modelowanie wpływu niezależnego sterowania kół lewych i prawych na zachowanie dynamiczne pojazdu Karol Tatar, Piotr Chudzik 1. Wstęp Jedną z nowych możliwości, jakie daje zastąpienie silnika spalinowego

Bardziej szczegółowo

WIRTUALNY UKŁAD STERUJĄCY POJAZDEM KOŁOWYM O NAPĘDZIE HYBRYDOWYM

WIRTUALNY UKŁAD STERUJĄCY POJAZDEM KOŁOWYM O NAPĘDZIE HYBRYDOWYM Gabriel Kost, Andrzej Nierychlok 1) WIRTUALNY UKŁAD STERUJĄCY POJAZDEM KOŁOWYM O NAPĘDZIE HYBRYDOWYM Streszczenie: W pracy przedstawiono algorytm sterowania hybrydowym napędem pojazdu kołowego wyposażonego

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

Moment obrotowy i moc silnika a jego obciążenie (3)

Moment obrotowy i moc silnika a jego obciążenie (3) Moment obrotowy i moc silnika a jego obciążenie (3) data aktualizacji: 2014.07.15 Aby silnik napędzał samochód, uzyskiwana dzięki niemu siła napędowa na kołach napędowych musi równoważyć siłę oporu, która

Bardziej szczegółowo

SZKOŁA POLICEALNA dla dorosłych

SZKOŁA POLICEALNA dla dorosłych SZKOŁA POLICEALNA dla dorosłych Kierunek kształcenia w zawodzie: dr inż. Janusz Walkowiak Przedmiot: I semestr Tematyka zajęć Ustalenie numeru identyfikacyjnego i odczytywanie danych z tablicy znamionowej

Bardziej szczegółowo

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

BADANIA ODZYSKU ENERGII HAMOWANIA POJAZDU O NAPĘDZIE HYBRYDOWYM

BADANIA ODZYSKU ENERGII HAMOWANIA POJAZDU O NAPĘDZIE HYBRYDOWYM BADANIA ODZYSKU ENERGII HAMOWANIA POJAZDU O NAPĘDZIE HYBRYDOWYM ANDRZEJ GAJEK 1, PIOTR STRZĘPEK 2 Politechnika Krakowska Streszczenie W artykule przedstawiono wyniki badań odzysku energii hamowania osobowego

Bardziej szczegółowo

ANALIZA KINEMATYCZNA ZŁOŻONYCH KONSTRUKCYJNIE PRZEKŁADNI OBIEGOWYCH DO ELEKTROMECHANICZNYCH ZESPOŁÓW NAPĘDOWYCH Z ZASTOSOWANIEM WZORÓW WILLISA

ANALIZA KINEMATYCZNA ZŁOŻONYCH KONSTRUKCYJNIE PRZEKŁADNI OBIEGOWYCH DO ELEKTROMECHANICZNYCH ZESPOŁÓW NAPĘDOWYCH Z ZASTOSOWANIEM WZORÓW WILLISA Maszyny Elektryczne - Zeszyty Problemowe Nr 1/2019 (121) 37 Szczepan Opach Instytut Napędów i Maszyn Elektrycznych KOMEL, Katowice ANALIZA KINEMATYCZNA ZŁOŻONYCH KONSTRUKCYJNIE PRZEKŁADNI OBIEGOWYCH DO

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika

Bardziej szczegółowo

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego

Bardziej szczegółowo

UNIWERSALNY MODEL SYMULACYJNY UKŁADU NAPĘDOWEGO PROTOTYPU SAMOCHODU ELEKTRYCZNEGO ELV001

UNIWERSALNY MODEL SYMULACYJNY UKŁADU NAPĘDOWEGO PROTOTYPU SAMOCHODU ELEKTRYCZNEGO ELV001 Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Dominik ADAMCZYK*, Michał MICHNA*, Mieczysław RONKOWSKI* samochód elektryczny,

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Piotr BOGUSZ*, Mariusz KORKOSZ*, Jan PROKOP* silnik reluktancyjny przełączalny,

Bardziej szczegółowo

Konfiguracja układów napędowych. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu

Konfiguracja układów napędowych. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Konfiguracja układów napędowych Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Ogólna klasyfikacja układów napędowych Koła napędzane Typ układu Opis Przednie Przedni zblokowany Silnik i wszystkie

Bardziej szczegółowo

ANALIZA UKŁADU NAPĘDOWEGO POJAZDU HYBRYDOWEGO Z SILNIKIEM INDUKCYJNYM

ANALIZA UKŁADU NAPĘDOWEGO POJAZDU HYBRYDOWEGO Z SILNIKIEM INDUKCYJNYM Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 70 Politechniki Wrocławskiej Nr 70 Studia i Materiały Nr 34 2014 Michał ZACHARIASZ*, Mateusz DYBKOWSKI* DTC-SVM, napęd elektryczny, pojazd

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 5) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA:

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki Praca magisterska Model dynamiki wzdłuŝnej samochodu w czasie rzeczywistym

Bardziej szczegółowo

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zbigniew Szulc 1. Wstęp Wentylatory dużej mocy (powyżej 500 kw stosowane

Bardziej szczegółowo

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM 51 Maciej Gwoździewicz, Jan Zawilak Politechnika Wrocławska, Wrocław PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM REVIEW OF SINGLE-PHASE LINE

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia I stopnia. Teoria ruchu pojazdów Rodzaj przedmiotu:

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia I stopnia. Teoria ruchu pojazdów Rodzaj przedmiotu: Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia I stopnia Przedmiot: Teoria ruchu pojazdów Rodzaj przedmiotu: Podstawowy/obowiązkowy Kod przedmiotu: MBM S 0 6 59-3 _0 Rok: III Semestr:

Bardziej szczegółowo

Ćwiczenie nr X ANALIZA DRGAŃ SAMOWZBUDNYCH TYPU TARCIOWEGO

Ćwiczenie nr X ANALIZA DRGAŃ SAMOWZBUDNYCH TYPU TARCIOWEGO Ćwiczenie nr X ANALIZA DRGAŃ SAMOWZBUDNYCH TYPU TARCIOWEGO Celem ćwiczenia jest zbadanie zachowania układu oscylatora harmonicznego na taśmociągu w programie napisanym w środowisku Matlab, dla następujących

Bardziej szczegółowo

Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym

Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym Tytuł projektu : Nowatorskie rozwiązanie napędu pojazdu elektrycznego z dwustrefowym silnikiem BLDC Umowa Nr NR01 0059 10 /2011 Czas realizacji : 2011-2013 Idea napędu z silnikami BLDC z przełączalną liczbą

Bardziej szczegółowo

Modelowanie sterowania mechanizmem różnicowym międzyosiowym

Modelowanie sterowania mechanizmem różnicowym międzyosiowym Modelowanie sterowania mechanizmem różnicowym międzyosiowym Andrzej Dębowski Wojskowa Akademia Techniczna, Instytut Pojazdów Mechanicznych i Transportu Gen. Sylwestra Kaliskiego, 200-908 Warszawa, Polska

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i klasyfikacja silników bezszczotkowych 1.2. Moment elektromagnetyczny

Bardziej szczegółowo

Zasady doboru mikrosilników prądu stałego

Zasady doboru mikrosilników prądu stałego Jakub Wierciak Zasady doboru Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Typowy profil prędkości w układzie napędowym (Wierciak

Bardziej szczegółowo

Zadania i funkcje skrzyń biegów. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu

Zadania i funkcje skrzyń biegów. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Zadania i funkcje skrzyń biegów Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Zadania skrzyni biegów Skrzynia biegów umożliwia optymalne wykorzystanie mocy silnika. Każdy silnik ma pewien

Bardziej szczegółowo

SYSTEMY SYSTEM KONTR OLI TRAKCJI OLI ukła uk dy dy be zpiec zeńs zpiec zeńs a tw czyn czyn

SYSTEMY SYSTEM KONTR OLI TRAKCJI OLI ukła uk dy dy be zpiec zeńs zpiec zeńs a tw czyn czyn SYSTEMY KONTROLI TRAKCJI układy bezpieczeństwa czynnego Gdańsk 2009 Układy hamulcowe w samochodach osobowych 1. Roboczy (zasadniczy) układ hamulcowy cztery koła, dwuobwodowy (pięć typów: II, X, HI, LL,

Bardziej szczegółowo

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Laboratorium nr 4: Układ sterowania silnika obcowzbudnego prądu stałego z regulatorem PID 1. Wprowadzenie Przedmiotem rozważań jest układ automatycznej

Bardziej szczegółowo

Układ kierowniczy. Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek:

Układ kierowniczy. Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek: 1 Układ kierowniczy Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek: Definicja: Układ kierowniczy to zbiór mechanizmów umożliwiających kierowanie pojazdem, a więc utrzymanie

Bardziej szczegółowo

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 Spis treści 3 Wykaz ważniejszych oznaczeń...9 Przedmowa... 12 1. Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 1.1.. Zasada działania i klasyfikacja silników bezszczotkowych...14 1.2..

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013 Jerzy Zaborowski 1 MODELOWANIE UKŁADU WÓZKA NAPĘDOWEGO LOKOMOTYWY ELEKTRYCZNEJ PRZY POMOCY PAKIETU ADAMS/RAIL 1. Wstęp W niniejszym artykule zostanie przedstawiony

Bardziej szczegółowo

Zastosowanie przekładni wielobiegowej w samochodach elektrycznych

Zastosowanie przekładni wielobiegowej w samochodach elektrycznych SEKRECKI Michał 1 Zastosowanie przekładni wielobiegowej w samochodach elektrycznych WSTĘP Obecnie duża część największych producentów samochodów posiada w swojej ofercie przynajmniej jeden samochód elektryczny.

Bardziej szczegółowo

KARTY POMIAROWE DO BADAŃ DROGOWYCH

KARTY POMIAROWE DO BADAŃ DROGOWYCH Katedra Pojazdów i Sprzętu Mechanicznego Laboratorium KARTY POMIAROWE DO BADAŃ DROGOWYCH Zawartość 5 kart pomiarowych Kielce 00 Opracował : dr inż. Rafał Jurecki str. Strona / Silnik Charakterystyka obiektu

Bardziej szczegółowo

ANALIZA WYBRANYCH WŁASNOŚCI TRAKCYJNYCH SAMOCHODU FIAT PANDA Z HYBRYDOWYM UKŁADEM NAPĘDOWYM

ANALIZA WYBRANYCH WŁASNOŚCI TRAKCYJNYCH SAMOCHODU FIAT PANDA Z HYBRYDOWYM UKŁADEM NAPĘDOWYM Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2016 (111) 101 Andrzej Lechowicz, Andrzej Augustynowicz Politechnika Opolska, Opole ANALIZA WYBRANYCH WŁASNOŚCI TRAKCYJNYCH SAMOCHODU FIAT PANDA Z HYBRYDOWYM

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA Zeszyty Problemowe Maszyny Elektryczne Nr 4/2014 (104) 89 Zygfryd Głowacz, Henryk Krawiec AGH Akademia Górniczo-Hutnicza, Kraków ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU

Bardziej szczegółowo

Układy napędowe i magazyny energii w pojazdach elektrycznych oraz systemy do ładowania baterii

Układy napędowe i magazyny energii w pojazdach elektrycznych oraz systemy do ładowania baterii Układy napędowe i magazyny energii w pojazdach elektrycznych oraz systemy do ładowania baterii Lech M. Grzesiak Plan prezentacji Ø Wprowadzenie Ø Magazyny energii Ø Maszyny elektryczne w napędach pojazdów

Bardziej szczegółowo

Badania maszyny reluktancyjnej przełączalnej, przeznaczonej do napędu lekkiego pojazdu elektrycznego

Badania maszyny reluktancyjnej przełączalnej, przeznaczonej do napędu lekkiego pojazdu elektrycznego Badania maszyny reluktancyjnej przełączalnej, przeznaczonej do napędu lekkiego pojazdu elektrycznego Piotr Bogusz, Mariusz Korkosz, Jan Prokop 1. Wstęp Do napędu lekkich pojazdów elektrycznych przez długi

Bardziej szczegółowo

Analiza modelu napędu pojazdu elektrycznego w programie MATLAB/Simulink

Analiza modelu napędu pojazdu elektrycznego w programie MATLAB/Simulink GRZESIKIEWICZ Wiesław ZBICIAK Artur MICHALCZYK Rafał 3 Analiza modelu napędu pojazdu elektrycznego w programie MATLAB/Simulink WSTĘP Przedmiotem pracy jest prezentacja i implementacja numeryczna matematycznego

Bardziej szczegółowo

Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia

Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia WALUŚ Konrad J. 1 POLASIK Jakub 2 OLSZEWSKI Zbigniew 3 Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia WSTĘP Parametry pojazdów samochodowych

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PROGRAM SZKOLENIA

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PROGRAM SZKOLENIA PROGRAM SZKOLENIA z zakresu doskonalenia techniki kierowania samochodem osobowym w ramach projektu pt. Droga do bezpiecznej służby realizowanego w ramach Programu Operacyjnego Kapitał Ludzki, Priorytet

Bardziej szczegółowo

Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego

Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Jakub Wierciak Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

ZASTOSOWANIE PRZEKŁADNI HYDROKINETYCZNEJ DO REDUKCJI WIBRACJI HYBRYDOWEGO UKŁADU NAPĘDOWEGO

ZASTOSOWANIE PRZEKŁADNI HYDROKINETYCZNEJ DO REDUKCJI WIBRACJI HYBRYDOWEGO UKŁADU NAPĘDOWEGO MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 197-204, Gliwice 2011 ZASTOSOWANIE PRZEKŁADNI HYDROKINETYCZNEJ DO REDUKCJI WIBRACJI HYBRYDOWEGO UKŁADU NAPĘDOWEGO GABRIEL KOST, ANDRZEJ NIERYCHLOK, WACŁAW

Bardziej szczegółowo

RATING FORCES GRIP AND DRIVING AND ACCELERATIONS OF THE CAR WITH DRIVE DIFFERENT CONFIGURATION

RATING FORCES GRIP AND DRIVING AND ACCELERATIONS OF THE CAR WITH DRIVE DIFFERENT CONFIGURATION Journal of KONBiN ISSN 1895-8281 DOI 10.1515/jok-2015-0057 ESSN 2083-4608 RATING FORCES GRIP AND DRIVING AND ACCELERATIONS OF THE CAR WITH DRIVE DIFFERENT CONFIGURATION OCENA SIŁ PRZYCZEPNOŚCI I NAPĘDOWYCH

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

EKOLOGICZNE NAPĘDY POJAZDÓW Z UKŁADAMI ODZYSKU ENERGII

EKOLOGICZNE NAPĘDY POJAZDÓW Z UKŁADAMI ODZYSKU ENERGII Dominik ŁYSKOJĆ, Stanisław DUER, Konrad ZAJKOWSKI, Stanisław SOKOŁOWSKI, Bogdan WILCZYŃSKI EKOLOGICZNE NAPĘDY POJAZDÓW Z UKŁADAMI ODZYSKU ENERGII Streszczenie W artykule przedstawiono zastosowania w pojazdach

Bardziej szczegółowo

ZAAWANSOWANE ROZWIĄZANIA TECHNICZNE I BADANIA EKSPLOATACYJNE MIEJSKIEGO SAMOCHODU OSOBOWEGO Z NAPĘDEM ELEKTRYCZNYM e-kit

ZAAWANSOWANE ROZWIĄZANIA TECHNICZNE I BADANIA EKSPLOATACYJNE MIEJSKIEGO SAMOCHODU OSOBOWEGO Z NAPĘDEM ELEKTRYCZNYM e-kit Instytut Napędów i Maszyn Elektrycznych KOMEL ZAAWANSOWANE ROZWIĄZANIA TECHNICZNE I BADANIA EKSPLOATACYJNE MIEJSKIEGO SAMOCHODU OSOBOWEGO Z NAPĘDEM ELEKTRYCZNYM e-kit dr hab. inż. Jakub Bernatt, prof.

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d

Bardziej szczegółowo

Adam DANIELCZOK Andrzej BIENIEK Ireneusz HETMAŃCZYK. 1. Wprowadzenie. 2. Analiza teoretyczna

Adam DANIELCZOK Andrzej BIENIEK Ireneusz HETMAŃCZYK. 1. Wprowadzenie. 2. Analiza teoretyczna Adam DANIELCZOK Andrzej BIENIEK Ireneusz HETMAŃCZYK PORÓWNANIE PRZEBIEGU PROCESU ROZPĘDZANIA PRZY CIĄGŁEJ I STOPNIOWEJ ZMIANIE PRZEŁOŻENIA W SAMOCHODZIE OSOBOWYM COMPARISON OF PASSENGER CAR ACCELERATION

Bardziej szczegółowo

1.5 Diesel 88 kw (120 KM) Parametry silników Pojemność (cm³)

1.5 Diesel 88 kw (120 KM) Parametry silników Pojemność (cm³) Dane techniczne, 31 maja 2019 Dane techniczne 75 kw (102 KM) 88 kw (120 KM) 110 kw (150 KM) 130 kw (177 KM) Parametry silników Pojemność (cm³) 1 499 1 499 1 997 1 997 Moc kw (KM) 75 88 110 130 Moc maksymalna

Bardziej szczegółowo

BADANIA MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ PRZEZNACZONEJ DO NAPĘDU LEKKIEGO POJAZDU ELEKTRYCZNEGO

BADANIA MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ PRZEZNACZONEJ DO NAPĘDU LEKKIEGO POJAZDU ELEKTRYCZNEGO Maszyny Elektryczne - Zeszyty Problemowe Nr 2/2018 (118) 53 Piotr Bogusz, Mariusz Korkosz, Jan Prokop Politechnika Rzeszowska, Rzeszów BADANIA MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ PRZEZNACZONEJ DO NAPĘDU

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji

Bardziej szczegółowo

UKŁAD HAMOWANIA ELEKTRYCZNEGO DO BADANIA NAPĘDÓW

UKŁAD HAMOWANIA ELEKTRYCZNEGO DO BADANIA NAPĘDÓW Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I Ł Ó D Z K I E J Nr 1108 ELEKTRYKA, z. 123 2011 WOJCIECH BŁASIŃSKI, ZBIGNIEW NOWACKI Politechnika Łódzka Instytut Automatyki UKŁAD HAMOWANIA ELEKTRYCZNEGO

Bardziej szczegółowo

Pojazdy samochodowe - opis przedmiotu

Pojazdy samochodowe - opis przedmiotu Pojazdy samochodowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Pojazdy samochodowe Kod przedmiotu 06.1-WM-MiBM-KiEP-D-01_15W_pNadGenE5EFV Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

Analiza zachowania koła podczas rozpędzania i hamowania na różnych rodzajach nawierzchni prowadzona w środowisku MATLAB/SIMULINK

Analiza zachowania koła podczas rozpędzania i hamowania na różnych rodzajach nawierzchni prowadzona w środowisku MATLAB/SIMULINK SPUSTEK Henryk 1, RYCZYŃSKI Jacek 2 MALINOWSKI Robert 3 Analiza zachowania koła podczas rozpędzania i hamowania na różnych rodzajach nawierzchni prowadzona w środowisku MATLAB/SIMULINK WSTĘP Podczas ruchu

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 2

Mikrosilniki prądu stałego cz. 2 Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,

Bardziej szczegółowo

OGRANICZENIA PRACY SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO PRZY ZALEŻNYM STEROWANIU PRĄDOWYM

OGRANICZENIA PRACY SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO PRZY ZALEŻNYM STEROWANIU PRĄDOWYM Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2017 (115) 1 Piotr Bogusz Politechnika Rzeszowska OGRANICZENIA PRACY SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO PRZY ZALEŻNYM STEROWANIU PRĄDOWYM CONSTRAINTS OF

Bardziej szczegółowo

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

WPŁYW PARAMETRÓW ZAKŁÓCAJĄCYCH NA PRACĘ SKRZYNI BIEGÓW WYPOSAŻONEJ W PRZEKŁADNIĘ CVT

WPŁYW PARAMETRÓW ZAKŁÓCAJĄCYCH NA PRACĘ SKRZYNI BIEGÓW WYPOSAŻONEJ W PRZEKŁADNIĘ CVT Bartosz RADZYMIŃSKI 1, Zbigniew PAWELSKI 2 1 Politechnika Łódzka, bartosz.radzyminski@p.lodz.pl 2 Politechnika Łódzka, zbigniew.pawelski@p.lodz.pl WPŁYW PARAMETRÓW ZAKŁÓCAJĄCYCH NA PRACĘ SKRZYNI BIEGÓW

Bardziej szczegółowo

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ 53/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ J. STRZAŁKO

Bardziej szczegółowo

Struktury sterowania dwusilnikowych pojazdów elektrycznych

Struktury sterowania dwusilnikowych pojazdów elektrycznych Struktury sterowania dwusilnikowych pojazdów elektrycznych Janusz Hetmańczyk, Krzysztof Krykowski Obiektem badań omówionych w artykule są struktury sterowania dwusilnikowych pojazdów elektrycznych małej

Bardziej szczegółowo

PL B1. Zespół napędowy pojazdu mechanicznego, zwłaszcza dla pojazdu przeznaczonego do użytkowania w ruchu miejskim

PL B1. Zespół napędowy pojazdu mechanicznego, zwłaszcza dla pojazdu przeznaczonego do użytkowania w ruchu miejskim PL 224683 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224683 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 410139 (22) Data zgłoszenia: 14.11.2014 (51) Int.Cl.

Bardziej szczegółowo

Opracował: mgr inż. Marcin Wieczorek

Opracował: mgr inż. Marcin Wieczorek Opracował: mgr inż. Marcin Wieczorek Jeżeli moment napędowy M (elektromagnetyczny) silnika będzie większy od momentu obciążenia M obc o moment strat jałowych M 0 czyli: wirnik będzie wirował z prędkością

Bardziej szczegółowo

1.5 Diesel 88 kw (120 KM)

1.5 Diesel 88 kw (120 KM) Dane techniczne, 31 maja 2019 Dane techniczne 75 kw (102 KM) 88 kw (120 KM) 90 kw (122 KM) 110 kw 130 kw (177 KM) Parametry silników Pojemność (cm³) 1 499 1 499 1 997 1 997 1 997 Moc kw (KM) 75 (102) 88

Bardziej szczegółowo

Rafał WRONA. 1. Wstęp. 2. Analityczne metody oceny procesu rozpędzania i kryteria jakości

Rafał WRONA. 1. Wstęp. 2. Analityczne metody oceny procesu rozpędzania i kryteria jakości Rafał WRONA WYZNACZANIE OPTYMALNYCH ALGORYTMÓW STEROWANIA AUTOMATYCZNEJ PRZEKŁADNI HYDROMECHANICZNEJ AUTOBUSU MIEJSKIEGO DETERMINING OPTIMUM CONTROL ALGORITHMS OF CITY BUS AUTOMATIC HYDROMECHANICAL GEAR

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń 11. Przedmowa 14

Spis treści. Wykaz ważniejszych oznaczeń 11. Przedmowa 14 Spis treści Wykaz ważniejszych oznaczeń 11 Przedmowa 14 Rozdział 1. Ogólna charakterystyka wypadków drogowych 17 1.1. Pojęcia i określenia 17 1.2. Klasyfikacja zderzeń 18 1.3. Statystyka wypadków drogowych

Bardziej szczegółowo

PRACA DYPLOMOWA Magisterska

PRACA DYPLOMOWA Magisterska POLITECHNIKA WARSZAWSKA Wydział Samochodów i Maszyn Roboczych PRACA DYPLOMOWA Magisterska Studia stacjonarne dzienne Semiaktywne tłumienie drgań w wymuszonych kinematycznie układach drgających z uwzględnieniem

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI

OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI Michał Majchrowicz *, Wiesław Jażdżyński ** OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI 1. WSTĘP Silniki reluktancyjne przełączalne ze względu na swoje liczne

Bardziej szczegółowo

ANALIZA SYMULACYJNA ZMODYFIKOWANEGO MODELU UKŁADU NAPĘDOWEGO SAMOCHODU Z SILNIKIEM SPALINOWYM

ANALIZA SYMULACYJNA ZMODYFIKOWANEGO MODELU UKŁADU NAPĘDOWEGO SAMOCHODU Z SILNIKIEM SPALINOWYM MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 44, s. 253-264, Gliwice 2012 ANALIZA SYMULACYJNA ZMODYFIKOWANEGO MODELU UKŁADU NAPĘDOWEGO SAMOCHODU Z SILNIKIEM SPALINOWYM RAFAŁ STROJNY, ROBERT PIOTROWSKI Wydział

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Modelowanie synchronizatora do analizy warunków pracy i sterowania skrzynią biegów w układzie napędowym samochodu elektrycznego 4

Modelowanie synchronizatora do analizy warunków pracy i sterowania skrzynią biegów w układzie napędowym samochodu elektrycznego 4 SEKRECKI Michał 1 KRAWCZYK Paweł 2 KOPCZYŃSKI Artur 3 Modelowanie synchronizatora do analizy warunków pracy i sterowania skrzynią biegów w układzie napędowym samochodu elektrycznego 4 WSTĘP Niniejsze opracowanie

Bardziej szczegółowo

Elektrotechnika i elektronika pojazdów samochodowych : podręcznik dla technikum / Jerzy Ocioszyński. wyd. 11. Warszawa, 2010.

Elektrotechnika i elektronika pojazdów samochodowych : podręcznik dla technikum / Jerzy Ocioszyński. wyd. 11. Warszawa, 2010. Elektrotechnika i elektronika pojazdów samochodowych : podręcznik dla technikum / Jerzy Ocioszyński. wyd. 11. Warszawa, 2010 Spis treści Wstęp 7 1. Wiadomości podstawowe z elektrotechniki i elektroniki

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2015 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny Politechnika Śląska Wydział Mechaniczny Technologiczny Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Praca dyplomowa inżynierska Temat pracy Symulacja komputerowa działania hamulca tarczowego

Bardziej szczegółowo

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne

Bardziej szczegółowo

CELOWOŚĆ WYKORZYSTANIA I PROBLEMATYKA STEROWANIA HAMULCA CIERNEGO NA STANOWISKU DO SYMULACJI ODTWARZAJĄCEJ DYNAMIKI UKŁADU NAPĘDOWEGO

CELOWOŚĆ WYKORZYSTANIA I PROBLEMATYKA STEROWANIA HAMULCA CIERNEGO NA STANOWISKU DO SYMULACJI ODTWARZAJĄCEJ DYNAMIKI UKŁADU NAPĘDOWEGO CELOWOŚĆ WYKORZYSTANIA I PROBLEMATYKA STEROWANIA HAMULCA CIERNEGO NA STANOWISKU DO SYMULACJI ODTWARZAJĄCEJ DYNAMIKI UKŁADU NAPĘDOWEGO GRZEGORZ ŚLASKI 1 Politechnika Poznańska Streszczenie W artykule została

Bardziej szczegółowo

BADANIE SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO (SRM) CZĘŚĆ 2 PRACA DYNAMICZNA SILNIKA

BADANIE SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO (SRM) CZĘŚĆ 2 PRACA DYNAMICZNA SILNIKA Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Małej Mocy BADANIE SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO (SRM) CZĘŚĆ 2 PRACA DYNAMICZNA SILNIKA Warszawa 2015 1.

Bardziej szczegółowo

PORÓWNANIE WYNIKÓW BADAŃ DROGOWYCH Z ICH SYMULACJĄ PROGRAMEM V-SIM NA PRZYKŁADZIE EKSTREMALNEGO HAMOWANIA SAMOCHODU WYPOSAŻONEGO W UKŁAD ABS

PORÓWNANIE WYNIKÓW BADAŃ DROGOWYCH Z ICH SYMULACJĄ PROGRAMEM V-SIM NA PRZYKŁADZIE EKSTREMALNEGO HAMOWANIA SAMOCHODU WYPOSAŻONEGO W UKŁAD ABS Robert Janczur PORÓWNANIE WYNIKÓW BADAŃ DROGOWYCH Z ICH SYMULACJĄ PROGRAMEM V-SIM NA PRZYKŁADZIE EKSTREMALNEGO HAMOWANIA SAMOCHODU WYPOSAŻONEGO W UKŁAD ABS Streszczenie W artykule przedstawiono wyniki

Bardziej szczegółowo

Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych

Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Studia Magisterskie IIgo stopnia Specjalności: PTiB, EiNE, APiAB, Rok I Opracował: dr hab. inż. Wiesław Jażdżynski, prof.nz.agh Kraków,

Bardziej szczegółowo

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

MODELOWANIE ZŁOŻONEGO NAPĘDU MOTOCYKLA

MODELOWANIE ZŁOŻONEGO NAPĘDU MOTOCYKLA Łukasz JASIŃSKI, Zbigniew BUDNIAK, Andrzej KARACZUN MODELOWANIE ZŁOŻONEGO NAPĘDU MOTOCYKLA Streszczenie W artykule przedstawiono przykład zastosowania oryginalnej konstrukcji złożonego napędu w motocyklu.

Bardziej szczegółowo

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2 SPIS TREŚCI Przedmowa... 10 1. Tłumienie drgań w układach mechanicznych przez tłumiki tarciowe... 11 1.1. Wstęp... 11 1.2. Określenie modelu tłumika ciernego drgań skrętnych... 16 1.3. Wyznaczanie rozkładu

Bardziej szczegółowo

Bezczujnikowe sterowanie SPMSM

Bezczujnikowe sterowanie SPMSM XLV SESJA STUDENCKICH KÓŁ NAUKOWYCH KOŁO NAUKOWE MAGNESIK Bezczujnikowe sterowanie SPMSM ] Wykonał: Miłosz Handzel Opiekun naukowy: dr hab. inż. Wiesław Jażdżyński, prof. n. AGH PMSM (ys. 1) kontra IM

Bardziej szczegółowo