Miernictwo Elektroniczne. Katedra Elektroniki C3 515
|
|
- Jerzy Bogumił Stasiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Miernictwo Elektroniczne dr hab. inż. Łukasz Śliwczyński Katedra Elektroniki C3 515
2 Charakterystyka przedmiotu wykładowca dr hab. inż. Łukasz Śliwczyński tel. (617) C3 515 wykład 18 godzin ( ) 9 wykładów, 2 x w tygodniu laboratorium 14 godzin ( ); laboratorium wprowadzające + 5 ćwiczeń prowadzący: Witold Skowroński, Łukasz Buczek, Łukasz Śliwczyński termin odróbczy: do ustalenia z prowadzącym laboratorium strona internetowa:
3 Zasady uzyskania zaliczenia aby otrzymać pozytywną ocenę z przedmiotu należy zaliczyć laboratorium oraz zdać test z wykładu (ok. 20 min) (propozycja lub ) ocena końcowa jest obliczana jako średnia ważona: OK = 0.7*O Lab + 0.3*O Test (zgodnie z RS AGH OK > 50% aby otrzymać zaliczenie) Zaliczenie laboratorium otrzymuje się na podstawie zaliczenia wszystkich ćwiczeń laboratoryjnych. Brak przygotowania do zajęć będzie skutkować niedopuszczeniem do odrabiania ćwiczenia. Ocena z laboratorium jest obliczana jako średnia ważona: O Lab = 0.7*O Opracowanie + 0.3*O Przygotowanie Aktywność na zajęciach może być wykorzystana przez prowadzącego do podniesienia oceny z laboratorium.
4 Czego chcemy się nauczyć? metrologia teoretyczna jednostki miar systemy jednostek skale pomiarowe analiza niepewności prawna jednolitość i legalność narzędzi pomiarowych przepisy prawne (ustawy) normy warunki techniczne stosowana budowa i wykorzystanie przyrządów pomiarowych pomiary wielkości w różnych obszarach działalności ludzkiej BIPM Bureau international des poids et mesures NMI National Metrology Institution GUM Główny Urzad Miar pomiar porównanie wzorzec ISO International Organization for Standarization IEC International Electrotechnical Commission PKN Polski Komitet Normalizacyjny miernictwo elektroniczne - pomiary wielkości elektrycznych - pomiary wielkości nieelektrycznych metodami elektronicznymi - elektroniczne przyrządy pomiarowe
5 Program wykładu 1) wprowadzenie: pomiar, jednostki, wzorce 2) sygnały i ich parametry; pomiary podstawowych wielkości 3) pomiary i przyrządy cyfrowe 4) pomiar wielkości nieelektrycznych: temperatura, siła, masa, ciśnienie 5) oscyloskop i pomiary oscyloskopowe (2 wykłady) 6) pomiar impedancji: metody pośrednie (techniczne) i mostkowe 7) błędy i niepewność pomiaru
6 Co to jest pomiar i do czego jest potrzebny? pomiar: proces ustalenia na podstawie eksperymentu wartości wielkości, która może w rozsądny sposób przypisana do procesu, zjawiska lub przedmiotu International vocabulary of metrology Basic and general concepts and associated terms (VIM) analiza: - weryfikacja teorii - konstruowanie modeli empirycznych - określenie parametrów urządzeń, elementów monitorowanie: - określenie wartości wielkości, np.: temperatury, napięcia, mocy... - konstruowanie/ uruchamianie aparatury sterowanie: - określenie wartości wielkości, w celu użycia jej w układzie sterowania (w pętli zamkniętej lub otwartej) uwagi: - pomiar porównanie z wzorcem i określenie wzajemnych relacji - porównanie bezpośrednie lub pośrednie - zakładamy, że porównanie jest powtarzalne i odtwarzalne - wykorzystujemy odpowiedni sprzęt i procedury pomiarowe - wiemy, jak ich używać - zapewnione są odpowiednie warunki pomiaru - mamy świadomość, że pomimo starań każdy pomiar jest obarczony niepewnością - wiemy, jak interpretować wynik pomiaru pomiar to znacznie więcej niż tylko odczytanie jakichś cyfr z wyświetlacza
7 Wynik pomiaru Q = Q [Q] Q wartość wielkości (ang. quantity value) Q - wartość liczbowa (ang. numerical value) [Q] jednostka wielkości (ang. unit) Międzynarodowy układ jednostek miar SI (1960) jednostki podstawowe wielkość symbol jednostka symbol długość l, h, r, x metr m masa m kilogram kg czas t sekunda s natężenie prądu I, i amper A temperatura T kelwin K ilość substancji n mol mol światłość I v kandela cd jednostki pochodne α χ γ 2 [ Q ] = [ ka B C ] np.: [ N] = [ kg m s ]
8 Zapis wyników pomiarów przedrostki SI wartość nazwa symbol wartość nazwa symbol 10 1 deka da 10-1 decy d 10 2 hekto h 10-2 centy c 10 3 kilo k 10-3 mili m 10 6 mega M 10-6 mikro µ 10 9 giga G 10-9 nano n tera T piko p peta P femto f exa E atto a zeta Z zepto z jota Y jokto y notacja wykładnicza (naukowa) x = ±M 10 E ; M [1,10); E C np.: czy 10 kω = Ω??? ± 1% U = 100 Ω Ω cyfry znaczące Zapis R = 10 kω może sugerować wartość 9.5 kω < R < 10.5 kω, czyli niepewność ±5%.
9 Jednostki pochodne źródło:
10 Wzorce jednostek miar (etalony) realizacja definicji wielkości, posiadająca określoną wartość wraz z określoną niepewnością (VIM) metrologia naukowa wzorzec międzynarodowy BIPM precyzja dokładność narodowy wzorzec pierwotny NMI (np. GUM) wzorce wtórne NMI wzorzec pierwotny (ang. primary measurement standard) wzorzec ustalony bez odwoływania się do innych wzorców tej samej kategorii wzorzec wtórny (ang. secondary measurement standard) wzorzec ustalony przez kalibrację względem wzorca pierwotnego metrologia prawna wzorce robocze NMI wzorzec roboczy (ang. working measurement standard) wzorzec ustalony przez kalibrację względem wzorca pierwotnego, używany do kalibracji aparatury
11 Wzorzec masy - krótka historia starożytna Grecja, p.n.e. ważenie sylfionu pod nadzorem króla BIPM, teraźniejszość w sumie niewiele się zmieniło... ale tylko do 20 maja 2019 Chiny, cesarstwo Quin, p.n.e. źródło: hellenicaworld.com źródło: BIPM źródło: ajaonline.org
12 20 maj 2019 redefinicja jednostek podstawowych układu SI kilogram: 1 kilogram [kg] to taka masa, przy której wartość stałej Plancka wynosi dokładnie J s (kg m 2 s -1, metr [m] i sekunda [s] są wyznaczane w oparciu o prędkość światła oraz przejście nadsubtelne w atomie cezu Cs 133 ) Stary wzorzec kilograma zmienia się w tzw. wagę Kibble a (poprzednio nazywany wat ballance ) źródło: NPL, Wielka Brytania źródło: BIPM
13 Jednostki definicje, realizacja, niepewność czas: 1 sekunda [s] jest to czas trwania okresów promieniowania odpowiadających przejściu pomiędzy dwoma stanami nadsubtelnymi poziomu podstawowego atomu cezu Cs 133 wzorzec cezowy 5071A (Symmetricom, dawniej HP) niepewność 5x x10-12 zegary cezowe w PTB Physikalish-Technische Bundesanstalt Brunszwik, Niemcy niepewność 1.2x x10-9 s/doba 1 s/2.7x10 6 lat fontanna cezowa 1x10-15
14 Jednostki definicje, realizacja, niepewność natężenie prądu elektrycznego: 1 amper [A] jest to natężenie prądu, który płynąc w dwóch równoległych przewodach... odległych o 1 metr powoduje ich przyciąganie się siłą N na każdy metr długości (techniczna realizacja niemożliwa...) waga prądowa Rayleigha I W F 1 m F 2 F = K I 2 1 W ; I W F = F 1 F = m g 2 2 m g = K niepewność 6ppm 6x10-6 realizacja oparta o prawo Ohma 1ppm 1x10-6 E W I W istotna zmiana: 20 maja amper [A] to takie natężenie prądu, przy R W I =U W R W którym wartość ładunku elementarnego wynosi C (A s, przy czym sekunda jest wyznaczana w oparciu o przejście nadsubtelne w atomach cezu Cs 133 )
15 Jednostki definicje, realizacja, niepewność różnica potencjałów (napięcie): 1 wolt [V] jest to różnica potencjałów pomiędzy dwoma punktami przewodnika, gdy płynący przez niego prąd o natężeniu 1 A wydziela w nim moc równą 1 W. (1948) wykorzystanie (odwrotnego) efektu Josephsona (lata 90 XX w) I j = n f promieniowanie j m mikrofalowe 2 f m T=4.2K U j U h e n f = K j m K = GHz/V f j m = GHz U 20µ V... I j matryca ~ złącz Josephsona f m K j U j napięcia z zakresu V, niepewność ~10-10
16 Jednostki definicje, realizacja, niepewność rezystancja: 1 om [Ω] jest to rezystancja pomiędzy dwoma punktami przewodnika przez który płynie prąd 1A, wywołując spadek napięcia równy 1V realizacja wykorzystująca kwantowy efekt Halla I B niepewność ~10-9 U H gaz elektronowy 2-D rezystory wzorcowe 4-ro zaciskowe (Kelvina) zaciski napięciowe U X R W T~1K AlGaAs/GaAs heterozłącze zaciski prądowe UH RK R = = I n h R K = = 2 e = Ω stała von Klitzinga R H [Ω] T=1.3K; I=10µA źródło: LNE-SYRTE B [T] R H =R K /2 R X ~ zakres wartości: 1 Ω 20M Ω niepewność ~1 20 ppm stabilność 2 10 ppm/rok R X [Ω Ω]
17 Jednostki definicje, realizacja, niepewność pojemność elektryczna: 1 farad [F] jest to pojemność kondensatora na którego okładkach powstaje napięcie 1V po naładowaniu go ładunkiem 1C. kondensator liczalny Thompsona-Lamparda C 1 C C 2 ε0 C1 = C2 = C0 = ln2 = pf/m π niepewność ~0.02 ppm robocze wzorce pojemności źródło: PTB <10pF - dielektryk powietrzny <1µF - mika >1µF - siarczek polipropylenu niepewność % źródło: IET-LABS
18 Jednostki spoza układu SI jednostki do wyrażania stosunków neper [Np] q1 P1 L = ln [ Np] log [ B] q P 2 2 bel [B], decybel [db] 1 L = L 10 log [ db] P = w przypadku mocy P 2 X1 20 log X 2 [ db] dla innych wielkości np. I, U, R itp. L db L ( e Np ) = LNp 10 loge 4. LNp = 10 log 34 L Np L db 10 ln10 = ln10 = L L db 10 db logarytmiczne jednostki mocy - dbm P -10 P dbm = 10 log 1 mw dbm mw inne jednostki logarytmiczne (używane n.p. w akustyce) dbv napięcie względem 1 V dbu napięcie względem V
19 Uwagi o dbm-ach dodawanie decybeli i dbm-ów UWAGA! wynik będzie w ogólności zależał od rodzaju sygnałów i ich relacji fazowych zamiana na napięcie/prąd U sk = 1[mW] R 10 L P dbm 10 = R [kω] 10 L PdBm 10 R L = 50 Ω: 0 dbm U sk = 223,6 mv R L = 600 Ω: 0 dbm U sk = 774,6 mv (nie)dopasowanie impedancja źródła/obciążenia S R S P N R L dbm PM jeśli R S R L P M P N ; P M =P N + K 4RSRL korekcja: K = 10 log 2 R + R ( ) [db] R S = 50 Ω; R L = 600 Ω db R S = 600 Ω; R L = 50 Ω db S L
20 Wartość wielkości, wynik pomiaru Q = Q [Q] Q wartość wielkości (ang. quantity value) Q - wartość liczbowa (ang. numerical value) [Q] jednostka wielkości (ang. unit) Im????????? Q Q Q Re niepewność pomiaru (ang. uncertainty): przedział wokół wartości zmierzonej, w którym ze znaczącym prawdopodobieństwem (np.95%) znajduje się wartość prawdziwa mierzonej wielkości U U Pr = 0.95 przedział ufności Pr{x p (-U+x,x+U)} = 0.95 Pr{x p (-U+x,x+U)} = 0.05 wynik pomiaru zapisujemy: x x p x ± U
21 Dokładność, precyzja dokładny precyzyjny precyzyjny i dokładny dokładność (ang. measurement accuracy) stopień zgodności pomiędzy wartością mierzoną a wartością prawdziwą precyzja (ang. measurement precission) stopień zgodności pomiędzy wynikami uzyskanymi przy wielokrotnym pomiarze tej samej wielkości prawdziwość (ang. measurement trueness) stopień zgodności pomiędzy średnią z wyników wielu pomiarów tej samej wielkości oraz wartością prawdziwą
22 Metody pomiarowe (VIM), wynik pomiaru bezpośrednia (ang. direct) wartość wielkości mierzonej uzyskujemy bez konieczności dokonywania obliczeń, np.: pomiar napięcia woltomierzem; pośrednia (ang. indirect) wartość wielkości uzyskujemy mierząc bezpośrednio inne wielkości, od których w znany sposób zależy wielkość poszukiwana i wykonując odpowiednie obliczenia, np.: pomiar rezystancji metodą techniczną lub wyznaczanie obwodu koła na podstawie pomiaru jego średnicy; A = π d ππππ... x ddd rrrr... rrrr... +rrrr... zzzzzz... Postępowanie uproszczone: dodawanie/odejmowanie: zachowujemy w wyniku tyle cyfr po przecinku dziesiętnym, ile ma najmniej dokładny składnik mnożenie/dzielenie zachowujemy tyle cyfr znaczących, ile jest w najmniej dokładnym czynniku potęgowanie/pierwiastkowanie zachowujemy tyle cyfr znaczących, ile jest w liczbie poddawanej operacji Zagadnienie to będzie omówione dokładniej podczas wykładu traktującego o wyznaczaniu niepewności pomiarów
23 Podsumowanie - pomiar porównanie z wzorcem i określenie wzajemnych relacji - porównanie bezpośrednie lub pośrednie - zakładamy, że porównanie jest powtarzalne i odtwarzalne - wykorzystujemy odpowiedni sprzęt i procedury pomiarowe - wiemy, jak ich używać - zapewnione są odpowiednie warunki pomiaru - mamy świadomość, że pomimo starań każdy pomiar jest obarczony niepewnością - wiemy, jak interpretować wynik pomiaru błędy grube uszkodzone przyrządy (kable) pomiary multimetrem źle nastawionym ampery, omy itp... multimetry bateryjne
24 Literatura/materiały źródłowe Literatura w języku polskim S. Tumański: Technika Pomiarowa, WNT, 2013 A. Zięba: Analiza danych w naukach ścisłych i technice, PWN, 2013 J. Dusza, G. Gortat, A. Leśniewski: Podstawy miernictwa, Oficyna Wydawnicza Politechniki Warszawskiej, 2007 A. Kamieniecki: Współczesny oscyloskop, btc, 2009 A. Zatorski, R. Sroka: Podstawy Metrologii Elektrycznej, Wydawnictwa AGH, 2011 J. Arendarski: Niepweność pomiarów, Oficyna Wydawnicza Politechniki Warszawskiej, 2003 Literatura w języku angielskim S. Tumański: Principles of Electrical Measurements, Taylor & Francis, 2005 R.A. Witte (Agilent Technologies): Electronic Test Instruments: Analog and Digital Measurements, Prentice Hall, 2002 SI Units Brochure: The NIST Reference on Constants, Units and Uncertainty International Vocabulary of Metrology (VIM): R.A. Witte (Agilent Technologies): Spectrum & Network Measurements, Prentice Hall, 1993 A.K. Ghosh: Introduction to Measurements and Instrumentation, PHI Learning, 2012 R.B.Northrop: Introduction to Instrumentation and Measurements, Taylor & Francis, 2005
Miernictwo Elektroniczne. Katedra Elektroniki C3 515
Miernictwo Elektroniczne dr hab. inż. Łukasz Śliwczyński Katedra Elektroniki sliwczyn@agh.edu.pl C3 515 Charakterystyka przedmiotu wykładowca dr hab. inż. Łukasz Śliwczyński wykład e-mail: sliwczyn@agh.edu.pl
Miernictwo Elektroniczne
Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Miernictwo Elektroniczne Charakterystyka przedmiotu wykładowca wykład 15 godzin (3.0 1.04) 5.04 wykład się nie odbędzie laboratorium dr
Miernictwo Elektroniczne
Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Miernictwo Elektroniczne Charakterystyka przedmiotu wykładowca dr hab. inż. Łukasz Śliwczyński e-mail: sliwczyn@agh.edu.pl tel. (617)
Redefinicja jednostek układu SI
CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA
Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
Fizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
Miernictwo elektroniczne
Miernictwo elektroniczne Policz to, co można policzyć, zmierz to co można zmierzyć, a to co jest niemierzalne, uczyń mierzalnym Galileo Galilei Dr inż. Zbigniew Świerczyński p. 112A bud. E-1 Wstęp Pomiar
I. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015
Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +
PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ
Klub Polskich Laboratoriów Badawczych POLLAB PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ Andrzej Hantz Centrum Metrologii im. Zdzisława Rauszera RADWAG Wagi Elektroniczne Metrologia
REDEFINICJA SI W ROLACH GŁÓWNYCH: STAŁE PODSTAWOWE
KONFERENCJA POMIARY INNOWACJE AKREDYTACJE RZESZÓW, 1 WRZEŚNIA 2018 BIURO STRATEGII WYDZIAŁ STRATEGII I ROZWOJU dokładnie REDEFINICJA W ROLACH GŁÓWNYCH: STAŁE PODSTAWOWE Aleksandra Gadomska 1919-2019 METROLOGIA
P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.
Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a
Podstawy Pomiarów PPOM.A Literatura 2 Literatura podstawowa... 3 Literatura uzupełniająca... 4
Podstawy Pomiarów PPOM.A 2014 Literatura 2 Literatura podstawowa..................................................................... 3 Literatura uzupełniająca...................................................................
Przydatne informacje. konsultacje: środa 14.00-16.00 czwartek 9.00-10.00 2/35
1/35 Przydatne informacje dr inż. Adam Idźkowski Politechnika Białostocka, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Metrologii ul. Wiejska 45D, 15-351 Białystok WE-260, WE-208 e-mail:
Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ
Układ SI. Nazwa Symbol Uwagi. Odległość jaką pokonujeświatło w próżni w czasie 1/ s
Układ SI Wielkość Nazwa Symbol Uwagi Długość metr m Masa kilogram kg Czas sekunda s Odległość jaką pokonujeświatło w próżni w czasie 1/299 792 458 s Masa walca wykonanego ze stopu platyny z irydem przechowywanym
Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:
Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.
2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.
Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew
Program wykładu. Program wykładu c.d. Wykład 30 godzinny (2h tygodniowo) Laboratorium 45 godzinne (3h tygodniowo) 5ECTS
Wykład 30 godzinny (h tygodniowo) Laboratorium 45 godzinne (3h tygodniowo) 5ECTS Zasady zaliczania przedmiotu (w USOSWeb): 1. Laboratorium (poda prowadzący zajęcia);. Wykład: egzamin pisemny (z opcją ustną):
KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM
Anna Kierzkowska nauczyciel fizyki i chemii w Gimnazjum Nr 2 w Starachowicach KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Temat lekcji: Pomiary wielkości fizycznych. Międzynarodowy Układ Jednostek Miar
Laboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE
Laboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE CEL ĆWICZENIA Poznanie źródeł informacji o parametrach i warunkach eksploatacji narzędzi pomiarowych, zapoznanie ze sposobami
PRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji PODSTAWY METROLOGII Bezpieczeństwo i Higiena Pracy Stacjonarne I stopnia Rok 2 Semestr Jednostka prowadząca Osoba sporządzająca
Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta
Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie
Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka
1 Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka I. Obwody elektryczne prądu stałego 1. Pojęcie terminów: wielkość, wartość, jednostka wielkości Wielkością fizyczną nazywamy cechę zjawiska fizycznego.
Ćw. 2: Analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji
Miernictwo przemysłowe
Miernictwo przemysłowe Józef Warechowski Olsztyn, 2014 Charakterystyka pomiarów w produkcji żywności Podstawa formalna do prowadzenia ciągłego nadzoru nad AKP: PN-EN ISO 9001 punkt 7.6 1 1 a) Bezpośrednie,
Stacjonarne Wszystkie Katedra Fizyki dr Medard Makrenek. Inny / Techniczny Obowiązkowy Polski Semestr szósty. Semestr letni Statystyka, Fizyka I Nie
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-256z Podstawy miernictwa elektrycznego Fundamentals of Electrical
Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce
Pomiary fizyczne Wykład II: Rodzaje pomiarów Wstęp do Fizyki I (B+C) Wykład II Układ jednostek SI Błedy pomiarowe Modele w fizyce Rodzaje pomiarów Zliczanie Przykłady: liczba grzybów w barszczu liczba
Światło jako narzędzie albo obiekt pomiarowy
Światło jako narzędzie albo obiekt pomiarowy Spektroskopowy pomiar czystości monokryształu krzemu oraz interferometryczny pomiar przemieszczenia cewki w prądowej wadze wata jako przykłady wykorzystania
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
R X 1 R X 1 δr X 1 R X 2 R X 2 δr X 2 R X 3 R X 3 δr X 3 R X 4 R X 4 δr X 4 R X 5 R X 5 δr X 5
Tab. 2. Wyniki bezpośrednich pomiarów rezystancji Wyniki pomiarów i wartości błędów bezpośrednich pomiarów rezystancji t 0 = o C Typ omomierza R X 1 R X 1 δr X 1 R X 2 R X 2 δr X 2 R X 3 R X 3 δr X 3 R
Systemy pomiarowe Measurement systems. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Systemy pomiarowe Measurement systems Obowiązuje
Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia
Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie
3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób
Laboratorium Elektroniczna aparatura Medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej
stacjonarne (stacjonarne / niestacjonarne) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik
Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru
Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania
Strategia realizacji spójności pomiarów chemicznych w laboratorium analitycznym
Slide 1 Uniwersytet Warszawski Wydział Chemii Centrum Nauk Biologiczno- Chemicznych Strategia realizacji spójności pomiarów chemicznych w laboratorium analitycznym Ewa Bulska ebulska@chem.uw.edu.pl Slide
Przedmiot i metodologia fizyki
Przedmiot i metodologia fizyki Świat zjawisk fizycznych Oddziaływania fundamentalne i cząstki elementarne Wielkości fizyczne Układy jednostek Modele matematyczne w fizyce 10 30 Świat zjawisk fizycznych
Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria
Fizyka dla inżynierów I, II Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę z zakresu fizyki oraz chemii na poziomie programu
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury
Przyrządy Pomiarowe ( Miernictwo )
Przyrządy Pomiarowe ( Miernictwo ) Materiały dla klasy II-giej Technikum Zaocznego o specjalności elektronika Opracowanie : Ludwik Musiał Literatura : S.Lebson, J.Kaniewski Pomiary elektryczne J.Rydzewski
Wydanie 3 Warszawa, 20.06.2007 r.
. POLSKIE CENTRUM AKREDYTACJI POLITYKA POLSKIEGO CENTRUM AKREDYTACJI DOTYCZĄCA ZAPEWNIENIA SPÓJNOŚCI POMIAROWEJ Wydanie 3 Warszawa, 20.06.2007 r. 1. Wstęp Niniejsza Polityka jest zgodna z dokumentem ILAC-P10:2002
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Scenariusz lekcji fizyki w klasie drugiej gimnazjum
Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana
Ocena i wykorzystanie informacji podanych w świadectwach wzorcowania i świadectwach materiałów odniesienia
Ocena i wykorzystanie informacji podanych w świadectwach wzorcowania i świadectwach materiałów odniesienia XIX Sympozjum Klubu POLLAB Kudowa Zdrój 2013 Jolanta Wasilewska, Robert Rzepakowski 1 Zawartość
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
Wykład 1. Wprowadzenie do metrologii. Podstawowe pojęcia.
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Wykład 1. Wprowadzenie do metrologii. Podstawowe pojęcia. Introduction to Metrology. Basic Concepts. Wybrane źródła: Chwaleba A., Poniński M., Siedlecki
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Wprowadzenie do chemii
Wprowadzenie do chemii Seminaria 2014.15 Cel seminariów Wykorzystanie elementów matematyki w chemii i analityce Zapoznanie się z: Podstawowymi definicjami Teorią pomiaru (metrologia) Układami jednostek
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Miernictwo elektroniczne 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut, Zakład)
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
LABORATORIUM ELEKTRONIKI FILTRY AKTYWNE
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 11 FILTRY AKTYWNE DO UŻYTKU
Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji
Konsultacje: Poniedziałek, godz , ul. Sosnkowskiego 31, p.302 Czwartek, godz , ul. Ozimska 75, p.
a.zurawska@po.opole.pl Konsultacje: Poniedziałek, godz. 13.45-14.45, ul. Sosnkowskiego 31, p.302 Czwartek, godz. 10.00-11.00, ul. Ozimska 75, p.205 Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie
Podstawy elektrotechniki
Wydział Mechaniczno-Energetyczny Podstawy elektrotechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Stara kotłownia, pokój 359 Tel.: 71
Laboratorium metrologii
Wydział Inżynierii Mechanicznej i Mechatroniki Instytut Technologii Mechanicznej Laboratorium metrologii Instrukcja do ćwiczeń laboratoryjnych Temat ćwiczenia: Pomiary wymiarów zewnętrznych Opracował:
PODSTAWY ELEKTRONIKI I MIERNICTWA
PODSTAWY ELEKTRONIKI I MIERNICTWA Konsultacje: - czwartki 15.05-15.35 WEL, pok. 56/100 tel. 839-082 jjakubowski@wat.edu.pl 4.1. Pojęcia podstawowe M E T R O L O G I A OGÓLNA TEOTERYCZNA PRAWNA STOSOWANA
Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.
Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany
Legalne jednostki miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych
Legalne miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych Legalne miar: 1). naleŝące do układu SI : podstawowe, uzupełniające pochodne 2). legalne, ale spoza układu SI Ad.
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Elektrotechnika Skrypt Podstawy elektrotechniki
UNIWERSYTET PEDAGOGICZNY Wydział Matematyczno-Fizyczno-Techniczny Instytut Techniki Edukacja Techniczno-Informatyczna Elektrotechnika Skrypt Podstawy elektrotechniki Kraków 2015 Marcin Kapłan 1 Spis treści:
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Fizyka i wielkości fizyczne
Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda
Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów
wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI
1 WYKORZYSTAIE MULTIMETRÓW CYFROWYCH DO POMIARU 1. CEL ĆWICZEIA: SKŁADOWYCH IMPEDACJI Celem ćwiczenia jest zapoznanie się z możliwościami pomiaru składowych impedancji multimetrem cyfrowym. 2. POMIARY
Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Metrologia 1 Nazwa w języku angielskim Metrolgy 1 Obowiązuje od roku akademickiego 2012/2013
Pomiary małych rezystancji
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Pomiary małych rezystancji Grupa Nr ćwicz. 2 1... kierownik 2... 3... 4... Data Ocena I. C
UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W
UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników
ZASADY DOKUMENTACJI procesu pomiarowego
Laboratorium Podstaw Miernictwa Laboratorium Podstaw Elektrotechniki i Pomiarów ZASADY DOKUMENTACJI procesu pomiarowego Przykład PROTOKÓŁU POMIAROWEGO Opracowali : dr inż. Jacek Dusza mgr inż. Sławomir
Wprowadzenie do chemii. Seminaria
Wprowadzenie do chemii Seminaria 2015.16 Cel seminariów Wykorzystanie elementów matematyki w chemii i analityce Zapoznanie się z: Podstawowymi definicjami Teorią pomiaru (metrologia) Układami jednostek
Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji
Metrologia. Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metrologia Nazwa modułu w języku angielskim Metrology Obowiązuje od roku akademickiego 014/015 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metrologia 1 Nazwa modułu w języku angielskim Metrolgy 1 Obowiązuje od roku
Niepewność rozszerzona Procedury szacowania niepewności pomiaru. Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński
Niepewność rozszerzona Procedury szacowania niepewności pomiaru Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Międzynarodowa Konwencja Oceny Niepewności Pomiaru (Guide to Expression of Uncertainty
TRANZYSTORY BIPOLARNE
Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,
Ćw. 8 Weryfikacja praw Kirchhoffa
Ćw. 8 Weryfikacja praw Kirchhoffa. Cel ćwiczenia Wyznaczenie całkowitej rezystancji rezystorów połączonych równolegle oraz szeregowo, poprzez pomiar prądu i napięcia. Weryfikacja praw Kirchhoffa. 2. Zagadnienia
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy
Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
Ćwiczenie nr 3 Sprawdzenie prawa Ohma.
Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności
Energetyka w Środowisku Naturalnym
Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 1-6.X.2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/
ĆWICZENIE 6 POMIARY REZYSTANCJI
ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Metrologia to stymulujący komponent rozwoju infrastruktury Państwa
XXIII Forum Teleinformatyki 2017 28-29.09.2017 Metrologia to stymulujący komponent rozwoju infrastruktury Państwa dr inż. Włodzimierz Lewandowski - Prezes GUM 1 Narodowa instytucja metrologiczna (NMI)
Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów
Instytut Politechniczny Zakład Elektrotechniki i Elektroniki
Instytut Politechniczny Kod przedmiotu: PLPILA02-IPELE-I-IIIkC5-2013-S Pozycja planu: C5 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Metrologia I 2 Kierunek studiów Elektrotechnika
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego:
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII Instrukcja do wykonania ćwiczenia laboratoryjnego: "Pomiary rezystancji metody techniczne i mostkowe" Tarnów