Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe."

Transkrypt

1 Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe. Na dzisiejszych laboratoriach poznamy kolejny algorytm inspirowany biologicznie (wcześniej mieliśmy algorytmy genetyczne), który pozwoli na klasyfikowanie rekordów, ale jest też stosowany do szacunków, obliczeń, przewidywań. Są to (sztuczne) sieci neuronowe, które przypominają nieco graf, a nieco również sieć neuronów w naszych mózgach. Zadanie 1 Zapoznamy się z działaniem sieci neuronowej na prostym przykładzie. Mamy małą bazę danych ludzi, których zachęcaliśmy do gry w siatkówkę na plaży (a przy okazji popytaliśmy o parametry ich organizmu). Część ludzi zgodziła się zagrać, a część nie. Korzystając z R stworzyliśmy sieć neuronową o następującej strukturze: Sieć neuronowa, niczym mały sztuczny mózg, miała nauczyć się rozpoznawać, które osoby będą

2 chciały grać w siatkówkę. Sprawdziliśmy jak sieć poradziła sobie z naszymi siedmioma osobami. Otrzymaliśmy wynik : Widać, że gdyby zaokrąglić wartości do 1 (TRUE) i 0 (FALSE) to nasza sieć wypadła całkiem nieźle. Nie zgadła jedynie rekordu 6. Pytanie: jak obliczone zostały powyższe wartości? Sieć neuronowa dostaje trzy dane na wejściu. Wartości liczbowe są mnożone przez wagi na strzałkach i przekazywane kolejnym neuronom, które sumują wszystko co dostają. Dodane są też do tego wartości dodatkowe (bias) zaznaczone na niebiesko. Zsumowane wartości przepuszczone są przez funkcję aktywacji (fct.act) wynoszącą w tym przypadku fct.act(x)= 1/(1+exp(-x)), po czym neuron przesyła je dalej. Napisz prostą funkcję, która sprawdzi czy sieć działa dobrze tj. funkcja na input dostanie wiek, wagę, wzrost, a na output zwróci liczbę przewidującą granie w siatkówkę. Wagi z sieci pobierz z rysunku w tym pdf. forwardpass <- function(wiek,waga,wzrost){ hidden1 <- hidden2 <- output <- return(output) Sprawdź jej działanie dla dwóch wybranych przez ciebie rekordów np. forwardpass(23,75,176) = W razie problemów zachęcam do skorzystania z Google / Youtube (wyszukanie: sieć neuronowa, perceptron, neural network) lub z wykładów. Zadanie 2 Do tworzenia sieci neuronowej w R wykorzystamy paczkę neuralnet (proszę zainstalować). Kilka linków o niej: (iris) Dokonamy klasyfikacji irysów za pomocą sieci neuronowej. a) Znormalizuj kolumny liczbowe bazy danych irysów, wzorem (x-min(x))/(max(x)-min(x)) i zapisz zmienioną bazę jako iris.norm. Możesz ten wzór zapisać jako funkcję i zaaplikować ją komendą lapply na 4 kolumny numeryczne irysów.

3 b) Rozbij kolumnę Species na kolumnę: setosa, versicolor, virginica. Łącznie będzie w bazie 8 kolumn, 4 numeryczne, 1 kategorialna (tekst) i 3 logiczne. W kolumnie setosa będą wartości 0 (dany irys nie jest setosą) i 1 (dany irys jest setosą). Podobnie będą działały pozostałe kolumny z gatunkami. iris.norm$setosa = iris.norm$species == "setosa" c) Podziel zbiór irysów z punktu b) na iris.train, iris.test tak, jak robiliśmy to przy innych algorytmach klasyfikujących. Proporcje mogą być 67/33. d) Zainstaluj i załaduj paczkę neuralnet. Uruchom komendę neuralnet na zbiorze treningowym. Wszystkie trzy kolumny logiczne będą brane pod uwagę jako klasa. Należy uwzględnić je uruchamiając sieć neuronową: Iris.net <- neuralnet(setosa + versicolor + virginica ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,... Wówczas sieć neuronowa będzie miała trzy neurony wyjściowe. d) Zewaluuj klasyfikator uruchamiając komendę compute na zbiorze testowym. iris_predictions <- compute(iris.net, iris.test[, 1:4]) W wyniku funkcji compute na danych numerycznych ze zbioru testowego dostaniemy 3 kolumny numeryczne, które powinny odpowiadać kolumną binarnym setosa/versicolor/virginica. Z tych trzech kolumn wybieramy największą wartość i zapisujemy jaki irys jest przez nią wskazywany. Przykład: versicolor (0.866 jest największe, najbliżej 1 czyli TRUE) Porównujemy obliczone gatunki z prawdziwymi ze zbioru testowego. Przydatna będzie tutaj funkcja max.col. Jak ją zastosować? Podaj macierz błędu i dokładność klasyfikatora.

4 Zadanie 3 Sieci neuronowe nie tylko mogą klasyfikować rekordy, ale też sterować obiektami. Wówczas na wyjściu muszą dawać 1 jeśli chcą akcję wykonać, lub 0 gdy nie chcą jej wykonać. Na stronie znajduje się prosta gra w strzelające czołgi. Czołgami można sterować z klawiatury lub za pomocą skryptu, wówczas należy go wkleić do okienka na kod (dwa proste skrypty typu jedź na przód i strzelaj są domyślnie wklejone do okien). Chcemy napisać skrypt symulujący sieć neuronową, która będzie jedynie sterowała naszym czołgiem. Na wejściu dostaje jego podstawowe parametry (współrzędne i kąt rotacji), na wyjściu ma odpowiedzieć jaką akcję wykonać: skręć w lewo, skręć w prawo, jedź na przód i jedź do tyłu (ustawiając wartości 1 jeśli chcemy wykonać akcję i 0 jeśli nie chcemy). Do zajęć został załączony plik z kodem takiego skryptu: neural-bot.js. Przestudiuj jego działanie. Niestety wszystkie wagi (weights1, bias1, weights2, bias2) zostały twardo ustawione na 0. a) Metodą eksperymentów pozmieniaj niektóre z nich na liczby z przedziału [-1,1], tak aby czołg jechał na przód. b) Spróbuj ustawić je tak, aby czołg kręcił się w kółko. c) * (Nieobowiązkowo) Zamiast szukać interesujących wag wykorzystaj przeglądarkowe Console, by pozyskać interesujące cię dane i wytrenować sieć.

5 function(e) { var response = {; var enemy = e.data.enemytank; var me = e.data.mytank; /*Simple neural network*/ /*we want our tank only to move around the field*/ /*let's take input layer with 3 neurons - extracted from game data*/ var input = [me.x, me.y, me.rotation]; /*is it a good idea to normalize the inputs here?*/ input = [me.x/500.0, me.y/500.0, (me.rotation%360)/360.0]; console.log("neunet input: "+input[0]+", "+input[1]+", "+input[2]); /*we take 3 hidden neurons*/ /*from every input neuron there is a connection to every hidden neuron (3 connections), so we need 9 weights; and 3 for bias*/ var weights1 = [0,0,0,0,0,0,0,0,0]; var bias1 = [0,0,0]; /*we compute the output values for hidden neurons*/ var hidden = [0,0,0]; var i,j; for (i=0; i<3; i++){ for (j=0; j<3; j++){ hidden[i] = input[j]*weights1[i*3+j]; hidden[i] = hidden[i]+bias1[i]; hidden[i] = 1/(1+Math.pow(Math.E, -hidden[i])); console.log("neunet hidden: "+hidden[0]+", "+hidden[1]+", "+hidden[2]); /*we consider 4 outputs each corresponding to a control-key: turnleft, turnright, goforward, goback - so we need 3*4=12 additional weights + 4 bias*/ var weights2 = [0,0,0,0,0,0,0,0,0,0,0,0]; var bias2 = [0,0,0,0]; /*we compute the output values for the network*/ var output = [0,0,0,0]; for (i=0; i<4; i++){ for (j=0; j<3; j++){ output[i] = hidden[j]*weights2[i*3+j]; output[i] = output[i]+bias2[i]; output[i] = 1/(1+Math.pow(Math.E, -output[i])); output[i] = Math.round(output[i]); console.log("neunet output: "+output[0]+", "+output[1]+", "+output[2]+", "+output[3]); /*we return the values*/ response.turnleft = output[0];

6 response.turnright = output[1]; response.goforward = output[2]; response.goback = output[3]; self.postmessage(response);

Uwaga: szarych kropek po pokolorowaniu nie uwzględniaj w klasyfikowaniu kolejnych szarych.

Uwaga: szarych kropek po pokolorowaniu nie uwzględniaj w klasyfikowaniu kolejnych szarych. Inteligencja obliczeniowa stud. niestac. Laboratorium 4: Zadanie klasyfikacji poznanie trzech algorytmów klasyfikujących: knn, NaiveBayes, drzewo decyzyjne. Przy pomnijmy sobie bazę danych z irysami. Na

Bardziej szczegółowo

Maks. punktów: 7 pkt (w tym projekcie: spóźnienie powoduje brak zaliczenia projektu i 0 punktów)

Maks. punktów: 7 pkt (w tym projekcie: spóźnienie powoduje brak zaliczenia projektu i 0 punktów) Zadanie domowe nr 3 Sieci neuronowe sterujące czołgami Spis treści Rzeczy organizacyjne... 1 Ogólny opis i cel zadania... 2 Jak pisać skrypt sterujący czołgiem?... 2 Na jakich danych pracuję?... 3 Jak

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji

Podstawy Sztucznej Inteligencji Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta

Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta www.michalbereta.pl W tej części: Zachowanie wytrenowanego modelu w celu późniejszego użytku Filtrowanie danych (brakujące etykiety

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

TEMAT ĆWICZENIA Zapoznanie z technologią LINQ

TEMAT ĆWICZENIA Zapoznanie z technologią LINQ POLITECHNIKA WROCŁAWSKA KOŁO NAUKOWE KREDEK Laboratorium nr 4 TEMAT ĆWICZENIA Zapoznanie z technologią LINQ Wykonał: Mateusz Woszczyk 155693 Termin: Cz / 19.00 Data wykonania ćwiczenia: 20.11.2011 1. LINQ

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0 Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm

Bardziej szczegółowo

Jak posługiwać się edytorem treści

Jak posługiwać się edytorem treści Jak posługiwać się edytorem treści Edytor CKE jest bardzo prostym narzędziem pomagającym osobom niezaznajomionym z językiem HTML w tworzeniu interaktywnych treści stron internetowych. Razem z praktyka

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

ĆWICZENIE 5: Sztuczne sieci neuronowe

ĆWICZENIE 5: Sztuczne sieci neuronowe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold

Bardziej szczegółowo

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Instrukcja logowania się i wprowadzania ocen do systemu USOSweb

Instrukcja logowania się i wprowadzania ocen do systemu USOSweb Instrukcja logowania się i wprowadzania ocen do systemu USOSweb Uwaga! Niniejsza instrukcja nie stanowi pełnego opisu wszystkich funkcji systemu USOSweb. Zawiera ona jedynie informacje niezbędne do pomyślnego

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Prawdopodobieństwo czerwonych = = 0.33

Prawdopodobieństwo czerwonych = = 0.33 Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta Wprowadzenie do programu RapidMiner, część 4 Michał Bereta www.michalbereta.pl 1. Wybór atrybutów (ang. attribute selection, feature selection). Jedną z podstawowych metod analizy współoddziaływania /

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Zadanie 2.: Perceptron wielowarstwowy

Zadanie 2.: Perceptron wielowarstwowy Informatyka, studia dzienne, inż. I st. semestr VI Inteligentna Analiza Danych 21/211 Prowadzący: dr inż. Arkadiusz Tomczyk wtotek, 8:3 Data oddania: Ocena: Marek Rogalski 15982 Paweł Tarasiuk 15121 Zadanie

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach

Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach maja, 7 Rozglądanie się w D Plan Klasyka z brodą: zbiór danych Iris analiza składowych głównych (PCA), czyli redukcja

Bardziej szczegółowo

MEODY GRUPOWANIA DANYCH

MEODY GRUPOWANIA DANYCH Sztuczna inteligencja 9999 pages 17 MEODY GRUPOWANIA DANYCH PB 1 CWICZENIE I 1. Ze zbioru danych iris.tab wybra nastepuj ce obiekty: ID SL SW PL PW C 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych. Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Klasyfikacja Support Vector Machines

Klasyfikacja Support Vector Machines Klasyfikacja Support Vector Machines LABORKA Piotr Ciskowski przykład 1 KLASYFIKACJA KWIATKÓW IRYSA przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: http://www.mathworks.com/help/stats/svmclassify.html

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

Kurier DPD dla Subiekt GT

Kurier DPD dla Subiekt GT Dane aktualne na dzień: 20-01-2018 12:11 Link do produktu: http://www.strefalicencji.pl/kurier-dpd-dla-subiekt-gt-p-123.html Kurier DPD dla Subiekt GT Cena Dostępność 199,00 zł Dostępny Numer katalogowy

Bardziej szczegółowo

Systemy wirtualnej rzeczywistości. Komponenty i serwisy

Systemy wirtualnej rzeczywistości. Komponenty i serwisy Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Systemy wirtualnej rzeczywistości Laboratorium Komponenty i serwisy Wstęp: W trzeciej części przedstawione zostaną podstawowe techniki

Bardziej szczegółowo

Polbruk Antara II Polbruk Neo

Polbruk Antara II Polbruk Neo Instrukcja do programu Kalkulator ogrodzeń 2.0 Polbruk Antara II Polbruk Neo Część I Pobranie programu i instalacja Aplikację Kalkulator ogrodzeń 2.0. Polbruk Antara II, Polbruk Neo można pobrać klikając

Bardziej szczegółowo

Przekształcenie danych przestrzennych w interaktywne mapy dostępne na stronach www (WARSZTATY, poziom zaawansowany)

Przekształcenie danych przestrzennych w interaktywne mapy dostępne na stronach www (WARSZTATY, poziom zaawansowany) Wrocławski Instytut Zastosowań Informacji Przestrzennej i Sztucznej Inteligencji Przekształcenie danych przestrzennych w interaktywne mapy dostępne na stronach www (WARSZTATY, poziom zaawansowany) Szkolenia

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie)

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) WYKŁAD Piotr Ciskowski Neural Network Toolbox: NEURAL NETWORK TOOLBOX NOTACJA Neural Network Toolbox - notacja: pojedynczy neuron: z jednym wejściem

Bardziej szczegółowo

A Zadanie

A Zadanie where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona

Bardziej szczegółowo

Instrukcja instalacji programu serwisowego NTSN krok po kroku

Instrukcja instalacji programu serwisowego NTSN krok po kroku Instrukcja instalacji programu serwisowego NTSN krok po kroku 1. Pobieramy program serwisowy ze strony http://serwis.monument9.pl/program_serwisowy/ - bezpośredni link znajduje się w polu POBIERZ PROGRAM.

Bardziej szczegółowo

Ćwiczenia laboratoryjne nr 11 Bazy danych i SQL.

Ćwiczenia laboratoryjne nr 11 Bazy danych i SQL. Prezentacja Danych i Multimedia II r Socjologia Ćwiczenia laboratoryjne nr 11 Bazy danych i SQL. Celem ćwiczeń jest poznanie zasad tworzenia baz danych i zastosowania komend SQL. Ćwiczenie I. Logowanie

Bardziej szczegółowo

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których

Bardziej szczegółowo

Data Mining Wykład 4. Plan wykładu

Data Mining Wykład 4. Plan wykładu Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje

Bardziej szczegółowo

Laboratorium nr 4. Temat: SQL część II. Polecenia DML

Laboratorium nr 4. Temat: SQL część II. Polecenia DML Laboratorium nr 4 Temat: SQL część II Polecenia DML DML DML (Data Manipulation Language) słuŝy do wykonywania operacji na danych do ich umieszczania w bazie, kasowania, przeglądania, zmiany. NajwaŜniejsze

Bardziej szczegółowo

Korzystanie z platformy Instytutu Rozwoju Edukacji

Korzystanie z platformy Instytutu Rozwoju Edukacji Korzystanie z platformy Instytutu Rozwoju Edukacji Seweryn Wyszyński Spis treści 1. Logowanie do platformy... 2 2. Strona główna... 4 3. Ustawienia profilu użytkownika... 5 4. Dostęp do kursów na platformie...

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

WARIATOR WYPRZEDZENIA ZAPŁONU WARIATOR USTAWIENIA

WARIATOR WYPRZEDZENIA ZAPŁONU WARIATOR USTAWIENIA WARIATOR WYPRZEDZENIA ZAPŁONU WARIATOR USTAWIENIA 1. Podłączyć wariator do instalacji pojazdu według schematu. 2. Ustawić przełącznik nr 5 zgodnie z typem czujnika. 2.1. Niezałączony czujnik Halla ewentualnie

Bardziej szczegółowo

dr inż. Tomasz Krzeszowski

dr inż. Tomasz Krzeszowski Microsoft Robotics Developer Studio dr inż. Tomasz Krzeszowski 2017-05-20 Spis treści 1 Przygotowanie do laboratorium... 3 2 Cel laboratorium... 3 3 Microsoft Robotics Developer Studio... 3 3.1 Wprowadzenie...

Bardziej szczegółowo

Gra TransEdu - instrukcja

Gra TransEdu - instrukcja Gra TransEdu - instrukcja Gra TransEdu jest symulacją Systemu Trans.eu wykorzystywanego przez specjalistów z branży TSL. Gracze wcielają się w przewoźników i walczą między sobą o jak najlepszą stawkę za

Bardziej szczegółowo

Celem ćwiczenia jest zapoznanie się z podstawowymi możliwościami języka Prolog w zakresie definiowania faktów i reguł oraz wykonywania zapytań.

Celem ćwiczenia jest zapoznanie się z podstawowymi możliwościami języka Prolog w zakresie definiowania faktów i reguł oraz wykonywania zapytań. Paradygmaty Programowania Język Prolog Celem ćwiczenia jest zapoznanie się z podstawowymi możliwościami języka Prolog w zakresie definiowania faktów i reguł oraz wykonywania zapytań. Wstęp Prolog (od francuskiego

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Laboratorium nr 2 Podstawy środowiska Matlab/Simulink część 2 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

1. Dockbar, CMS + wyszukiwarka aplikacji Dodawanie portletów Widok zawartości stron... 3

1. Dockbar, CMS + wyszukiwarka aplikacji Dodawanie portletów Widok zawartości stron... 3 DODAJEMY TREŚĆ DO STRONY 1. Dockbar, CMS + wyszukiwarka aplikacji... 2 2. Dodawanie portletów... 3 Widok zawartości stron... 3 Omówienie zawartości portletu (usunięcie ramki itd.)... 4 3. Ikonki wybierz

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Instalacja NOD32 Remote Administrator

Instalacja NOD32 Remote Administrator Instalacja NOD32 Remote Administrator Program do zdalnego zarządzania stacjami roboczymi, na których zainstalowany jest program NOD32, składa się z dwóch modułów. Pierwszy z nich Remote Administrator Server

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe. Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,

Bardziej szczegółowo

MyOwnConference krok po kroku

MyOwnConference krok po kroku MyOwnConference krok po kroku Spis treści Założenie konta. Gdzie zorganizować webinar? Jak wejść do pokoju webinarowego? Jak stworzyć i zaplanować webinar? Jak stworzyć webinar w permanentnym pokoju webinarowym?

Bardziej szczegółowo

timetrack Przewodnik Użytkownika timetrack Najważniejsze Funkcje

timetrack Przewodnik Użytkownika timetrack Najważniejsze Funkcje timetrack Przewodnik Użytkownika timetrack jest łatwą w obsłudze aplikacją, stworzoną do rejestracji czasu. Pozwala ona na zapisywanie czasu spędzonego z klientami oraz podczas pracy nad projektami i zadaniami

Bardziej szczegółowo

Sprawdzian wiedzy i umiejętności ucznia z informatyki po ukończeniu gimnazjum

Sprawdzian wiedzy i umiejętności ucznia z informatyki po ukończeniu gimnazjum Grażyna Koba Sprawdzian wiedzy i umiejętności ucznia z informatyki po ukończeniu gimnazjum Część praktyczna Zadanie 1 [6 pkt.] a. Utwórz nowy plik w edytorze tekstu. Przepisz treść ćwiczeń: 3 7 3 0,02

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Przedmiot: Informatyka w inżynierii produkcji Forma: Laboratorium Temat: Zadanie 5. MessageBox, InputBox, instrukcja Select Case i instrukcje pętli.

Przedmiot: Informatyka w inżynierii produkcji Forma: Laboratorium Temat: Zadanie 5. MessageBox, InputBox, instrukcja Select Case i instrukcje pętli. Przedmiot: Informatyka w inżynierii produkcji Forma: Laboratorium Temat: Zadanie 5. MessageBox, InputBox, instrukcja Select Case i instrukcje pętli. Celem ćwiczenia jest nabycie umiejętności wykorzystania

Bardziej szczegółowo

Szanowni Państwo. Należy przy tym pamiętać, że zmiana stawek VAT obejmie dwie czynności:

Szanowni Państwo. Należy przy tym pamiętać, że zmiana stawek VAT obejmie dwie czynności: Szanowni Państwo Zapowiedź podniesienia stawek VAT stała się faktem. Zgodnie z ustawą o podatku od towarów i usług z dniem 1 stycznia 2011 roku zostaną wprowadzone nowe stawki VAT. Obowiązujące aktualnie

Bardziej szczegółowo

Wybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora.

Wybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora. Wprowadzenie do programu RapidMiner Studio 7.6, część 7 Podstawy metod wyboru atrybutów w problemach klasyfikacyjnych, c.d. Michał Bereta www.michalbereta.pl Wybór / ocena atrybutów na podstawie oceny

Bardziej szczegółowo

Wprowadzenie do R. log(1) ## [1] 0. sqrt(3) ## [1] sin(x = 2*pi) ## [1] e-16

Wprowadzenie do R. log(1) ## [1] 0. sqrt(3) ## [1] sin(x = 2*pi) ## [1] e-16 Wprowadzenie do R Poniższa notatka powstała na podstawie materiałów Kamila Dyby. Zacznijmy od rzeczy elementarnych czyli operacji na liczbach # Operacje arytmetyczne 1+1 2*2 3^2 5%%3 log(1) [1] 0 sqrt(3)

Bardziej szczegółowo

Zadanie 3.: Klasyfikacje

Zadanie 3.: Klasyfikacje Informatyka, studia dzienne, inż. I st. semestr VI Inteligentna Analiza Danych 2/2 Prowadzący: dr inż. Arkadiusz Tomczyk wtotek, 8:3 Data oddania: Ocena: Marek Rogalski 5982 Paweł Tarasiuk 52 Zadanie 3.:

Bardziej szczegółowo

ZPKSoft Zarządzanie zadaniami (DZaZad)

ZPKSoft Zarządzanie zadaniami (DZaZad) 1 ZPKSoft Zarządzanie zadaniami (DZaZad) Wstęp jest podprogramem systemu ZPKSoft Doradca, integruje się w procesie instalacji z systemem ZPKSoft Doradca. Jest to narzędzie menedżerskie, przeznaczone do

Bardziej szczegółowo