Klasyfikacja Support Vector Machines
|
|
- Krzysztof Kwiecień
- 7 lat temu
- Przeglądów:
Transkrypt
1 Klasyfikacja Support Vector Machines LABORKA Piotr Ciskowski
2 przykład 1 KLASYFIKACJA KWIATKÓW IRYSA
3 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: załaduj zbiór uczący: load fisheriris ; wybierz dwie ostatnie kolumny (cechy) i dwa ostatnie gatunki (klasy): - versicolor - virginica xdata = meas ( 51:end, 3:4 ) ; group = species ( 51:end ) ; skonstruuj klasyfikator SVM - liniowy: czas = clock ;... svmstruct = svmtrain ( xdata, group, 'ShowPlot', true ),... czas = etime ( clock, czas )
4 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: sprawdź, jak SVM klasyfikuje nowy punkt: newflower = [ 5, 2 ] ; species = svmclassify ( svmstruct, newflower, 'ShowPlot', true ) zaznacz nowy punkt: plot ( newflower(1), newflower(2), 'ro', 'MarkerSize', 12 )
5 przykład 1 KLASYFIKACJA KWIATKÓW IRYSA - RÓŻNE KERNELE
6 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: skonstruuj klasyfikator SVM - liniowy: svmstruct = svmtrain ( xdata, group, 'ShowPlot', true ) svmstruct = svmtrain ( xdata, group, 'ShowPlot', true,... 'kernel_function', 'linear' ) versicolor (training) versicolor (classified) virginica (training) virginica (classified) Support Vectors
7 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: skonstruuj klasyfikator SVM z jądrem kwadratowym: svmstruct = svmtrain ( xdata, group, 'ShowPlot', true ) svmstruct = svmtrain ( xdata, group, 'ShowPlot', true,... 'kernel_function', 'quadratic' )
8 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: skonstruuj klasyfikator SVM z jądrem wielomianowym (stopnia 3): svmstruct = svmtrain ( xdata, group, 'ShowPlot', true ) svmstruct = svmtrain ( xdata, group, 'ShowPlot', true,... 'kernel_function', polynomial' )
9 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: skonstruuj klasyfikator SVM z jądrem wielomianowym (stopni ): svmstruct = svmtrain ( xdata, group, 'ShowPlot', true ) svmstruct = svmtrain ( xdata, group, 'ShowPlot', true, 'kernel_function', polynomial', 'polyorder', 5 ) svmstruct = svmtrain ( xdata, group, 'ShowPlot', true, 'kernel_function', polynomial', 'polyorder', 10 ) svmstruct = svmtrain ( xdata, group, 'ShowPlot', true, 'kernel_function', polynomial', 'polyorder', 15 )
10 przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: skonstruuj klasyfikator SVM z jądrem RBF: svmstruct = svmtrain ( xdata, group, 'ShowPlot', true,... 'kernel_function', 'rbf ) skonstruuj klasyfikator SVM z jądrem MLP: svmstruct = svmtrain ( xdata, group, 'ShowPlot', true,... 'kernel_function', 'mlp' )
11 przykład 1 KLASYFIKACJA KWIATKÓW IRYSA - PRAWDOPODOBIEŃSTWA A POSTERIORI
12 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: Score - the SVM score for classifying observation x is the numerical predicted response f(x) computed by the trained SVM classification function: - - estimated SVM parameters - - dot product in the predictor space between x and the support vectors - the sum includes the training set observations
13 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: Posterior Probability - The probability that an observation belongs in a particular class, given the data. - the posterior probability is a function of the score: P(s) - classes: k = { -1, 1 } - For separable classes, the posterior probability is the step function: where: s j is the score of observation j +1 and 1 denote the positive and negative classes, respectively π is the prior probability that an observation is in the positive class
14 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: Posterior Probability - The probability that an observation belongs in a particular class, given the data. - the posterior probability is a function of the score: P(s) - classes: k = { -1, 1 } - For separable classes, the posterior probability is the step function: where: s j is the score of observation j +1 and 1 denote the positive and negative classes, respectively π is the prior probability that an observation is in the positive class - For inseparable classes, the posterior probability is the sigmoid function: where the parameters A and B are the slope and intercept parameters
15 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: Prior Probability - believed relative frequency that observations from a class occur in the population, for each class
16 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: zrób porządek załaduj jeszcze raz dane: clear all close all clc load fisheriris pozbądź się z danych gatunku virginica, zostaw setosa-versicolor: classkeep = ~strcmp ( species, 'virginica' ) ; x = meas ( classkeep, 3:4 ) ; y = species ( classkeep ) ;
17 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: naucz klasyfikator: svmmodel = fitcsvm ( x, y, 'ClassNames', { 'setosa', 'versicolor' } ); dobierz optymalną funkcje prawdopodobieństwa: (optimal score transformation function) rng(1) ; % for reproducubility [ svmmodel, scoreparameters ] = fitposterior ( svmmodel ) ; scoreparameters
18 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: przygotuj siatkę pod wykres prawdopodobieństwa: xmin = min ( x ) ; xmax = max ( x ) ; h = 0.01 ; [ x1grid, x2grid ] = meshgrid ( xmin(1) : h : xmax(1),... xmin(2) : h : xmax(2) ) ; zaklasyfikuj wszystkie punkty na siatce oblicz prawdopodobieństwo a posteriori: [ ~,posteriorregion ] = predict ( svmmodel, [ x1grid(:), x2grid(:) ] ) ;
19 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor) żródło: pomoc MATLABa: narysuj dane uczące, wektory wspierające oraz obszary prawdopodobieństwa a posteriori przynależności do klasy +1: contourf ( x1grid, x2grid,... reshape ( posteriorregion(:,2), size ( x1grid, 1 ),... size ( x2grid, 2 ) ) ) ; h(1) = colorbar ; set ( get(h(1),'ylabel ), 'String, 'P({\it versicolor})',... 'FontSize', 16 ) ; hold on gscatter ( x(:,1), x(:,2), y, 'mc, '.x, [ ] ) sv = x ( svmmodel.issupportvector, : ) ; plot ( sv(:,1), sv(:,2), 'ro', 'MarkerSize', 15, 'LineWidth, 2 ) ; axis tight, hold off
20 przykład 1 KLASYFIKACJA KWIATKÓW IRYSA - DO KILKU KLAS - KERNEL: RBF
21 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor-virginica) żródło: pomoc MATLABa: zrób porządek załaduj jeszcze raz dane: clear all close all clc load fisheriris wybierz dwie ostatnie cechy: x = meas(:,3:4) ; y = species ;
22 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor-virginica) żródło: pomoc MATLABa: narysuj wykres danych uczących: figure gscatter ( x(:,1), x(:,2), y ) ; title ( '{\bf Scatter Diagram of Iris Measurements}' ) ; xlabel ( 'Petal length(cm)' ) ; ylabel ( 'Petal width(cm)' ) ; legend ( 'Location', 'Northwest' ) ; lims = get ( gca, {} ) ; % granice osi
23 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor-virginica) żródło: pomoc MATLABa: dla każdej klasy: utwórz wektor indx pokazujący, czy dana obserwacja należy do danej klasy naucz klasyfikator SVM - używając danych uczących oraz indx schowaj nauczony klasyfikator do komórki w macierzy komórkowej % It is good practice to define the class order and standardize the predictors. SVMModels = cell(3,1) ; classes = unique(y) ; rng(1); % for reproducibility for j = 1 : numel(classes), end indx = strcmp ( y, classes(j) ) ; svmmodels{j} = fitcsvm ( X, indx, 'ClassNames', [ false true],... 'Standardize, true,... 'KernelFunction', 'rbf',... 'BoxConstraint, 1 ) ;
24 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor-virginica) żródło: pomoc MATLABa: utwórz siatkę punktów testujących dla każdego punktu oblicz score d = 0.02; [ x1grid, x2grid] = meshgrid ( min(x(:,1)) : d : max(x(:,1)),... min(x(:,2)) : d : max(x(:,2)) ) ; xgrid = [ x1grid(:), x2grid(:) ] ; N = size ( xgrid, 1 ) ; scores = zeros ( N, numel(classes) ) ; for j = 1 : numel(classes), [ ~, score ] = predict ( svmmodels{j}, xgrid ) ; scores(:,j) = score(:,2) ; % second column contains positive-class scores end
25 przykład 1. klasyfikacja kwiatków irysa (setosa-versicolor-virginica) żródło: pomoc MATLABa: przyporządkuj każdą obserwację do klasy o największym score [ ~, maxscore ] = max (scores, [], 2 ) ; pokoloruj siatkę punktów testowych figure h(1:3) = gscatter ( xgrid(:,1), xgrid(:,2), maxscore,... [ ; ; ] ) ; hold on h(4:6) = gscatter ( x(:,1), x(:,2), y ) ; title( '{\bf Iris Classification Regions}' ) ; xlabel( 'Petal Length (cm)' ) ; ylabel( 'Petal Width (cm)' ) ; legend ( h, {'setosa region','versicolor region','virginica region',... 'observed setosa','observed versicolor','observed virginica'},... 'Location','Northwest' ) ; axis tight, hold off
Klasyfikacja naiwny Bayes
Klasyfikacja naiwny Bayes LABORKA Piotr Ciskowski NAIWNY KLASYFIKATOR BAYESA wyjaśnienie Naiwny klasyfikator Bayesa żródło: Internetowy Podręcznik Statystyki Statsoft dane uczące 2 klasy - prawdopodobieństwo
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa.
Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa. Kwadratowa analiza dyskryminacyjna Przykład analizy QDA Czasem nie jest możliwe rozdzielenie
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH
Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest
Grafy w MATLABie. LABORKA Piotr Ciskowski
Grafy w MATLABie LABORKA Piotr Ciskowski przykład 1 SIMBIOLOGY MODEL OF A REPRESSILATOR OSCILLATORY NETWORK Repressilator oscillatory network (cokolwiek to znaczy ;-) żródło: http://www.mathworks.com/help/bioinfo/examples/working-with-graph-theory-functions.html
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
Grafika w Matlabie. Wykresy 2D
Grafika w Matlabie Obiekty graficzne wyświetlane są w specjalnym oknie, które otwiera się poleceniem figure. Jednocześnie może być otwartych wiele okien, a każde z nich ma przypisany numer. Jedno z otwartych
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach
Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach maja, 7 Rozglądanie się w D Plan Klasyka z brodą: zbiór danych Iris analiza składowych głównych (PCA), czyli redukcja
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Wizualizacja funkcji w programie MATLAB
Instytut Informatyki Uniwersytetu Śląskiego 15 listopada 2008 Funckja plot Funkcja plot3 Wizualizacja funkcji jednej zmiennej Do wizualizacji funkcji jednej zmiennej w programie MATLAB wykorzystywana jest
Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe.
Inteligencja obliczeniowa Laboratorium 9: Sieci neuronowe. Na dzisiejszych laboratoriach poznamy kolejny algorytm inspirowany biologicznie (wcześniej mieliśmy algorytmy genetyczne), który pozwoli na klasyfikowanie
Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr.
Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Warszawa, 10 Marca 2016 Plan prezentacji. Definicja funkcji jądrowej. Plan prezentacji. Definicja funkcji jądrowej. Opis problemu
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow
UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992
Matplotlib. Krzysztof Katarzyński. Centrum Astronomii UMK
Matplotlib Krzysztof Katarzyński Centrum Astronomii UMK Ten człowiek nie jest zwyczajnym człowiekiem. To F.G. Superman. Niewyróżniajacy się niczym wśród innych, bogobojnych obywateli. Jednak F.G. Superman
7. Maszyny wektorów podpierajacych SVMs
Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Interfejs graficzny Matlaba
Wywołanie okna - figure fig = figure; Nastawy i odczyt parametrów okna set(fig, parametr, wartość ); get(fig, parametr ) Relacje podrzędności podstawowych obiektów GUI figure uimenu, uicontrol, axes axes
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań
Popularne klasyfikatory w pakietach komputerowych
Popularne klasyfikatory w pakietach komputerowych Klasyfikator liniowy Uogólniony klasyfikator liniowy SVM aiwny klasyfikator bayesowski Ocena klasyfikatora ROC Lista popularnych pakietów Klasyfikator
Matlab II skrypty, funkcje, wizualizacja danych. Piotr Wróbel Pok. B 4.22
Matlab II skrypty, funkcje, wizualizacja danych Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Skrypty Pierwszy skrypt: Home->NewScript Home -> New->NewScript Zakładka
Metody i analiza danych
2015/2016 Metody i analiza danych Funkcje, pętle i grafika Laboratorium komputerowe 3 Anna Kiełbus Zakres tematyczny 1. Funkcje i skrypty Pętle i instrukcje sterujące 2. Grafika dwuwymiarowa 3. Grafika
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.
GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta www.michalbereta.pl Modele liniowe W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych
Oracle Data Mining 10g
Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja
Laboratorium Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D.
Podstawy Informatyki 1 Laboratorium 10 1. Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D. 2. Wprowadzenie Grafika trójwymiarowa jest to przedstawienie na płaszczyźnie ekranu monitora
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy
Wprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
Wykresy i obiekty graficzne w Matlabie
Wykresy i obiekty graficzne w Matlabie Dr inż. Z. Rudnicki Wykresy dwuwymiarowe (2D) - funkcja plot plot(x,y)- Dla danych wektorów x, y rysuje wykres liniowy plot(y) - Wykres liniowy wartości y, a na osi
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Uwaga: szarych kropek po pokolorowaniu nie uwzględniaj w klasyfikowaniu kolejnych szarych.
Inteligencja obliczeniowa stud. niestac. Laboratorium 4: Zadanie klasyfikacji poznanie trzech algorytmów klasyfikujących: knn, NaiveBayes, drzewo decyzyjne. Przy pomnijmy sobie bazę danych z irysami. Na
Zagadnienie klasyfikacji (dyskryminacji)
Zagadnienie klasyfikacji (dyskryminacji) Przykład Bank chce klasyfikować klientów starających się o pożyczkę do jednej z dwóch grup: niskiego ryzyka (spłacających pożyczki terminowo) lub wysokiego ryzyka
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
Elementy okna MatLab-a
MatLab część IV 1 Elementy okna MatLab-a 2 Elementy okna MatLab-a 3 Wykresy i przydatne polecenia Wywołanie funkcji graficznej powoduje automatyczne otwarcie okna graficznego Kolejne instrukcje graficzne
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Bioinformatyka V. Analiza Danych w Języku R
Bioinformatyka V Analiza Danych w Języku R ANALIZA DANYCH Metody statystyczne analizy danych eksploracja danych testowanie hipotez analiza Bayesowska Metody uczenia maszynowego Uczenie nadzorowane Uczenie
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Eksploracja danych - wykład IV
- wykład 1/41 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 27 października 2016 - wykład 2/41 wykład 1 2 3 4 5 - wykład 3/41 CRISP-DM - standaryzacja wykład
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Pętle iteracyjne i decyzyjne
Pętle iteracyjne i decyzyjne. Pętla iteracyjna for Pętlę iteracyjną for stosuje się do wykonywania wyrażeń lub ich grup określoną liczbę razy. Licznik pętli w pakiecie MatLab może być zwiększany bądź zmniejszany
archivist: Managing Data Analysis Results
archivist: Managing Data Analysis Results https://github.com/pbiecek/archivist Marcin Kosiński 1,2, Przemysław Biecek 2 1 IT Research and Development Grupa Wirtualna Polska 2 Faculty of Mathematics, Informatics
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Grafika dwu- i trójwymiarowa MATLABie
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 5 Grafika dwu- i trójwymiarowa MATLABie 1. Wprowadzenie W środowisku MATLAB dostępna są bardzo szerokie możliwości wizualizacji danych w postaci różnego
PODSTAWY TWORZENIA WYKRESÓW ORAZ HANDLE GRAPHICS
PODSTAWY TWORZENIA WYKRESÓW ORAZ HANDLE GRAPHICS GRAFIKA ZESTAWIENIE FUNKCJI Funkcje graficzne są umieszczone w pięciu podkatalogach katalogu *Matlab\Toolbox\Matlab: \graph2d - grafika 2-wymiarowa \graph3d
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski
sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym
Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun
Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy
Ekonometria Analiza dyskryminacyjna
Ekonometria Analiza dyskryminacyjna Paweł Cibis pawel@cibis.pl 11 maja 2007 A dlaczego Power Point? a tak dla odmiany ;-); Wielowymiarowa analiza porównawcza Dyscyplina naukowa zajmująca się porównywaniem
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
Graficzna prezentacja wyników
Graficzna prezentacja wyników Wykonał: ŁUKASZ BURDACH ETI 9.3 Przy pierwszym wywołaniu funkcji rysującej wykres otwarte zostaje okno graficzne, które jest potem wykorzystywane domyślnie (jest tzw. oknem
Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
1 Wizualizacja danych - wykresy 2D
1 Wizualizacja danych - wykresy 2D Funkcje sterujące tworzeniem wykresów plot(x,y, KSL ) tworzy wykres 2D wraz z specyfikatorem lini K - kolor, S - symbol, L - linia figure(nr) subplot(m,n,active) hold
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 1 Wprowadzenie do MATLAB'a Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii
Eksploracja danych w środowisku R
Eksploracja danych w środowisku R Moi drodzy, niniejszy konspekt nie omawia eksploracji danych samej w sobie. Nie dowiecie się tutaj o co chodzi w generowaniu drzew decyzyjnych czy grupowaniu danych. Te
Krótka instrukcja opracowania danych w programie SciDAVis v. 1-D013-win
Krótka instrukcja opracowania danych w programie SciDAVis v. 1-D013-win 1 Instalacja programu SciDAVis Microsoft Windows Informacje na temat projektu SciDAVis dostępne są na stronie http://scidavis.sourceforge.net/.
KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH
Inżynieria Rolnicza 13/2006 Jacek Goszczyński Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH Streszczenie Motywacją do badań
Funkcje wielu zmiennych
Funkcje wielu zmiennych oraz ich wykresy Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 WSTĘP Funkcje wielu zmiennych Dotychczas zajmowaliśmy się funkcjami rzeczywistymi: argumentem była jedna
Równania nieliniowe. LABORKA Piotr Ciskowski
Równania nieliniowe LABORKA Piotr Ciskowski przykład 1. funkcja fplot fplot ( f, granice ) fplot ( f, granice, n, linia, tol ) [ x, y ] = fplot ( )» fplot ( sin(x*x)/x, [ 0 4*pi ] )» fplot ( sin(x*x)/x,
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp
Wstęp Problem uczenia się pod nadzorem, inaczej nazywany uczeniem się z nauczycielem lub uczeniem się na przykładach, sprowadza się do określenia przydziału obiektów opisanych za pomocą wartości wielu
Matlab III Instrukcje, interpolacja, dopasowanie krzywych,
Matlab III Instrukcje, interpolacja, dopasowanie krzywych, Metody numeryczne w optyce 2017 Typy danych cd.. cell macierz komórkowa (blokowa) pojedynczymi elementami takiej macierzy mogą być nie tylko liczby
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
Podstawowe struktury danych Tablice, macierze. LABORKA Piotr Ciskowski
Podstawowe struktury danych Tablice, macierze LABORKA Piotr Ciskowski przykład 1. zabawy z macierzami wygeneruj macierze Pascala różnych rozmiarów, wydedukuj z nich zasadę tworzenia» pascal ( 5 ) przykład
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 O projekcie nr 2 roboty (samochody, odkurzacze, drony,...) gry planszowe, sterowanie (optymalizacja; windy,..) optymalizacja
Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych. Regresja logistyczna i jej zastosowanie
Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych Regresja logistyczna i jej zastosowanie Model regresji logistycznej jest budowany za pomocą klasy Logistic programu WEKA. Jako danych wejściowych
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Laboratorium 4. Naiwny klasyfikator Bayesa.
Laboratorium 4 Naiwny klasyfikator Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Wydział Inżynierii Mechanicznej i Mechatroniki. Mateusz Saków
Wydział Inżynierii Mechanicznej i Mechatroniki Mateusz Saków Nr albumu: 1974 Projekt z Mechatroniki Analiza układów drgających - nr przykładu. Kierunek studiów: Mechatronika Prowadzący: mgr inż. Mateusz
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Ćwiczenie 12. Metody eksploracji danych
Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych
Wyk lad 8: Leniwe metody klasyfikacji
Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:
Politechnika Warszawska
Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych
Maximum A Posteriori Chris Piech CS109, Stanford University
Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów
07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate numerically and present results in different formats and precision. 0. Oblicz numerycznie i przedstaw wyniki w różnych formatach i z różną precyzją.
1 Typy i formaty danych
do pakietu MathWorks MatLAB Pakiet MathWorks MatLAB jest środowiskiem obliczeniowym z wbudowanym własnym językiem wysokiego poziomu. Nazwa pochodzi ze zbitki dwóch angielskich słów: Matrix (macierz) i
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15