METODY INŻYNIERII WIEDZY
|
|
- Dominika Piątkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium Biocybernetyki Kraków, al. Mickiewicza 30, paw. C3/205 horzyk@agh.edu.pl, Google: Adrian Horzyk
2 1. Wczytaj dane dla przykładowego zbioru uczącego zbiór Iris, umieszczając dane w tabeli lub 6 kolumnowej tablicy elementów typu float. Zbiór uczący składa się ze zbioru par <x i, y i >, gdzie x i jest zbiorem parametrów wektorów x i ={x i 1,,x i n} definiujących obiekty, y i jest indeksem lub nazwą klasy, do której obiekt x i należy i którą razem z innymi obiektami tej klasy definiuje. 2. Pierwsze cztery kolumny reprezentują atrybuty: długość i szerokość listka i płatka kwiatu, natomiast 5. kolumna służy do zapisu numeru klasy: 1 Iris-Setosa, 2 Iris-Versicolor, 3 Iris-Virginica. Ostatnia 6. kolumna służy do zapisu wyniku działania metody, czyli zapisania numeru klasy, do której metoda przypisała dany wzorzec. 3. W podstawowej wersji tej metody dla wybranego k tworzymy podstawową pętlę obliczeniową, w której obliczamy odległość Euklidesa klasyfikowanego wzorca x (zadanego w postaci wektora określonych cech) do wszystkich wzorców uczących. Celem przyspieszenia działania metody knn możemy pominąć obliczanie pierwiastka bo ci sami najbliżsi sąsiedzi zostaną wybrani dla sumy kwadratów jak dla odległości Euklidesa. 4. Celem jest określenie najlepszego k oraz procentu wzorców poprawnie sklasyfikowanych. 5. Należy zbudować pętlę obliczeniową, w której dla kolejnych wzorców szukamy k najbliższych sąsiadów do wybranego wzorca.
3 6. Korzystamy tutaj z pomocniczej tablicy rankingowej, w której trzymamy k-najbliższych sąsiadów (id w tablicy wzorców) zgodnie z odległością Euklidesa lub sumę kwadratów: 7. W pętli obliczeniowej przechodzimy po wszystkich wzorcach uczących, z którego każdy po kolei traktujemy jako testowy, wyznaczając dla niego najbliższych sąsiadów w tabeli rankingowej. Wobec tego w tej pętli jest kolejna pętla, w której przechodzimy po pozostałych 149 wzorcach, których odległość do badanego wzorca badany i spośród nich K najbliższych zapisujemy do tablicy rankingowej, podmieniając je w trakcie pętli na te najbliższe w zależności od obliczonej odległości Euklidesa. Jeśli odległość ta jest mniejsza niż najdalszego w tej tablicy, wtedy jego wyszukujemy pozycję w liście poprzez proste wstawianie lub wstawianie połówkowe, a następnie przesuwamy wzorce w liście rankingowej. Ostatni najdalszy wypada z listy. 8. Tworzymy sobie funkcję, która oblicza nam odległość Euklidesa dla dwóch wskazanych wzorców o indeksach i,j z tablicy, sumując kwadraty odjętych od siebie odpowiadających wartości dla poszczególnych atrybutów: Tworzymy pętlę for (j=0; j<4; j++) sumakwadratów += (T[k][j] T[l][j]) * (T[k][j] T[l][j]); odległosceuklidesa = Math.Sqrt((T[k][j] T[l][j]) * (T[k][j] T[l][j]));
4 9. Po obliczeniu odległości Euklidesa sprawdzamy, czy jest ona mniejsza od odległości dla ostatniego wzorca w tablicy rankingowej R. 10. Jeśli nie, to przechodzimy do następnego wzorca i obliczamy odległość Euklidesa dla niego. 11. Jeśli tak, to algorytmem sortowania przez proste wstawianie lub algorytmem sortowania przez wstawianie połówkowe (dla bardziej ambitnych), wyszukujemy indeks w tablicy rankingowej R, idąc np. od najbardziej oddalonego wzorca w górę tablicy tak długo dopóki następny wzorzec nie będzie miał odległości mniejszej niż ta obliczona obecnie lub nie dojdziemy do początku tablicy. 12. Po wyznaczeniu indeksu w tablicy rankingowej R, dokonujemy przesunięcia wzorców o dłuższych odległościach w dół, przy czym ostatni (o najdłuższej odległości) wypada z niej. W miejscu wyznaczonego indeksu wpisujemy nowe ID wzorca oraz jego odległość od badanego. 13. W taki sposób wyznaczamy tablicę rankingową dla K najbliższych sąsiadów. Ambitni mogą zamiast tablicy zbudować listę rankingową, która nie wymaga przesuwania elementów w tablicy, więc działa szybciej! 14. Po wyznaczeniu tablicy rankingowej i konkretnego K, które badamy, możemy przejść do głosowania K najbliższych wzorców (na podstawie ich klas) na temat tego wzorca, którego klasę próbujemy określić. Głosowanie przebiega na zasadzie zwykłej większości głosów, a głosy zliczamy na podstawie numerów klas określonych dla porównywanych wzorców uczących. Zliczanie głosów możemy wykonać za pomocą małej pomocniczej tablicy: 15. W ogólnej wersji metody tworzymy tablicę najbliższych wzorców do dla poszczególnych k, wyznaczamy dla nich zwycięską klasę i najlepsze k.
5 16. Wszystko umieszczamy w pętli obliczeniowej i obliczamy te odległości i tabele Rankingowe dla kolejno wszystkich wzorców na zasadzie każdy względem pozostałych wzorców uczących i dla wszystkich badanych K = 1,, 20:
6 MODYFIKACJE METODY K NAJBLIŻSZYCH SĄSIADÓW Metoda Ważonych Odległości Najbliższych Sąsiadów (Distance Weighted Nearest Neighbors) prowadzi do głosowania na temat klasyfikacji gwiazdki biorąc pod uwagę k najbliższych sąsiadów lub nawet wszystkie wzorce, lecz ich głosy są ważone w zależności od ich odległości (dla wybranej metryki) do gwiazdki: im dalej jest głosujący wzorzec tym ma mniejszą wagę. A więc wzorce położone najbliżej będą miały największy wpływ na wynik klasyfikacji: w 2 w1 w 3 w 4 w 5 w7 w6
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ ĆWICZENIA Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
BAZY DANYCH. Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
BAZY DANYCH MAKRA I PRZYCISKI. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access MAKRA I PRZYCISKI Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej
BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
TRANSFORMACJE I JAKOŚĆ DANYCH
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
Zagadnienie klasyfikacji (dyskryminacji)
Zagadnienie klasyfikacji (dyskryminacji) Przykład Bank chce klasyfikować klientów starających się o pożyczkę do jednej z dwóch grup: niskiego ryzyka (spłacających pożyczki terminowo) lub wysokiego ryzyka
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.
Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
PODSTAWY INFORMATYKI wykład 10.
PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,
WSTĘP DO INFORMATYKI. Struktury liniowe
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Struktury liniowe www.agh.edu.pl STRUKTURY LINIOWE SEKWENCJE Struktury
Asocjacyjna reprezentacja danych i wnioskowanie
Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1
BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
PODSTAWY INFORMATYKI wykład 5.
PODSTAWY INFORMATYKI wykład 5. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,
PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Adrian Horzyk
Sztuczne Systemy Skojarzeniowe SSS Asocjacyjne grafowe struktury danych AGDS Associative Graph Data Structure Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Metody Inżynierii Wiedzy
Metody Inżynierii Wiedzy Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Mateusz Burcon Kraków, czerwiec 2017 Wykorzystane technologie Python 3.4
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Pzetestuj działanie pętli while i do...while na poniższym przykładzie:
Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D
Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 9 TECHNOLOGIE INFORMACYJNE
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 9 TECHNOLOGIE INFORMACYJNE I rok Kierunek Zarządzanie i Inżynieria Produkcji Temat: Tworzenie złożonych arkuszy obliczeniowych
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Metoda list prostych Wykład II. Agnieszka Nowak - Brzezińska
Metoda list prostych Wykład II Agnieszka Nowak - Brzezińska Wprowadzenie Przykładowa KW Inna wersja KW Wyszukiwanie informacji Metoda I 1. Przeglądamy kolejne opisy obiektów i wybieramy te, które zawierają
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Laboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Podstawy Programowania C++
Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki
INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu
Lab 9 Podstawy Programowania
Lab 9 Podstawy Programowania (Kaja.Gutowska@cs.put.poznan.pl) Wszystkie kody/fragmenty kodów dostępne w osobnym pliku.txt. Materiały pomocnicze: Wskaźnik to specjalny rodzaj zmiennej, w której zapisany
BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Zakładka Obmiar jest dostępna dla pozycji kosztorysowej w dolnym panelu. Służy do obliczania ilości robót (patrz też p ).
1.1.1. Obmiar Zakładka Obmiar jest dostępna dla pozycji kosztorysowej w dolnym panelu. Służy do obliczania ilości robót (patrz też p. 4.3.15). Zakładka przypomina swoim wyglądem uproszczony arkusz kalkulacyjny.
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Zapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Algorytmy przeszukiwania wzorca
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?
Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Wymagania edukacyjne z informatyki w klasie VIII
Wymagania edukacyjne z informatyki w klasie VIII Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy uczeń. Wymagania podstawowe
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Odwrotna Notacja Polska
Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy).
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z
Informatyka 1. Złożoność obliczeniowa
Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
BAZY DANYCH. NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
WHILE (wyrażenie) instrukcja;
INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 2017/18. Informatyka Etap III
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 017/18 Informatyka Etap III Zadania po 17 punktów Zadanie 1 Dla pewnej N-cyfrowej liczby naturalnej obliczono
Regresja liniowa, klasyfikacja metodą k-nn. Agnieszka Nowak Brzezińska
Regresja liniowa, klasyfikacja metodą k-nn Agnieszka Nowak Brzezińska Analiza regresji Analiza regresji jest bardzo popularną i chętnie stosowaną techniką statystyczną pozwalającą opisywać związki zachodzące
Wykład 6. Wyszukiwanie wzorca w tekście
Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
WHILE (wyrażenie) instrukcja;
INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
Język C część 2. Podejmowanie decyzji w programie. if else. switch
Język C część 2 Podejmowanie decyzji w programie if else Instrukcja warunkowa umożliwia wykonanie pewnej instrukcji w zależności od wartości wyrażenia. Wszystkie wartości różne od 0, są w języku C traktowane
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Algorytmy i struktury danych
Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
- - Ocena wykonaniu zad3. Brak zad3
Indeks Zad1 Zad2 Zad3 Zad4 Zad Ocena 20986 218129 ocena 4 Zadanie składa się z Cw3_2_a oraz Cw3_2_b Brak opcjonalnego wywołania operacji na tablicy. Brak pętli Ocena 2 Brak zad3 Ocena wykonaniu zad3 po
1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
wagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
A. Arkusz standardowy GM-A1, B1, C1 oraz arkusze przystosowane: GM-A4, GM-A5, GM-A6 1.
GM Charakterystyka arkuszy egzaminacyjnych A. Arkusz standardowy GM-A1, B1, C1 oraz arkusze przystosowane: GM-A4, GM-A5, GM-A6 1. Zestaw egzaminacyjny z zakresu przedmiotów matematyczno-przyrodniczych
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt