Metody klasyfikacji Danych wielowymiarowych by mgr inz. Marcin Kurdziel and mgr inz. Tomasz Arodz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody klasyfikacji Danych wielowymiarowych by mgr inz. Marcin Kurdziel and mgr inz. Tomasz Arodz"

Transkrypt

1 Metody klasyfikacji Danych wielowymiarowych by mgr inz. and mgr inz. Tomasz Arodz supervised by Professor Dr W.Dzwinel Agenda Klasyfikacja liniowa podstawowe pojecia Algorytm perceptronu Fisher Linear Discriminant Support Vector Classification Optymalna plaszczyzna separujaca Przypadek klas nieseparowalnych Uogólnienie algorytmu SVC separacja nieliniowa Rezultaty 1

2 Klasyfikacja liniowa podstawowe pojecia { } Zbiór danych trenujacych: xi, i =1,..., n n Kazdy wektor xi R ma scisle przypisana przynaleznosc klasowa: { 0,1} Klasy rozdzielamy hiperplaszczyzna n (plaszczyzna w przestrzeni R ): T Φ : w x + b = n i= 1 w x + b = 0 i i y i Klasyfikacja liniowa podstawowe pojecia (c.d.) Hiperlaszczyzna w przestrzeni n-wymiarowej 2

3 Algorytm perceptronu Aby uproscic zapis, wygodnie jest rozwazac n+1 hiperplaszczyzne w przestrzeni R : w = z = Φ : [ w1, w2, K, wn, b] T [ x x, K, x,1] 1, w T 2 z = n + 1 i= 1 n w z i i T = 0 Wtedy funkcja decyzyjna przyjmuje postac: φ ( z) T 1 w z > 0 = T 0 w z 0 Algorytm perceptronu (c.d.) Diagram perceptronu Z1 Z2 Z3 1 Zn+1 n+1 3

4 Algorytm perceptronu (c.d.) Trening perceptronu ma charakter algorytmu iteracyjnego postaci: m=1; do Gdzie wybierz m-ty wektor z zbioru trenujacego (cyklicznie). m+1 m w = w +η y φ z z ( ( )) m m until (wszystkie wektory sa poprawnie klasyfikowane) η > 0 to stala uczenia m Fisher Linear Discriminant Klasyfikacja wieloklasowa: { C C K } - K klas 1, 2, C K Cel znalezc transformacje liniowa która maksymalizuje odleglosc srodków klas a zarazem minimalizuje odleglosc wektorów wewnatrz klas µ x Niech oznacza srodek calego zbioru danych trenujacych, zas µ x,k srodek klasy k. 4

5 Fisher Linear Discriminant (c.d.) Definiujemy macierze: macierz rozrzutu pomiedzy klasami S ( µ µ )( µ ) T K b = N k x, k x, k x, k µ x, k k = 1 macierz rozrzutu wewnatrz klas S K ( xi µ x, k )( xi x, k ) w = µ k = 1 C x i k Wyznaczamy przeksztalcenie w które optymalizuje kryterium Fishera: T det( w SBw) max T det w S w ( ) w T Fisher Linear Discriminant (c.d.) Sprowadza sie to do znalezienia wektorów 1 wlasnych macierzy: S b S w FLD PCA 5

6 Support Vector Classification Separacja hiperplaszczyzna Margin Width Margin Width 6

7 Separacja hiperplaszczyzna cd Class 1 wx + b < 0 m Class 2 wx + b = 1 wx + b > 0 wx + b =1 wx + b = 0 Mozna pokazac ze margines separacji m jest ograniczony przez: m 2 w Optymalna plaszczyzna separujaca Niech { xi, i =1,..., n} oznacza zbiór danych trenujacych. Dalej niech y i { 1,1 } reprezentuje przynaleznosc wektora x i do jednej z klas. Warunek poprawnej klasyfikacji narzuca: ( wx + b) 1, i = 1 n yi i,..., 7

8 Optymalna plaszczyzna separujaca cd Zadanie budowy optymalnej plaszczyzny separujacej mozna wiec wyrazic jako nastepujacy problem optymalizacyjny: zminimalizuj: (lub inaczej: ) 2 w 1 w tak aby: y ( wx + b) 1, i = 1 n i i,..., Przypadek klas liniowo nieseparowalnych W przypadku gdy dane wejsciowe formuluja klasy nieseparowalne liniowo zaproponowany problem optymalizacyjny nie bedzie posiadal rozwiazania. Co wiecej, jesli dane wejsciowe zawieraja szum, wymóg 100% poprawnej klasyfikacji moze prowadzic do granic decyzyjnych charakteryzujacych sie slaba generalizacja. Konieczne jest uogólnienie algorytmu. 8

9 Przypadek klas liniowo nieseparowalnych cd Przypadek klas liniowo nieseparowalnych cd Uogólnienie algorytmu na przypadek klas liniowo nieseparowalnych prowadzi sie poprzez oslabienie ograniczen: ( wx + b) 1 ξ, ξ 0, i = 1 n yi i i i,..., Odpowiednio trzeba tez zmienic funkcje celu: τ n 1, ξ 2 2 ( w?) = w + C i= 1 i 9

10 Przypadek klas liniowo nieseparowalnych cd ξ i ξ i Postac dualna Stosujac uogólniona metode Mnozników Lagrangea mozna tak postawiony problem przeksztalcic do postaci dualnej latwej do rozwiazania numerycznie. maksymalizuj: n n 1 W( a) = α i α iα jyi yj xix 2 tak aby: 0 α C, i i= 1 i, j= 1 i = 1,..., n ( ) j n i= 1 α y i i = 0 10

11 Postac dualna cd Jako rozwiazanie dostajemy wektor mnozników: Generuje on plaszczyzna decyzyjna postaci: a n class( x) = sgn α yi i= 1 gdzie: i xi, x + b b = y i αi y n j= 1 j x, x j i, α i 0 Postac dualna cd Wiekszosc mnozników a i rozwiazania jest zerowa. x i Wektory dla których zachodzi a i 0 nazywamy Support Vectors. Tylko takie wektory wnosza przyczynek do rozwiazania. r 11

12 Idea klasyfikacji opartej na kernelu Przyklady algorytmów opartych na kernelu. Przyklad zaklasyfikuj punkt w przestrzeni cech do klasy której srodek znajduje sie blizej. Rozwiazanie kernelowe? Oblicz znak iloczynu skalarnego wektorów i 12

13 Przyklady algorytmów opartych na kernelu cd Kolejny przyklad - rozwazmy jednomiany stopnia 2 wspólrzednych danych wejsciowych. Przyklady algorytmów opartych na kernelu cd Ale: Bardziej ogólnie wszystkie jednomiany stopnia d d Co wiecej, dla: ( < x, x' > + 1) otrzymujemy wszystkie jednomiany stopnia nie wiekszego od d 13

14 Wielomianowy: Czesto stosowane kernele Gaussowski: Sigmoidalny: Nieliniowy klasyfikator SVM Poniewaz klasyfikator SVM wykorzystuje dane wejsciowe jedynie przez iloczyny skalarne mozliwe jest jego delinearyzacja poprzez zastosowanie kernela. Otrzymujemy nastepujaca funkcje decyzyjna: n class( x) = sgn α i= 1 b = y i αi y n j= 1 j K i yi K i, ( x x) + b ( x, x ), α 0 j i i 14

15 Rezultaty Rezultaty cd. 15

16 Rezultaty cd Rezultaty cd, 16

17 Rezultaty cd. Rezultaty cd. 17

18 Rezultaty cd. Metody klasyfikacji danych wielowymiarowych II 18

19 Agenda Sieci neuronowe Wielowarstwowy perceptron Metody Ensemble Classification Boosting Bagging Random Subspace Method Perceptron wielowarstwowy Perceptron realizuje liniowa granice decyzyjna Niemoznosc rozwiazania pewnych problemów: np. problemu XOR Aby usunac to ograniczenie, wprowadza sie kilka warstw perceptronów W kazdej warstwie znajduje sie pewna liczba perceptronów 19

20 Uczenie sieci wielowarstwowej Aby mozliwe bylo uczenie sieci wielowarstwowej, funkcja aktywacji neuronu musi byc rózniczkowalna Równoczesnie musi stosunkowo dobrze przyblizac zachowanie funkcji binarnej Przyklad: funkcja sigmoidalna Metoda uczenia: Niech: Uczenie sieci wielowarstwowej (II) w ji oznacza wage polaczenia z neuronu i do j Dopóki blad nie spadnie ponizej E Dla kazdego wektora wejsciowego x o wektorze wyjsciowym t Oblicz wynik o u dla kazdego perceptronu u Dla kazdego neuronu z warstwy wyjsciowej oblicz sygnal bledu Dla kazdego neuronu z warstw ukrytych oblicz sygnal bledu Oblicz zmiane wagi w ji : 20

21 Uczenie sieci wielowarstwowej (III) Sposób obliczania sygnalu bledu: Dla neuronów z warstwy wyjsciowej: Dla neuronów z warstw ukrytych: Sposób obliczania zmiany wag: Nieliniowosc sieci wielowarstwowych Liczba warstw = 1 decyzja liniowa Liczba warstw = 2 decyzja nieliniowa z ograniczeniami Liczba warstw = 3 dowolna nieliniowa granica decyzyjna 21

22 Ang. Ensemble methods Klasyfikatory zbiorcze Koncowa decyzja oparta na decyzjach zbioru prostych klasyfikatorów Klasyfikator prosty moze charakteryzowac sie stosunkowo duzym bledem Koncowy klasyfikator zbiorczy konstruowany w ten sposób, by na podstawie niepewnych decyzji zbioru klasyfikatorów prostych podjac decyzje w sposób pewny Klasyfikatory typu Boosting najpopularniejsze klasyfikatory zbiorcze Inne rodzaje to: Bagging, Random Subspace Method Boosting podejmowanie decyzji Zbiór T klasyfikatorów prostych h t, t=1..t h t (x) = {+1,-1} Klasyfikator koncowy h = [-1,1]: Sign(h) jest traktowane jako koncowa decyzja Abs(h) jest traktowane jako jakosc decyzji 22

23 Boosting uczenie Dziala w turach, w kazdej trenujac jeden klasyfikator prosty h t Klasyfikatory proste w róznych turach maja inny cel uczenia Cel uczenia klasyfikatorów prostych minimalizacja bledu na tym samym zbiorze treningowym przy zmienionych prawdopodobienstwach (wagach) poszczególnych przykladów Boosting algorytm uczenia Inicjalizacja: Przypisanie wszystkim przykladom x i wagi D 0 (i)=d 0 Kolejne tury: Wyuczenie prostego klasyfikator h t by minimalizowal blad na zbiorze {x i } wazonym wagami D t (i) Zmiana wagi D t (i) odpowiednio w zaleznosci od wyniku dzialania h t Obliczenie wagi α t klasyfikatora h t w koncowym klasyfikatorze h 23

24 Boosting wagi klasyfikatorów Obliczenie bledu wazonego Obliczenie parametru β t Waga α t klasyfikatora prostego h t Wartosc α t jest dobierana tak, by minimalizowac: Boosting wagi przykladów Obliczenie bledu wazonego Obliczenie parametru β t Zmiana wag D t (i) Kazdy przyklad x i jest klasyfikowany nowym klasyfikatorem prostym h t Jesli x i jest sklasyfikowany poprawnie, zmiana wagi: Normalizacja wag, by ich suma byla równa 1 24

25 Uczenie przyklad Uczenie przyklad II 25

26 Stosowane klasyfikatory proste Drzewa decyzyjne decision stump klasyfikator liniowy równolegly do wszystkich z wyjatkiem jednej osi przestrzeni cech Klasyfikatory liniowe, np. oparte o PCA, LDA Siecie neuronowe, np. pojedynczy perceptron SVM Boosting jako klasyfikator nieliniowy Nieliniowy klasyfikator prosty: Przy zalozeniu, iz klasyfikator prosty jest liniowy: Boosting wprowadza dodatkowa warstwe Odpowada to sieci neuronowej o dwóch warstwach Pozwala na klasyfikacje nieliniowa, ale z ograniczeniami 26

27 Problem dwuklasowy na plaszczyznie Nieliniowosc - przyklady Nieliniowosc przyklady (II) Wynik uczenia dla AdaBoost z liniowym klasyfikatorem prostym opartym na PCA i decision stump 27

28 Nieliniowosc przyklady (III) Wynik uczenia dla AdaBoost z liniowym klasyfikatorem prostym opartym na LDA i decision stump Nieliniowosc przyklady (IV) Problem poprzedni z mniejsza liczba danych treningowych 28

29 Nieliniowosc przyklady (V) Wynik uczenia dla AdaBoost z liniowym klasyfikatorem prostym opartym na LDA i decision stump Boosting teoretyczne podstawy Warunki nakladane na prosty klasyfikator Blad mniejszy niz 50% Mozliwosc treningu dla przykladów z wagami Niestabilnosc podatnosc na zmiany wag Gwarantowane ograniczenie na blad klasyfikacji na zbiorze treningowym 29

30 Boosting generalizacja (1) Wymiar Vapnika-Chervonenkisa (VC) Miara zlozonosci klasyfikatora Max. d takie, ze d przykladów mozna sklasyfikowac na 2 d sposobów przez klasyfikatory z danej rodziny Np. dla pojedynczej granicy decyzyjnej w 1D, dla d=2 mozna (+- -+), dla d=3 nie (+-+), wiec VC-dim=2 Wymiar VC dla koncowej hipotezy Blad uogólnienia klasyfikatora Boosting generalizacja (2) Margines na przykladzie Margines na zbiorze przykladów minimum z marginesów na przykladach Blad wzgledem marginesu Blad uogólnienia wzgledem marginesu 30

31 Bagging Nazwa pochodzi od bootstrap aggregation Trenowanie zbioru klasyfikatorów podstawowych, na róznych podzbiorach zbioru trenujacego Klasyfikator podstawowy powinien samodzielnie dawac dobre wyniki Bagging stabilizuje dzialanie innych klasyfikatorów Bagging pozwala na uzyskanie lepszej zdolnosci do generalizacji Bagging podejmowanie decyzji Zbiór T klasyfikatorów podstawowych h t, t=1..t h t (x) = {+1,-1} Klasyfikator koncowy h = [-1,1]: Sign(h) jest traktowane jako koncowa decyzja Abs(h) jest traktowane jako jakosc decyzji 31

32 Bagging uczenie Dziala w turach, w kazdej trenujac jeden klasyfikator podstawowy h t Tury moga byc wykonywane równolegle nie sa od siebie zalezne Klasyfikatory podstawowe ucza sie na róznych zbiorach danych, wybranych losowo z powtórzeniami ze zbioru trenujacego Random Subspace Method Metoda podobna w celach do Baggingu Zamiast wybierac podzbiór danych treningowych wybiera sie podzbiór cech Konieczny stosunkowo dobry klasyfikator podstawowy Uczenie zachodzi w podprzestrzeni przestrzeni cech Podobnie jak w przypadku Baggingu, prowadzi to do lepszej zdolnosci uogólniania 32

33 Boosting - Przyklad zastosowania Wykrywanie twarzy 3000 przykladów Klasyfikator prosty cech Cechy 33

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992

Bardziej szczegółowo

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa. GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie

Bardziej szczegółowo

Klasyfikacja LDA + walidacja

Klasyfikacja LDA + walidacja Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

SVM: Maszyny Wektorów Podpieraja cych

SVM: Maszyny Wektorów Podpieraja cych SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Klasyfikatory SVM. Przemysław Klęsk. 1 Wiadomości ogólne 1. 2 Margines separacji Wzór na odległość punktu od płaszczyzny...

Klasyfikatory SVM. Przemysław Klęsk. 1 Wiadomości ogólne 1. 2 Margines separacji Wzór na odległość punktu od płaszczyzny... Klasyfikatory SVM Przemysław Klęsk Spis treści 1 Wiadomości ogólne 1 Margines separacji 3.1 Wzór na odległość punktu od płaszczyzny... 3 3 Przypadek liniowej separowalności danych znajdowanie płaszczyzny

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

A Zadanie

A Zadanie where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

wiedzy Sieci neuronowe (c.d.)

wiedzy Sieci neuronowe (c.d.) Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki

Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób:

W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób: Spis treści 1 Maszyny Wektorów Wspierających 2 1.1 SVM w formaliźmie Lagranga 1.2 Przejście do pstaci dualnej 1.2.1 Wyznaczenie parametrów modelu: 1.2.2 Klasyfikacja: 2 Funkcje jądrowe 2.1 Mapowanie do

Bardziej szczegółowo

WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie Zaawansowane Metody Uczenia Maszynowego Perceptron Rosenblatta Szukamy hiperpłaszczyzny β 0 + β 1 najlepiej

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy

Bardziej szczegółowo

Entropia Renyi ego, estymacja gęstości i klasyfikacja

Entropia Renyi ego, estymacja gęstości i klasyfikacja Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

Biometria WYKŁAD 7: ROZPOZNAWANIE I KLASYFIKACJA OBIEKTÓW

Biometria WYKŁAD 7: ROZPOZNAWANIE I KLASYFIKACJA OBIEKTÓW Biometria WYKŁAD 7: ROZPOZNAWANIE I KLASYFIKACJA OBIEKTÓW http://ryszardtadeusiewicz.natemat.pl/151007,klasyka-sztucznej-inteligencji-rozpoznawanie-obrazow Cechy i przestrzenie cech Każda z właściwości

Bardziej szczegółowo

Lokalne klasyfikatory jako narzędzie analizy i

Lokalne klasyfikatory jako narzędzie analizy i Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów 25 listopada 2005 Lokalne klasyfikatory... 2 Część I Hierarchiczne biortogonalne bazy dyskryminacyjne Lokalne klasyfikatory... 3 Sformułowanie

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Sprawdzian 3 gr1 (22/01/04) Imie i nazwisko:...grupa: Odpowedz na wszystkie pytania, pamietaj o uzasadnieniu odpowiedzi.

Sprawdzian 3 gr1 (22/01/04) Imie i nazwisko:...grupa: Odpowedz na wszystkie pytania, pamietaj o uzasadnieniu odpowiedzi. Sprawdzian 3 gr1 (22/01/04) Imie i nazwisko:...............................grupa: 1. Dane sa dwa wektory β 1 = (1, 2, 3) i β 2 = ( 2, 4, 6) w R 3. Niech W = lin(β 1, β 2 ) oraz V = {(x 1, x 2, x 3 ) 2x

Bardziej szczegółowo

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q). 1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1 Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c + f

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Wstęp do przetwarzania języka naturalnego. Wykład 11 Maszyna Wektorów Nośnych

Wstęp do przetwarzania języka naturalnego. Wykład 11 Maszyna Wektorów Nośnych Wstęp do przetwarzania języka naturalnego Wykład 11 Wojciech Czarnecki 8 stycznia 2014 Section 1 Przypomnienie Wektoryzacja tfidf Przypomnienie document x y z Antony and Cleopatra 5.25 1.21 1.51 Julius

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

Uczenie sieci radialnych (RBF)

Uczenie sieci radialnych (RBF) Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Popularne klasyfikatory w pakietach komputerowych

Popularne klasyfikatory w pakietach komputerowych Popularne klasyfikatory w pakietach komputerowych Klasyfikator liniowy Uogólniony klasyfikator liniowy SVM aiwny klasyfikator bayesowski Ocena klasyfikatora ROC Lista popularnych pakietów Klasyfikator

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr.

Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Warszawa, 10 Marca 2016 Plan prezentacji. Definicja funkcji jądrowej. Plan prezentacji. Definicja funkcji jądrowej. Opis problemu

Bardziej szczegółowo

Widzenie komputerowe

Widzenie komputerowe Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie

Bardziej szczegółowo

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0 Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

6. Perceptron Rosenblatta

6. Perceptron Rosenblatta 6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp

Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp Wstęp Problem uczenia się pod nadzorem, inaczej nazywany uczeniem się z nauczycielem lub uczeniem się na przykładach, sprowadza się do określenia przydziału obiektów opisanych za pomocą wartości wielu

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH

ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH Michał Trzęsiok ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH Wprowadzenie Konstruowanie funkcji klasyfikujących przez łączenie wielu modeli składowych stanowi główny nurt

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień

Bardziej szczegółowo

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja

Bardziej szczegółowo

Metody klasyfikacji dla nielicznej próbki wektorów o wielkim wymiarze

Metody klasyfikacji dla nielicznej próbki wektorów o wielkim wymiarze Metody klasyfikacji dla nielicznej próbki wektorów o wielkim wymiarze Small n large p problem Problem w analizie wielu zbiorów danych biologicznych: bardzo mała liczba obserwacji (rekordów, próbek) rzędu

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q). 1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1. Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c +

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień

Bardziej szczegółowo

Oracle Data Mining 10g

Oracle Data Mining 10g Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Metody klasyfikacji danych - część 2 p.1/55

Metody klasyfikacji danych - część 2 p.1/55 Metody klasyfikacji danych - część 2 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 2 p.1/55 Plan wykładu - AdaBoost - Klasyfikacja metoda wektorów wspierajacych (SVM)

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo