Dynamika relatywistyczna
|
|
- Bronisław Marcinkowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dynamika relatywistyczna Fizyka I (Mechanika) Wykład IX: czastki elementarne akceleratory czastek rozpady czastek rozpraszanie nieelastyczne foton jako czastka: efekt Dopplera i efekt Comptona
2 Fermiony Świat czastek elementarnych świat codzienny zbudowany jest z 3 cegiełek (elektron oraz kwarki u i d) Nukleony składaja się z 3 kwarków: proton (uud), neutron(udd). Fizyka czastek znalazła już jednak 12 fundamentalnych cegiełek materii, fermionów (czastek o spinie 1/2) leptony kwarki pokolenie 1 e ν e d u elektron neutrino el. down up pokolenie 2 µ ν µ s c mion neutrino mionowe strange charm pokolenie 3 τ ν τ b t taon neutrino taonowe beauty top (bottom) (truth) ładunek [e] 1 0 1/3 +2/3 Wszystkie leptony obserwujemy jako czastki swobodne Kwarki sa zawsze uwięzione w hadronach (czastkach oddziałujacych silnie) A.F.Żarnecki Wykład IX 1
3 Świat czastek elementarnych Bozony Cegiełki materii oddziałuja ze soba poprzez wymianę nośników oddziaływań Nośnik przekazuje część energii i/lub pędu jednej czastki drugiej czastce oddziaływanie źródło nośnik moc grawitacyjne masa grawiton G elektromagnetyczne ładunek foton γ 10 2 silne kolor gluony g 1 słabe ładunek słaby bozony W ±, Z 10 7 pośredniczace moc - przykładowe porównanie wielkości oddziaływań dla dwóch sasiaduj acych protonów A.F.Żarnecki Wykład IX 2
4 A.F.Żarnecki Wykład IX 3
5 γ g elektromagnetyczne silne W + Z 0 W - G slabe grawitacyjne A.F.Żarnecki Wykład IX 4
6 Akceleratory W 1919 roku Rutherford wskazał na korzyści z przyspieszania czastek. Pole elektrostatyczne (g. Cockrofta-Waltona, Van de Graaffa) ograniczone do 30 MV Akcelerator liniowy Idea: Gustav Ising Pierwsze urzadzenia: Rolf Wideroe 1927, Lawrence Czastka przechodzi przez kolejne kondensatory q>0 E Przy odpowiednim dobraniu długości kolejnych elementów i częstości napięcia zasilajacego, czastka trafia zawsze na pole przyspieszajace. zwielokrotnienie uzyskiwanych energii Częstość jest zazwyczaj stała. Długości kolejnych elementów rosna proporcjonalnie do prędkości czastki. U Dla E m, prędkość β 1: L=const. A.F.Żarnecki Wykład IX 5
7 Liniowy akcelerator protonów w ośrodku Fermilab (USA) A.F.Żarnecki Wykład IX 6
8 Wnęka rezonansowa Akceleratory W praktyce do przyspieszania czastek wykorzystujemy tzw. wnęki rezonansowe: Klistron Wewnatrz wnęki wytwarzana jest stojaca fala elektromagnetyczna. Długość fali/wnęki jest tak dobrana, że czastka zawsze trafia na pole przyspieszajace. Częstości rzędu 1 GHz - mikrofale. Wnęki rezonansowe pozwalaja uzyskiwać natężenia pola rzędu 10 MV/m dla uzyskania energii 1 GeV potrzebny jest akcelerator liniowy o długości 100 m A.F.Żarnecki Wykład IX 7
9 Wnęka rezonansowa A.F.Żarnecki Wykład IX 8
10 Akceleratory Akcelerator kołowy Zamiast używać wielu wnęk możemy wykorzystać pole magnetyczne do zapętlenia czastki. Schemat pogladowy: B Czastki moga przechodzić przez wnękę przyspieszajac a wiele razy... E Pierwszy tego typu akcelerator (cyklotron) zbudował w 1931 roku Ernest Lawrence U A.F.Żarnecki Wykład IX 9
11 Akceleratory Cyklotron Ernest Lawrence Schemat Pierwszy cyklotron A.F.Żarnecki Wykład IX 10
12 Akceleratory Akcelerator kołowy W praktyce akceleratory kołowe zbudowane sa z wielu powtarzajacych się segmentów: Każdy segment składa się z Schemat akceleratora: wnęk przyspieszajacych (A) magnesów zakrzywiajacych (B) układów ogniskujacych (F) F A B A.F.Żarnecki Wykład IX 11
13 LEP/LHC Akceleratory Największy zbudowany dotad akcelerator: LEP w CERN pod Genewa, obwód 27 km. Zderzał przeciwbieżne wiazki elektronów i pozytonów do energii 100 GeV. W tym samym tunelu zbudowano następnie LHC, który zderza przeciwbieżne wiazki protonów o energii 3.5 TeV (docelowo 7 TeV). Docelowo 2800 "paczek" po protonów. Energia jednej paczki: 10 5 J Samochód osobowy jadacy ok. 60 km/h Całkowita energia wiazek: J Energia pola magnetycznego: J Airbus A380 lecacy z prędkościa 700 km/h. A.F.Żarnecki Wykład IX 12
14 LHC, CERN, Genewa A.F.Żarnecki Wykład IX 13
15 Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd czastki: p = m c γ β = m γ V β = V c Relatywistyczne wyrażenia na energię czastki: Ò ØÝÞÒ E Ò Ö k = m c 2 (γ 1) ÔÓÞÝÒ ÓÛ E Ò Ö 0 = m c 2 E = m c 2 γ ÓÛ Ø Ò Ö Dla dowolnego izolowanego układu obowiazuj a zawsze: i i E i = i p i = i γ i m i c 2 = const γ i m i Vi = const Þ Þ ÓÛ Ò Ò Ö Þ Þ ÓÛ Ò Ô Ù A.F.Żarnecki Wykład IX 14
16 Dynamika relatywistyczna Transformacja Zamiast rozważać niezależnie energię i pęd układu, wygodnie jest wprowadzić czterowektor energii-pędu: E = (E, c p) = (E, cp x, cp y, cp z ) Przy zmianie układu odniesienia, czterowektor energii-pędu podlega transformacji Lorentza identycznej z transformacja dla współrzędnych czasoprzestrzennych zdarzeń. E c p x c p y c p z = γ E + γ β c p,x γ β E + γ c p,x c p,y c p,z = γ γ β 0 0 γ β γ E c p,x c p,y c p,z energia czas pęd położenie A.F.Żarnecki Wykład IX 15
17 Dynamika relatywistyczna Masa niezmiennicza Niezmiennik transformacji Lorenza, (nie zależy od wyboru układu odniesienia) M 2 c 4 = s = E 2 p 2 c 2 Dla dowolnego izolowanego układu fizycznego masa niezmiennicza jest zachowana (nie zmienia się w czasie). Wynika to z zasady zachowania energii i pędu. podstawowe pojęcie w analizie zderzeń relatywistycznych, zwłaszcza w procesach nieelastycznych (produkcja nowych czastek) Masa niezmiennicza jest tożsama z energia układu w układzie środka masy (P = 0). Dla zderzajacych się czastek mówimy o energii dostępnej w układzie środka masy. Dla pojedynczej czastki masa niezmiennicza jest tożsama z masa czastki (energia spoczynkowa). A.F.Żarnecki Wykład IX 16
18 Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak czastki zderzajace się. W szczególności: m 1 = m 1 i m 2 = m 2 W zderzeniach czastek wysokiej energii jest to jednak wyjatek (!) Zderzenia nieelastyczne W oddziaływaniach czastek elementarnych, zwłaszcza przy wysokiej energii, obserwujemy bardzo wiele reakcji, w których powstaja nowe czastki: Rozpady czastek: a b + c Produkcja pojedyńczej czastki (tzw. rezonansu ): a + b c Rozproszenie nieelastyczne dwóch czastek: a + b c + d jedna z czastek na końcu może być czastk a stanu poczatkowego Produkcja wielu czastek: a + b X gdzie X oznacza dowolny stan wieloczastkowy A.F.Żarnecki Wykład IX 17
19 Rozpady czastek Rozawżmy rozpad czastki o masie M na n czastek o masach m i (i = 1... n). Masa niezmiennicza przed rozpadem: M i = M. Masa niezmiennicza po rozpadzie: M 2 f = i = i 2 E i E 2 i + 2 i i p i 2 j>i E i E j i p 2 i 2 i j>i p i p j Dla dowolnej pary czasteh i, j mamy: Ei 2 = p2 i + m2 i E i E j = (p 2 i + m2 i )(p2 j + m2 j ) = (p i p j + m i m j ) 2 + (p i m j p j m i ) 2 Ostatecznie: M 2 f i p i p j + m i m j E i E j p i p j E i E j p i p j m i m j m 2 i + 2 i j>i m i m j = i 2 m i = s min A.F.Żarnecki Wykład IX 18
20 Rozpady czastek Warunek konieczny, aby mógł mieć miejsce rozpad: M i m i = s min Dla rozpadu dwuciałowego, w układzie czastki: p 1 = p 2 Jaka będzie wartość pędu produktów rozpadu: p = p 1 = p 2? M 2 = (E 1 + E 2 ) 2 (p 1 p 2 ) 2 = m m (p 2 + m 2 1 )(p2 + m 2 2 ) + 2p2 (M 2 m 2 1 m2 2 2p2 ) 2 = 4(p 2 + m 2 1 )(p2 + m 2 2 ) 4M 2 p 2 = (M 2 m 2 1 m2 2 )2 4m 2 1 m2 2 p = (M 2 (m 1 + m 2 ) 2 )(M 2 (m 1 m 2 ) 2 ) 2 M A.F.Żarnecki Wykład IX 19
21 Rozpady czastek Przypadek równych mas: m 1 = m 2 = m (M 2 4m 2 )M 2 p = = 2 M (M ) 2 m 2 E = M 2 2 W granicy, gdy jeden z produktów rozpadu jest bardzo lekki: m 1 m 2 M (M 2 m 2 2 p )2 = M 2 M 2 m2 2 E 1 2M m 2 2 2M - energia tracona na odrzut drugiego ciała Energie czastek po rozpadzie nie sa równe! Mierzac pęd (lub energię) jednego z produktów rozpadu, możemy wnioskować o masach pozostałych czastek. A.F.Żarnecki Wykład IX 20
22 Rozpady czastek Przykład Pion π + o masie m π = 140 MeV rozpada się na mion µ + (m µ = 106 MeV) i bezmasowe neutrino: Pędy produktów rozpadu: π + µ + + ν µ p = m2 π m 2 µ 2 m π 30 MeV Energie liczymy z definicji masy niezmienniczej: m 2 = E 2 p 2 E µ = E ν = Neutrino wynosi większość energii kinetycznej! p 2 + m 2 µ 110 MeV Eµ k = 4 MeV p 2 + m 2 ν = p = 30 MeV = Ek ν A.F.Żarnecki Wykład IX 21
23 Rozpady czastek Wszystkie czastki danego rodzaju (np. elektrony lub neutrony) sa identyczne. Nie maja też pamięci - ich własności nie zależa od czasu. Dla czastek nietrwałych oznacza to, że prawdopodobieństwo ich rozpadu w zadanym przedziale czasu jest zawsze takie samo. Rozważmy bardzo mały przedział czasu dt (znacznie mniejszy niż typowy czas rozpadu). Jeśli próbka zawiera N czastek to liczba oczekiwanych rozpadów musi być proporcjonalna do N i do dt: Całkujac to równanie otrzymujemy: dn = N(t + dt) N(t) = α N dt dn N = α dt ln N = α t + C N(t) = N(0) e αt ÔÖ ÛÓ ÖÓÞÔ Ù ÔÖÓÑ Ò ÓØÛ ÖÞ Ó A.F.Żarnecki Wykład IX 22
24 Rozpady czastek Prawdopodobieństwo rozpadu na jednostkę czasu (dla pojedynczej czastki): p(t) = α e αt Parametr α wiaże się ze średnim czasem życia czastki: τ = t = 0 t p(t)dt = 1 α p(t) = 1 τ e t/τ N(t) = N 0 e t/τ Jeśli czastka o masie m i średnim czasie życia τ (zawsze defniowanym w układzie czastki) ma w układzie obserwatora O energię E i pęd p, to obserwator zmierzy: N(t ) = N 0 e t γτ = N 0 e mt Eτ t = γ τ = E m τ Ö Ò ÖÓ ÛÓ Ó Ò λ = vt = β γ cτ = p m cτ A.F.Żarnecki Wykład IX 23
25 Przykład Rozpady czastek Jaki powinien być pęd mionu produkowanego w górnych warstwach atmosfery (h = 20 km), żeby mógł dolecieć do powierzchni Ziemi zanim się rozpadnie? Prawdopodobieństwo rozpadu w funkcji odległości: p(x) = 1 λ e x/λ λ = p m cτ Prawdopodobieństwo, że mion doleci do powierzchni Ziemi: P(x > h) = h p(x)dx = e h/λ jest formalnie niezerowe dla dowolnego pędu. Duże szanse dolecieć maja jednak tylko miony, dla których λ > h: p m cτ > h p > h cτ m Dla mionu: τ = 2.2 µs (cτ 660 m), m 100 MeV: p > h m 30 m = 3 GeV cτ A.F.Żarnecki Wykład IX 24
26 Zderzenia e + e Zderzenia relatywistyczne Przekrój czynny na produkcję hadronów w funkcji dostępnej energii: 10 7 ω φ J/ψ ψ(2s) σ(e + e _ qq hadrons) [pb] ρ Z s (GeV) A.F.Żarnecki Wykład IX 25
27 Zderzenia relatywistyczne Zderzenia e + e W całym zakresie zbadanych energii mamy niezerowy przekrój czynny na produkcję kwarków. Proces ten opisujeny jako anihilację e + e w wirtualny foton, który następnie rozpada sie na parę q q e e + γ q _ q Produkcja rezonansów Przy pewnych wartościach s obserwujemy wzrost produkcji kwarków o kilka rzędów wielkości. Jest to efekt rezonansowej produkcji czastek e e + J/ Ψ Aby w zderzeniu dwóch czastek powstała jedna, (np: e + e J/Ψ q q ) masa niezmiennicza zderzajacych się czastek musi być równa masie czastki która produkujemy ( s = m J/Ψ ) q _ q A.F.Żarnecki Wykład IX 26
28 Zderzenia relatywistyczne Produkcja rezonansów Produkcja bozonu Z w eksperymencie L3 (LEP) e + e Z q q Maksimum przekroju czynnego obserwujemy dla s = mz ale ma ono skończona szerokość: (rozkład Breita-Wignera) σ(s) M 2 Z Γ2 (s M 2 Z )2 + M 2 Z Γ2 Szerokość rezonansu wiaże się z czasem życia: Γ τ = h (zasada nieoznaczoności) A.F.Żarnecki Wykład IX 27
29 Zderzenia relatywistyczne Produkcja wielu czastek LEP 08/07/2001 Preliminary Aby w zderzeniu dwóch czastek powstały dwie lub więcej nowych czastek, np: 20 e + e W + W masa niezmiennicza zderzajacych się czastek musi być większa lub równa sumie mas pro- σ WW [pb] dukowanych czastek: s m i 5 RacoonWW / YFSWW 1.14 no ZWW vertex (Gentle 2.1) only ν e exchange (Gentle 2.1) i Mierzony przekrój czynny e + e W + W s 2 mw 160 GeV E cm [GeV] A.F.Żarnecki Wykład IX 28
30 Zderzenia relatywistyczne Energia dostępna Mase niezmiennicza zderzajacych się czastek s określamy też jako energię dostępna w układzie środka masy. Energia dostępna jest to część energii kinetycznej, która może zostać zamieniona na masę (energię spoczynkowa) nowych czastek. s mówi nam ile energii możemy zużyć na wyprodukowanie nowych czastek. Przykład Aby wyprodukować antyproton w reakcji p p p p p p musimy mieć s 4 mp liczymy wszystkie czastki w stanie końcowym, także czastki pierwotne A.F.Żarnecki Wykład IX 29
31 Zderzenia relatywistyczne Określona wartość energii dostępnej możemy uzyskać na rózne sposoby: Zderzenia z tarcza Czastka pocisk o energii E uderza w nieruchoma tarczę: Wiazki przeciwbieżne Zderzenia wiazek o energiach E 1 i E 2 : s = 2 E 1 m 2 + m m2 2 w granicy E 1 m 1 m 2 s = 2 E 1 E p 1 p 2 + m m2 2 w granicy E 1 E 2 m 1 m 2 Przykład s 2 E 1 m 2 Wiazka protonów o energii 50 GeV ( 50 m p ) s 4 E 1 E 2 Dużo wyższe wartości!!! na tarczy wodorowej (protony): s 2Em p 10GeV 10 m p dwie wiazki przeciwbieżne: s 4E E = 2 E = 100GeV 100 m p A.F.Żarnecki Wykład IX 30
32 Energia progowa Zderzenia z tarcza Minimalna energia wiazki E min przy której możliwa jest dana reakcja. Minimalna masa niezmiennicza: W zderzeniach z nieruchoma tarcza: s min = minimalna energia całkowita pocisku: i 2 m i s min = 2 E min m 2 + m m2 2 E min = s min (m m2 2 ) = ( 2 m 2 minimalna energia kinetyczna pocisku: i m i ) 2 (m m2 2 ) 2 m 2 E k,min = E min E = ( i m i ) 2 (m 1 + m 2 ) 2 2 m 2 A.F.Żarnecki Wykład IX 31
33 Energia progowa Zderzenia z tarcza Zwiazek minimalnej energii kinetycznej pocisku z przyrostem masy: 2 m 2 E k,min = i 2 m i i 2 m i ÔÓÞ Ø ÓÛ energia kinetyczna pocisku jest zużywana na zwiększenie masy układu... Ó ÓÛ Przykład 1 Produkcja anty-protonów w reakcji pp ppp p i m i = 4m p M = 2m p E min = (4 m p) 2 (m 2 p + m2 p ) 2 m p = 7 m p E k,min = E min m p = 6 m p 5.63 GeV A.F.Żarnecki Wykład IX 32
34 Wiazki przeciwbieżne Energia progowa Dla wiazek przeciwbieżnych: dla uproszczenia przyjmujemy E 1 = E 2, m 1 = m 2 s min 4 E 1 E 2 = 4 E 2 min E min = 1 smin = E k,min = 1 2 i m i ( i m i ) 2 = 1 2 i m i m i i energia rośnie liniowo z masa produkowanego stanu (na tarczy: kwadratowo) dużo niższe energie potrzebne do wytworzenia tego samego stanu Przykład 1 (c.d.) Produkcja anty-protonów w reakcji p p p p p p i m i = 4 m p Ó ÓÛ ÔÓÞ Ø ÓÛ E k,min = 1 2 [4m p 2m p ] = m p 0.94 GeV Ò Ø ÖÞÝ 5.63 GeV A.F.Żarnecki Wykład IX 33
35 Energia progowa Wiazki przeciwbieżne Przykład 2 Produkcja par bozonów W + W w zderzeniach elektron-pozyton: e + e W + W Gdybyśmy chcieli użyć pojedyńczej wiazki pozytonów i tarczy i m i = 2 m W E min = (2 m W) 2 (m 2 e + m 2 e) 2 m2 W GeV 2 m e m e m W = 80.4 GeV m e = GeV Tak ogromnych energii nie jesteśmy w stanie wytworzyć! Dotychczas wiazki pozytonów E 100 GeV, projektowane E GeV... Dla przeciwbieżnych wiazek elektron-pozyton: s 4 E 2 E min = 1 smin = i 2 m i = 1 2 i m i = m W 80 GeV Takie energie to już nie problem... A.F.Żarnecki Wykład IX 34
36 Natura światła Foton Fotony to kwanty promieniowania elektromagnetycznego. Przenosza oddziaływania między czastkami naładowanymi. Maja naturę korpuskularno-falowa: fala elektromagnetyczna, opisana równaniami Maxwella c = 1 ǫ µ podlega interferencji, dyfrakcji, załamaniu czastka o ustalonej energii i pędzie, ale zerowej masie m γ 0 β 1 może zderzać się z innymi czastkami, być pochłaniana lub rozpraszana Im wyższa częstość (mniejsza długość fali) promieniowania, tym wyższa energia pojedyńczego fotonu wyraźniejsze efekty korpuskularne E γ = p γ c = h ν = hc λ λ ν = c Choć korpuskularna koncepcja Einsteina pozwalała na opis zjawiska fotoelektrycznego, foton bardzo długo nie był traktowany jako prawdziwa czastka... A.F.Żarnecki Wykład IX 35
37 Efekt Comptona Rozpraszanie fotonów W wyniku rozpraszania w materii, promieniowanie X stawało się mniej przenikliwe zmieniało długości fali Opis tego zjawiska zaproponował w 1923 roku A.H.Compton. Fotony promieniowania X rozpraszaja się na elektronach w atomie e γ e oddajac im część swojej energii. γ Relatywistyczne zderzenie dwóch ciał tak samo jak w przypadku czastek! h ν m Zasady zachowania: E : p : p : E h ν η Θ hν + m = hν + E hν = hν cos θ + pcos η 0 = hν sin θ psin η A.F.Żarnecki Wykład IX 36
38 Efekt Comptona Przekształcajac otrzymujemy: E = h(ν ν ) + m pcos η = h(ν ν cos θ) psin η = hν sin θ Podnoszac stronami do kwadratu i zestawiajac do masy elektronu: m 2 = E 2 p 2 = ( h(ν ν ) + m ) 2 h 2 ( ν ν cos θ ) 2 ( hν sin θ ) 2 = m 2 +h 2 ν 2 +h 2 ν 2 2h 2 νν + 2mh(ν ν ) h 2 ν 2 + 2h 2 νν cos θ h 2 ν 2 cos 2 θ h 2 ν 2 sin 2 θ m hν = hν (m + hν(1 cos θ)) hν = hν 1 + hν λ m (1 cos θ) = λ + h (1 cos θ) m c h m c = m = 2.43 pm A.F.Żarnecki Wykład IX 37
39 Efekt Comptona Małe energie fotonów W granicy małych energii fotonu hν m hν = hν m m + hν(1 cos θ) hν foton rozprasza się bez straty energii. Odpowiada to klasycznemu zderzeniu pocisku, m 1, z dużo cięższa tarcza, m 2 m 1. Foton zachowuje energię, ale zmienia się wektor pędu (kierunek!) Przykład: odbicie światła widzialnego hν = eV (700 nm nm) Energia rozproszonego elektronu: E = hν hν + m = hν(hν + m)(1 cos θ) + m2 W granicy hν m: energia elektronu: hν(1 cos θ) + m E m pęd rozproszonego elektronu: p hν 2(1 cos θ) A.F.Żarnecki Wykład IX 38
40 Efekt Comptona Duże energie fotonów W granicy dużych energii fotonu hν m (przyjmujac cos θ 1, czyli θ 0) hν E m 1 cos θ 0 hν + m foton przekazuje spoczywajacemu elektronowi praktycznie cała swoja energię e γ e Odpowiada to klasycznemy zderzeniu ciał o równych masach (zakładajac zderzenie centralne i elastyczne) Dla hν m masę elektronu można pominać - elektron, tak jak foton, można traktować jako czastkę bezmasowa. γ A.F.Żarnecki Wykład IX 39
41 Efekt Comptona Rozpraszanie do tyłu W rozpraszaniu na spoczywajacym elektronie najniższa energię będzie miał foton rozproszony do tyłu (cos θ = 1): hν = hν m 2hν + m < hν To, że foton zawsze traci energię zwiazane jest jednak z wyborem układu odniesienia! (układ zwiazany z poczatkowym elektronem) Rozpraszanie na wiazce elektronów Możemy jednak rozważyć rozpraszanie fotonów o energii hν na przeciwbieżnej wiazce elektronów o energii E e m. e γ Transformacja Lorenza do układu elektronu: γ = E e m β 1 Energia fotonu w układzie elektronu: hν = γ(1 + β)hν 2E e m hν hν A.F.Żarnecki Wykład IX 40
42 Photon Collider Rozpraszanie na wiazce elektronów Przyjmijmy, że foton rozprasza się do tyłu (cos θ = 1). Energia rozproszonego fotonu w układzie elektronu: hν = hν m 2hν + m 2E e hν m 4E e hν + m 2 Wracajac do układu laboratoryjnego: (transformacja taka sama, bo pęd foton zmienił kierunek) hν 2E e m hν Otrzymujemy: hν E e 4E e hν 4E e hν + m 2 Wysoke energia wiazki, 4E e hν m 2 elektron może przekazać fotonowi większość swojej energii. e e Przykład: dla E e = 250GeV i hν = 1eV hν 200GeV γ γ A.F.Żarnecki Wykład IX 41
43 Projekt Fizyka wobec wyzwań XXI w. współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład XII: masa niezmiennicza i układ środka masy zderzenia elastyczne czastki elementarne rozpady czastek rozpraszanie nieelastyczne Dynamika relatywistyczna
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład XIV: zasady zachowania (przypomnienie) czastki elementarne rozpady czastek rozpraszanie nieelastyczne foton jako czastka, efekt Dopplera i efekt Comptona
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Szczególna teoria względności
Szczególna teoria względności Wykład VI: energia progowa foton rozpraszanie Comptona efekt Doplera prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Zderzenia relatywistyczna
Zderzenia relatywistyczna Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd cząstki: gdzie Relatywistyczne wyrażenia na energię cząstki: energia kinetyczna: energia spoczynkowa:
Elementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Elementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Elementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Elementy fizyki czastek elementarnych
Źródła czastek Elementy fizyki czastek elementarnych Wykład II Naturalne źródła czastek Źródła promieniotwórcze Promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe
Zderzenia relatywistyczne
Zderzenia relatywistyczne Wstęp do Fizyki I (B+C) Wykład XVII: Energia progowa Rozpady czastek Neutrina Fotony Energia progowa Masa niezmiennicza Niezmiennik transformacji Lorenza, (nie zależy od wyboru
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2 9 października 2017 A.F.Żarnecki
Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 7. prof. dr hab. Aleksander Filip Żarnecki
Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 7 Wprowadzenie Naturalne źródła czastek Źródła promieniotwórcze, promieniowanie kosmiczne Akceleratory czastek
Na tropach czastki Higgsa
Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005
Oddziaływania grawitacyjne. Efekt Dopplera. Photon Collider. Efekt Comptona. Odkrycie fotonu. Wykład XIX: Fizyka I (B+C) Foton
Wykład XIX: Odkrycie fotonu Efekt Comptona Photon Collider Efekt Dopplera Oddziaływania grawitacyjne Foton Fizyka I (B+C) A.F.Żarnecki Wykład XIX Doświadczenia wskazały, że energia uwalnianych elektronów
Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 4. prof. dr hab. Aleksander Filip Żarnecki
Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 4 Wprowadzenie Naturalne źródła czastek Źródła promieniotwórcze, promieniowanie kosmiczne Akceleratory czastek
Mechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Fizyka I (B+C) Mechanika Wykład I: Informacje ogólne Wprowadzenie Co to jest fizyka? Czym zajmuje się fizyka? dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 8. prof. dr hab. Aleksander Filip Żarnecki
Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 8 Wprowadzenie Pole elektryczne i magnetyczne, jednostki Naturalne źródła czastek Źródła promieniotwórcze,
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład VIII: relatywistyczna definicja pędu ruch pod wpływem stałej siły relatywistyczna definicja energii, zasady zachowania transformacja Lorentza dla energii
Fizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Zasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Wszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)
Wszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad. 2011/12. 210/9 http://www www.fuw.edu.pl/~
Mechanika relatywistyczna Wykład 13
Mechanika relatywistyczna Wykład 13 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/32 Czterowektory kontrawariantne
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 21 listopada 2017 A.F.Żarnecki WCE Wykład
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Dynamika relatywistyczna
Dynamika relatywistyczna Wprowadzenie Zagadnienia ruchu ciał w mechanice nierelatywistycznej (Newtona/Galileusza) rozwiązywaliśmy w oparciu o równania ruchu. Ruch ciała jest zadany przez działające na
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
Mechanika relatywistyczna Wykład 15
Mechanika relatywistyczna Wykład 15 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/40 Czterowektory kontrawariantne
Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
czastki elementarne Czastki elementarne
czastki elementarne "zwykła" materia, w warunkach które znamy na Ziemi, które panuja w ekstremalnych warunkach na Słońcu: protony, neutrony, elektrony. mówiliśmy również o neutrinach - czastki, które nie
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
Wszechświat cząstek elementarnych (dla humanistów)
Wszechświat cząstek elementarnych (dla humanistów) Maria Krawczyk i A. Filip Żarnecki nstytut Fizyki Teoretycznej Instytut Fizyki Doświadczalnej Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN )
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 14.X.2009 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne I? Cząstka i fale falowe własności cząstek elementarnych Cząstki fundamentalne
WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Maria Krawczyk, Wydział Fizyki UW 1.III Fizyka cząstek elementanych Odkrycia
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1 Maria Krawczyk, Wydział Fizyki UW 1.III.2010 Fizyka cząstek elementanych Odkrycia Skąd ten tytuł wykładu? Opis Wszechświata nie jest możliwy
Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda
Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3
Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012
Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Neutrina. Wstęp do Fizyki I (B+C) Wykład XXII:
Neutrina Wstęp do Fizyki I (B+C) Wykład XXII: Budowa materii - przypomnienie Neutrina atmosferyczne Neutrina słoneczne Model bryłowy neutrin Oscylacje neutrin i Budowa materii Świat codzienny zbudowany
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Wykład 1. Wszechświat cząstek elementarnych dla humanistów. Maria Krawczyk (IFT), Filip A. Żarnecki (IFD), Wydział Fizyki UW
Wszechświat cząstek elementarnych dla humanistów Wykład 1 Maria Krawczyk (IFT), Filip A. Żarnecki (IFD), Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN ) - 4 lipca 2012 Nagroda Nobla 2013: F. Englert,
Agnieszka Obłąkowska-Mucha
Cząstki elementarne i ich oddziaływania I. Wstęp. II. Składniki materii, siły i oddziaływania III. Podstawowe definicje i prawa. Rozpraszanie IV. Oddziaływania elektromagnetyczne V. Model kwarkowy VI.
W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński
W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Gimli Glider Boeing 767-233 lot: Air Canada
Wszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad. 2012/13. 210/9 http://www www.fuw.edu.pl/~
Akceleratory. Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej
Akceleratory Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej Przegląd ważniejszych typów akceleratorów: akceleratory elektrostatyczne, akceleratory liniowe ze zmiennym polem
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Elementy Fizyki Czastek Elementarnych 1 / 2
Elementy Fizyki Czastek Elementarnych Katarzyna Grzelak ( na podstawie wykładu prof. D.Kiełczewskiej ) Zakład Czastek i Oddziaływań Fundamentalnych IFD UW 20.02.2013 K.Grzelak (IFD UW) Elementy Fizyki
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Wszechświat cząstek elementarnych (dla humanistów)
Wszechświat cząstek elementarnych (dla humanistów) Maria Krawczyk i A. Filip Żarnecki nstytut Fizyki Teoretycznej Instytut Fizyki Doświadczalnej Wydział Fizyki UW Odkrycie cząstki Higgsa w CERN ogłoszone
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Dziwny jest ten świat: czastki elementarne
Dziwny jest ten świat: czastki elementarne Wykłady z fizyki doświadczalnej Wydział Fizyki U.W. 17 grudnia 2005 prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Wstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania
Perspektywy fizyki czastek elementarnych
Perspektywy fizyki czastek elementarnych Wykład XIII Nowe projekty akceleratorowe: CLIC ( VLHC ( Photon Collider zderzenia ) Elementy fizyki czastek elementarnych ) fabryki neutrin Astro-cz astki?!...
Wszechświat czastek elementarnych
Wszechświat czastek elementarnych Wykład 8: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-
Wykład 1. Wszechświat cząstek elementarnych dla humanistów. Maria Krawczyk (IFT), Filip A. Żarnecki (IFD), Wydział Fizyki UW
Wszechświat cząstek elementarnych dla humanistów Wykład 1 Maria Krawczyk (IFT), Filip A. Żarnecki (IFD), Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN ) - 4 lipca 2012 Nagroda Nobla 2013: F. Englert,
Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)
Oddziaływania Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca Antycząstki; momenty
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Ciemna strona Wszechświata
Ciemna strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej, Wydział Fizyki U.W. Warszawa, 23 listopada 2010 A.F.Żarnecki Ciemna strona Wszechświata
WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa
Wszechświat cząstek elementarnych WYKŁAD 10 29.04 29.04.2009.2009 1 Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Cząstki fundamentalne w Modelu Standardowym
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III
Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Zasada zachowania energii
Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki
Wszechświat cząstek elementarnych WYKŁAD 3 Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki 4.III.2009 Fizyka cząstek elementarnych Wiek XX niezwykły y rozwój j fizyki, pojawiły y się
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 14 23 stycznia 2017 A.F.Żarnecki Podstawy
Ciemna strona Wszechświata
Ciemna strona Wszechświata Nowoczesna fizyka w przyrodzie i technice Uniwersytet Otwarty Uniwersytetu Warszawskiego prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej,
Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane
Jak działają detektory. Julia Hoffman
Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Fizyka cząstek elementarnych
Wykład III Metody doświadczalne fizyki cząstek elementarnych I Źródła cząstek elementarnych Elektrony, protony i neutrony tworzą otaczającą nas materię. Aby eksperymentować z elektronami wystarczy zjonizować
λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
Podstawy fizyki subatomowej
Podstawy fizyki subatomowej Zenon Janas Zakład Fizyki Jądrowej IFD UW ul. Pasteura 5 p..81 tel. 55 3 681 e-mail: janas@fuw.edu.pl http://www.fuw.edu.pl/~janas/fsuba/fizsub.htm Zasady zaliczenia Obecność
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Neutrina. Fizyka I (B+C) Wykład XXVII:
Neutrina Fizyka I (B+C) Wykład XXVII: Budowa materii - przypomnienie Deficyt neutrin słonecznych Zagadka neutrin atmosferycznych z SuperKamiokande Model bryłowy neutrin Oscylacje neutrin Wyniki SNO i KamLand
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne