Wybór metody preprocessingu zmiennych wejciowych do prognozowania płacenia przez przedsibiorstwo dywidendy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wybór metody preprocessingu zmiennych wejciowych do prognozowania płacenia przez przedsibiorstwo dywidendy"

Transkrypt

1 Agata Raszka 1 Wybór metody preprocessingu zmiennych wejciowych do prognozowania płacenia przez przedsibiorstwo dywidendy 1. Wprowadzenie Termin sztuczna inteligencja został zaproponowany w 1956 roku przez profesora Massachusetts Institute of Technology Johna McCarthy, podczas konferencji w której brali udział naukowcy z rónych dziedzin, zajmujcy si ludzk wiadomoci. Uczestnicy konferencji zdefiniowali sztuczn inteligencj jako "konstruowanie maszyn, o których działaniu dałoby si powiedzie, e s podobne do ludzkich przejawów inteligencji" 2. Na znaczeniu zyskały przede wszystkim sztuczne sieci neuronowe (SSN) i algorytmy genetyczne, metody wyej wspomnianej sztucznej inteligencji. Dziedzina sieci neuronowych zaistniała dopiero w 1943 roku wraz z wydaniem historycznej pracy McCulloch'a i Pitts'a. Przedstawiono w niej po raz pierwszy matematyczny opis komórki nerwowej oraz powizanie jej z problemem przetwarzania danych, co rozwinito w kolejnych pracach tych samych autorów. Zaprezentowany model wywarł wielki wpływ na póniejszy rozwój tej dziedziny. Pierwsze sieci neuronowe zaczto budowa ju w latach 50-tych. Pomimo i postp w badaniach nad sztucznymi sieciami neuronowymi dokonywał si głównie w USA, prace były publikowane równie w innych krajach. W Polsce zajmowano si problematyk sieci neuronowych i ich uczenia od samego pocztku istnienia tej dziedziny. Wydano szereg ksiek zajmujcych si problematyk sieci neuronowych, wród których naley wymieni monografie Gawroskiego (1970), Kulikowskiego (1972) i Brodziaka (1974). Zainteresowanie sieciami neuronowymi w połowie lat 80-tych znajduje te odbicie w Polsce, gdzie wydano monografie Tadeusiewicza (1992), Korbicza, Obuchowicza i Uciskiego (1974), Kacprzaka i lota (1995). Przetłumaczono take monografi Hertza, Krogha i Palmera (1993). Sztuczne sieci neuronowe s bardzo intensywnie wykorzystywane w sferze problemów ekonomicznych, do których naley przede wszystkim prognozowanie. Artykuł ten podejmuje prób wyboru odpowiedniej metody preprocessingu danych wejciowych włanie prognozowania płacenie przez przedsibiorstwo dywidendy. Wykorzystamy do tego program Statistica 7 i program Estimatic. 1 Studentka III roku Informatyki i ekonometrii, 2 Paweł Roczak, Implementacja i wykorzystanie wielowarstwowej sieci perceptronowej w modelowaniu makroekonomicznym,

2 2. Opis problematyki badawczej Dywidenda to cz wypracowanego przez spółk zysku, która jest wypłacana wszystkim posiadaczom akcji. O wypłacie dywidendy decyduje walne zgromadzenie akcjonariuszy - czyli zebranie wszystkich włacicieli firmy. Zgromadzenie akcjonariuszy obraduje po sporzdzeniu sprawozdania finansowego za dany rok obrachunkowy. Dywindend mona wypłaci oczywicie tylko w roku, w którym spółka wypracowała zysk. Wszystkie akcje zwykłe uprawniaj do jednakowej dywidendy. Do uzyskania wyszej dywidendy maj jedynie prawo załoyciele spółki, którzy s posiadaczami akcji uprzywilejowanych. Dywidenda jest wypłacana wszystkim akcjonariuszom, którzy posiadaj akcje spółki w dniu przyjtym jako dzie ustalenia prawa do dywidendy. Regularne wypłacanie dywidendy przez przedsibiorstwo wiadczy o jej dobrej kondycji finansowej, a tym samym pozytywnie wpływa na wizerunek spółki wród inwestorów, gdy pozwala dzieli si zyskiem z akcjonariuszami. Praktycznie nie warto kupowa akcji tylko dla dywidendy, gdy dywidenda to wypłata jednorazowa i nie powinna by głównym czynnikiem wyboru akcji. Warto pamita, e dywidenda jest wypłacana za rok poprzedni, a kurs akcji reaguje na biec sytuacj w firmie. Moe si okaza, e rok za który jest wypłacana był dobry finansowo, ale sytuacja rynkowa uległa pogorszeniu i obecnie zyski spadaj, a wraz z nimi kurs akcji. W praktyce moe to oznacza dla inwestora poniesienie straty, jeli trzyma on akcje głównie w oczekiwaniu na dywidend. Najrozsdniejszym rozwizaniem wydaje si trzymanie akcji ze wzgldu na dobre perspektywy firmy i oczekiwany stabilny wzrost kursu akcji. Dywidenda jako uprawnienie majtkowe akcjonariusza nie posiada tak istotnego znaczenia dla akcjonariuszy polskich spółek jak to ma miejsce w krajach Europy Zachodniej oraz w Stanach Zjednoczonych. Szczególnie za Atlantykiem dywidenda stanowi dla akcjonariuszy podstawowe ródło dochodu. W Polsce zbyt mało spółek wypłaca dywidend std brak przywizania do tego typu instrumentu 3. Istnieje wiele czynników kształtujcych płacenie dywidendy. Naley do nich 28 wskaników: Zmienne rynkowe: X 1 Roczna stopa zwrotu w % X 2 Współczynnik zmiennoci 1 : X 3 Współczynnik zmiennoci 2 : Pmax P X min 2 = *100 Pmax Pmax P X 2 = koniec *100 Pmax 3 Beata Binek, Paweł Heciak, Michał Stpniewski, Dominika Waltz Komierowska, Prawa i obowizki akcjonariuszy spółek publicznych,

3 X 4 Udział spółki w obrotach giełdy w % X 5 Wskanik obrotu w % X 6 Logarytm dziesitny wartoci obrotów w mln zł X 7 logarytm dziesitny kapitalizacji na koniec roku w tys. zł X 8 Udział w kapitalizacji giełdy w kocu roku w % Zmienne fundamentalne: X 9 Wynik finansowy netto w mld zł X 10 Aktywa ogółem w mld zł X 11 Logarytm wartoci ksigowej w kocu roku w mld zł X 12 Przychody ze sprzeday netto w mld zł X 13 Wynik finansowy netto na 1 akcj w zł X 14 Warto ksigowa na 1 akcj w zł w kocu roku X 15 Mara zysku netto w % X 16 Stopa zwrotu z kapitału własnego w % X 17 Stopa zwrotu z aktywów ogółem w % Zmienne rynkowo fundamentalne: X 18 Roczny zysk (strata) netto na 1 akcj do ceny akcji w kocu roku (zysk do ceny) X 19 Warto ksigowa do wartoci rynkowej w kocu roku X 20 zerojedynkowa: 0 ujemny wynik finansowy, 1 dodatni wynik Zmienne makroekonomiczne: Z 1 Dynamika PKB w cenach stałych Z 2 Dynamika nakładów inwestycyjnych w cenach stałych Z 3 Dynamika importu w cenach stałych Z 4 Dynamika eksportu Z 5 rednioroczny kurs dolara w zł Z 6 Dynamika indeksu WIG Z 7 Dynamika indeksu WIG20 Z 8 Udział firm z ujemn wartoci ksigow na Giełdzie Papierów Wartociowych w Warszawie Zmienne te zostały wykorzystane do budowy modelu jako zmienne objaniajce. Dodatkowo kade z 1041 przedsibiorstw zostało opisane zmienn objanian Y, tzn. zmienn grupujc populacj na dwie grupy przedsibiorstw na płacce i nie płacce dywidend w badanym okresie. 3. Opis metody Za pomoc sztucznych sieci neuronowych istnieje moliwo rozwizywania wielu problemów. Mona je podzieli na 2 kategorie: klasyfikacyjne (celem klasyfikacji jest przydzielenie rozpatrywanego przypadku do jednej ze zdefiniowanych wczeniej klas. Dla poszczególnych przypadków naley okreli na wyjciu pojedyncz zmienn nominaln) oraz

4 regresyjne (celem regresji jest prognozowanie wartoci okrelonej zmiennej i dla poszczególnych rozpatrywanych przypadków na wyjciu sieci naley okreli pojedyncz zmienn numeryczn) 4. Prezentowane badania wykorzystuj model regresji (Regression). Aby dokona analizy porównawczej metod preprocessingu, czyli wstpnego przygotowania danych na wejcie do SSN, musimy przede wszystkim wybra jeden rodzaj sieci. Do wyboru mamy ich kilka, m.in.: sie liniowa (Linear), probabilistyczna sie neuronowa (PNN), sie realizujca uogólnion regresj (GRNN), radialne funkcje bazowe (Radial basis function RBF) oraz perceptron trzy- i czterowarstwowy (MLP). Wybór został dokonany na podstawie analizy statystycznej (porównaniu poddano rednie błdy dla zbiorów: uczcego, walidacyjnego i testowego) próbek złoonych z 50 losowo wygenerowanych sieci kadego rodzaju (Rys.1.). 2,5 2 1,5 1 redni błd uczenia redni błd walidacji redni błd testowania 0,5 0 Linear PNN lub GRNN RBF Three layer perceptron Four layer perceptron Rys. 1. Analiza statystyczna rodzajów SSN Analiza wskazuje na celowe uycie perceptronu trójwarstwowego (z jedna warstw ukryt). Poza tym jest to najpopularniejszy rodzaj sieci. Wymaga uczenia iteracyjnego, które bywa czasochłonne, ale otrzymane sieci s niedue, szybkie i daj wyniki lepsze ni innego rodzaju sieci 5. Dynamiczny rozwój tych sieci zapocztkowany ponownie od lat osiemdziesitych owocuje niezliczon iloci zastosowa praktycznie w kadej dziedzinie. Mimo takiego rozpowszechnienia naley jednak podkreli e sie typu MLP jest jedynie pewn gałzi bada nad systemami neuronowymi w ogóle, obejmujcymi take struktury rekurencyjne, jednowarstwowe, czy uczone bez nadzoru. 4 P.Lula, R.Tadeusiewicz, STATISTICA Neural Networks PL.Wprowadzenie do sieci neuronowych, StatSoft, Kraków 2001, s P.Lula, R.Tadeusiewicz, STATISTICA Neural Networks PL. Przewodnik problemowy, StatSoft, Kraków 2001, s. 184

5 4. Program bada Badania zrealizowano w nastpujcych etapach: 1. Wyznaczono najlepsz sie zbudowan na kompletnym zestawie zmiennych wejciowych (28-elementowym). 2. Wyznaczono najlepsze sieci zbudowane na zmiennych wejciowych wskazanych przez wykorzystane metody: - selekcj krokow postpujc (22 zmienne); - selekcj krokow wsteczn (16 zmiennych); - algorytm genetyczny (3 zmienne). 3. Wyznaczono najlepsz sie dla zbioru zmiennych niezalenych wybranych za pomoc wskaników pojemnoci informacyjnej (metoda Hellwiga 4 zmienne). 4. Wyznaczono wartoci progowe klasyfikacji (granice decyzyjne) dla poszczególnych metod. 5. Wyznaczono dla poszczególnych sieci ogóln skuteczno oraz błdy I i II rodzaju. 6. Zaproponowano optymaln metod preprocessingu zmiennych objaniajcych. Program Statistica 7 domylnie podzielił przypadki w proporcjach 2:1:1, co dla naszych bada oznacza 521 przypadków do uczenia, 260 do walidacji i 260 do testowania sieci. 5. Wyniki bada 5.1. Budowa modelu bez preprocessingu zmiennych wejciowych Na pocztek zbudowano sie, która zgodnie z załoeniami bdzie zawierała komplet zmiennych wejciowych. Najlepsz sieci okazała si model (Tab.1.): Tab. 1. Sie neuronowa zbudowana na wszystkich zmiennych wejciowych 5.2. Budowa modelu z preprocessingiem zmiennych wejciowych Do najtrudniejszych decyzji, jakie musz zosta podjte przez projektanta sieci neuronowych, naley wybór właciwego zestawu zmiennych wejciowych. Due sieci s bardziej kłopotliwe ni sieci małe, co powoduje, e czasami dobrym rozwizaniem jest odrzucenie pewnych zmiennych, nawet jeli posiadaj pewn warto informacyjn. W ten sposób uda si zredukowa liczb zmiennych wejciowych, a przez to wielko sieci oraz złoono obliczeniow problemu. Jedn z metod gwarantujcych wybór najlepszego zbioru zmiennych wejciowych jest podjcie prób uczenia sieci w oparciu o kady z moliwych

6 zbiorów zmiennych wejciowych, sprawdzenie jakoci modelu i wybranie na tej podstawie najlepszego rozwizania. Preprocessing danych wejciowych bdziemy realizowa za pomoc algorytmów doboru cech, do których zaliczamy: selekcj krokow postpujc, selekcj krokow wsteczn i algorytmy genetyczne oraz za pomoc metody wskaników pojemnoci informacyjnej Optymalizacja zmiennych wejciowych za pomoc selekcji krokowej postpujcej Algorytm selekcji krokowej postpujcej (Forward selection) znajduje na pocztku tak zmienn, która najlepiej przewiduje warto wyjciow, a nastpnie dodaje kolejn zmienn, która najbardziej poprawia model. Proces ten jest kontynuowany do momentu wyczerpania zmiennych albo do momentu osignicia braku poprawy modelu przy dołczaniu kolejnych zmiennych. Postpujcy dobór zmiennych zaleci mona dla wikszej liczby potencjalnych zmiennych wejciowych. Algorytm ten jest o wiele szybszy, ale moe zgubi wane zmienne, których włczenie do modelu znacznie poprawia jego jako. Metod krokow postpujc wybieramy, gdy chcemy szybko otrzyma jaki wynik. W naszym przypadku metoda ta wyznaczyła nastpujce zmienne wejciowe (Tab.2.): Tab. 2. Zmienne wejciowe wygenerowane przez selekcj krokow postpujc w programie Statistica 7 Najlepsz sieci na takim podzbiorze danych okazał si model (Tab.3.): Tab. 3. Sie neuronowa zbudowana na zmiennych wskazanych przez selekcj krokow postpujc Optymalizacja zmiennych wejciowych za pomoc selekcji krokowej wstecznej Algorytm selekcji krokowej wstecznej (Backward selection) pracuje w przeciwnym kierunku. Zaczyna ze wszystkimi zmiennymi, usuwajc po jednej. Zaczyna od usuwania tych, których brak najmniej psuje jako predykcji. Wsteczny dobór zmiennych zaleci mona przy niewielkiej liczbie potencjalnych zmiennych wejciowych 6. Metod krokow wsteczn wybieramy, gdy chcemy otrzyma dokładniejsz analiz cech. Przy zastosowaniu tej metody przestrze wej zredukowano do podprzestrzeni 16-wymiarowej (Tab.4.): 6 Ibidem s. 12

7 Tab. 4. Zmienne wejciowe wygenerowane przez selekcj krokow wsteczn w programie Statistica 7 Najlepsz sieci na takim zestawie zmiennych wejciowych okazał si model (Tab.5.): Tab. 5. Sie neuronowa zbudowana na zmiennych wskazanych przez selekcj krokow wsteczn Optymalizacja zmiennych wejciowych za pomoc algorytmu genetycznego Algorytmy genetyczne (Genetic Algorithm) s szczególnie efektywn technika poszukiwa w zagadnieniach kombinatorycznych, gdzie trzeba podejmowa szereg zalenych od siebie decyzji binarnych. Za pomoc tej metody zbiór danych wejciowych mona zakodowa w postaci cigu binarnego 28-elementowego. Wystpienie zera na konkretnej pozycji oznacza eliminacj zmiennej przyporzdkowanej do tej pozycji. Wystpienie jedynki bdzie analogicznie oznaczało pozostawienie danej zmiennej. W programie Statistica 7 znajdujemy wiele parametrów algorytmu genetycznego, takich jak wielko populacji (Population), liczba pokole (Generations), współczynnik mutacji (Mutation rate) oraz współczynnik krzyowania (Crossover rate). Wartoci tych współczynników pozostawiono na poziomie proponowanym przez system, uznajc je za odpowiednie dla prowadzonych bada: Population = 100, Mutation rate = 0,1, Generations = 100 oraz Crossover rate = 1,0. Naley okreli take warto współczynnika wygładzania (Smoothing). Na szczcie sieci, które algorytm genetyczny wykorzystuje do swoich testów nie s zbytnio wraliwe na precyzyjn warto tego współczynnika i w przypadku naszego zadania warto domylna 0,1 bdzie odpowiednia 7. Dla danych o duej liczbie przypadków algorytm doboru cech moe potrzebowa duo czasu obliczeniowego. W takim przypadku zastosowa mona próbkowanie (Sampling). Moemy wybra pewien dodatkowy wpływ na proces eliminacji niechcianych zmiennych poprzez okrelenie wartoci kary jednostkowej (Unit penalty). Warto ta mnoona jest przez liczb neuronów w sieci i wynik dodawany jest do błdu w trakcie oceny jakoci kadej z rozwaanych sieci. Mechanizm ten powoduje karanie duych sieci i sprzyja tworzeniu sieci oszczdnych, zarówno pod wzgldem struktury, jak i liczby wykorzystywanych sygnałów wejciowych. W naszym przypadku wszystkie zmienne 7 P.Lula, R.Tadeusiewicz, Kurs uytkownika programu na przykładach, StatSoft, Kraków 2001, str. 60 i nastpna

8 wejciowe wnosz istotne informacje charakteryzujce zmienn objanian, dlatego definiowanie kary jednostkowej moe okaza si potrzebne. Niezerowa warto kary jednostkowej faworyzuje mniejsze sieci i zwykle zwiksza sprawno. Natomiast gdy współczynnik ten jest zbyt duy, to od jakoci sieci staje si waniejsza liczba zmiennych 8. Musimy pamita, e typowe wartoci tego współczynnika mieszcz si w przedziale [0,001;0,01] 9. Przed uruchomieniem algorytmu genetycznego przeprowadzono kilka eksperymentów, majcych na celu okrelenie jej właciwej wartoci. Warto kary jednostkowej domylnie ustawiona na 0,0001 spowodowała ograniczenie liczby wej do 19 elementów (Tab.6.): Tab. 6. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,0001 Tablice 7-14 prezentuj dobór zmiennych przy zastosowaniu rónych kar jednostkowych: Tab. 7. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,00017 Tab. 8 Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,0002 Tab. 9. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,00055 Tab. 10. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,00075 Tab. 11. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,00085 Tab. 12. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,0015 Tab. 13. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0, P.Lula, R.Tadeusiewicz, STATISTICA Neural Networks PL. Przewodnik problemowy, StatSoft, Kraków 2001, str P.Lula, R.Tadeusiewicz, STATISTICA Neural Networks PL. Kurs uytkownika programu w przykładach, StatSoft, Kraków 2001, str. 61

9 Tab. 14. Zmienne wejciowe wybrane przez algorytm genetyczny z kar jednostkow 0,0035 Jak wida, liczba zmiennych wejciowych zmienia si wraz ze wzrostem wartoci kary jednostkowej na coraz mniejsz. Dokładne kształtowanie si liczby zmiennych wejciowych wobec kary jednostkowej przedstawia poniszy wykres (Rys.2.): liczba zmiennych wejciowych ,0001 0, ,0002 0, , , ,0015 0,0025 0,0035 kara jednostkowa Rys. 2. Genetic Algorithm Selection Sporód trzech zbiorów o najmniejszej liczbie wej najlepsz sie utworzył zbiór przy karze jednostkowej 0,0025 (pole Error w tablicach 12-14) i to on posłuył do dalszych bada. Tablica 15 przedstawia współczynniki jakociowe sieci zbudowanej na wybranych zmiennych wejciowych. Tab. 15. Sie utworzona na zbiorze zmiennych wskazanych przez algorytm genetyczny Optymalizacja zmiennych wejciowych za pomoc metody Hellwiga Metoda Hellwiga pozwala na wybór zmiennych objaniajcych silnie skorelowanych ze zmienn objanian i jednoczenie słabo skorelowanych midzy sob. Tworzymy macierz R (macierz współczynników korelacji pomidzy zmiennymi objaniajcymi) oraz macierz R o (macierz współczynników korelacji pomidzy zmienn objanian a zmiennymi objaniajcymi). Nastpnie obliczamy indywidualne wskaniki pojemnoci informacyjnej: m 2 H = r /(1 + r ) l = 1,2,..., L j = 1,2,..., m lj j i= 1 i j ij

10 Wskaniki te oblicza si dla kadej zmiennej w obrbie kadej kombinacji zmiennych objaniajcych. Integralne wskaniki pojemnoci informacyjnej dla kadej kombinacji potencjalnych zmiennych objaniajcych oblicza si jako sum indywidualnych pojemnoci zmiennych wystpujcych w danej kombinacji. Najwiksz warto integralnych wskaników pojemnoci informacyjnej maj te kombinacje zmiennych objaniajcych, dla których wystpujce zmienne s mocno skorelowane ze zmienn objanian natomiast słabo skorelowane midzy sob 10. Program Estimatic wskazał zmienne X 2, X 9, X 13 oraz X 20 dla wartoci integralnego wskanika pojemnoci informacyjnej równego 0, Najlepsz sieci utworzon dla tych zmiennych okazał si model przedstawiony w Tabeli 16. Tab. 16. Sie neuronowa utworzona na zmiennych wskazanych za pomoc metody Hellwiga 5.3.Wyznaczenie wartoci progowych Zadaniem utworzonych przez nas modeli SSN jest poprawne zaklasyfikowanie przedsibiorstw do jednej z dwóch grup firm, tj. tych, które zapłac lub nie zapłac dywidend. Std wyjcie kadej sieci zawiera tylko jeden neuron, przyjmujcy w procesie uczenia sieci wartoci 0 lub 1. Naley jednak zauway, e wartoci wyj poszczególnych testowanych sieci nie s równe wartociom zadanym w próbie uczcej, lecz przyjmuj wartoci z przedziału (0,1), któr moemy traktowa jako stopie przynalenoci do okrelonej klasy. W zwizku z tym naley ustali próg, na podstawie którego wartoci wyj utosamia si bd z odpowiedni grup przedsibiorstw do której zostanie przyporzdkowana badana firma. Warto progow wyznaczymy zgodnie z prawdopodobiestwem pojawienia si obiektów nalecych do okrelonej grupy, oszacowanych dla grupy uczcej, walidacyjnej i testowej 11 (Tab.17.): Tab. 17. Wartoci progowe dla poszczególnych metod doboru zmiennych wejciowych Metoda Zbiór Liczba zer Liczba jedynek Próg uczenie Wszystkie zmienne walidacja ,29 testowanie uczenie Selekcja krokowa walidacja postpujca testowanie ,32 uczenie Selekcja krokowa walidacja wsteczna testowanie ,31 Algorytm genetyczny uczenie ,35 walidacja M. Gruszczyski i inni, Ekonometria, Oficyna Wydawnicza SGH, Warszawa1996, str T. Korol, B. Prusak, Upadło przedsibiorstw a wykorzystanie sztucznej inteligencji, CeDeWu, Warszawa 2005, str. 156

11 Metoda Hellwiga testowanie uczenie walidacja testowanie , Wyznaczenie parametrów oceny jakoci klasyfikacji Jako klasyfikacji oceniono na podstawie błdu I i II rodzaju (B1, B2) oraz ogólnej skutecznoci sieci (S) za pomoc nastpujcych wzorów: gdzie: D1 D2 D1 + D2 B 1 = 100% B 2 = 100% S = 1 100% NPD PD NPD + PD D1 liczba przedsibiorstw nie płaccych dywidendy zaklasyfikowanych przez sie jako firmy płacce NPD liczba przedsibiorstw nie płaccych dywidendy w próbie uczcej /walidacyjnej /testowej D2 - liczba przedsibiorstw płaccych dywidend zaklasyfikowanych przez sie jako firmy nie płacce PD - liczba przedsibiorstw płaccych dywidend w próbie uczcej /walidacyjnej /testowej Ogólna skuteczno informuje nas, jaki procent stanowi ogółem prawidłowo zakwalifikowane przypadki (przedsibiorstwa płacce i nie płacce dywidend). Błd I rodzaju okrela błdn decyzj zakwalifikowania przedsibiorstwa nie płaccego dywidendy na płacce. Błd II rodzaju okrela błdn decyzj zakwalifikowania przedsibiorstwa płaccego dywidend na nie płacce. Przyjto, e bardziej szkodliwy bdzie w tym przypadku Błd I rodzaju. Wyniki uzyskanych oblicze przedstawia Tabela 18: Tab. 18. Zestawienie wyników klasyfikacji przedsibiorstw poszczególnych metod Metoda Selekcja Selekcja Skuteczno Zbiór Wszystkie Algorytm Metoda krokowa krokowa zmienne genetyczny Hellwiga postpujca wsteczna uczenie 18,3% 29,9% 27,9% 37,2% 29,2% Błd I rodzaju walidacja 17,3% 29,3% 32,6% 37,2% 26,2% testowanie 27,5% 31,8% 34,2% 31,6% 29,2% uczenie 18,8% 25,2% 13,5% 32,0% 20,5% Błd II rodzaju walidacja 23,4% 27,4% 17,9% 17,4% 26,0% testowanie 32,4% 27,4% 13,4% 31,4% 18,5% uczenie 81,6% 71,4% 76,4% 64,3% 73,3% Skuteczno walidacja 81,2% 71,2% 71,2% 68,1% 73,8% testowanie 71,2% 69,6% 71,2% 68,5% 73,5% 6.Wnioski z bada

12 Analiza wyników zawartych w Tabeli 18 pozwala stwierdzi, e błdy s do znaczne. Utworzone sieci charakteryzuj si zarówno duymi błdami I rodzaju, jak i II rodzaju. wiadczy to z pewnoci o tym, e problem przewidywania decyzji o wypłacie dywidendy obarczony jest bardzo du losowoci. Najlepsze efekty uzyskała sie utworzona na kompletnym zestawie zmiennych wejciowych. Oznacza to, e wród badanych zmiennych objaniajcych brak jest takich, które samodzielnie lub w kombinacji z mała liczb pozostałych, dysponowałyby duym potencjałem informacyjnym. Kade ograniczenie zmiennych tylko zmniejsza ten potencjał. W sieci utworzonej na zbiorze wskazanym przez selekcj krokow postpujc zminimalizowanie liczby cech opisujcych obiekt do 22 spowodowało zmniejszenie efektywnoci odpowiednio dla zbioru uczcego, walidacyjnego i testowego o 10,2 %, 10% oraz 1,6%. W sieci utworzonej na zbiorze tylko 3-elementowym wskazanym przez algorytm genetyczny efektywno spadła o wiele bardziej odpowiednio o 17,3%, 13,1% oraz 2,7%. Jak wida skuteczno na zbiorze testowym wykazała najmniejsze spadki. Naley take zauway, e mimo prawie identycznej ogólnej skutecznoci zarówno modelu utworzonego na zbiorze wskazanym przez selekcj krokow postpujc jak i krokow wsteczn, model pierwszy wygenerował wiksze błdy I rodzaju uznane przez nas za bardziej szkodliwe. Porównujc wszystkie cztery metody wyranie wida e najwikszymi błdami I rodzaju charakteryzuje si algorytm genetyczny, ale tylko w odniesieniu do zbiorów: uczcego i walidacyjnego. Na zbiorze testowym wida wyran popraw tego wskanika. wiadczy to moe o wikszej zdolnoci predykcyjnej tego modelu, wynikajcej prawdopodobnie z lepszego uogólnienia problemu. Zdolno generalizacji to jako działania na niedostpnych w procesie uczenia, nowo powstałych danych. Dodatkowo brak zaufania do pozostałych modeli moe budzi niewystarczajca liczba przypadków uczcych uytych w trakcie bada. Jak wynika z Tabeli 19 liczba minimalnych przypadków 12 dla poszczególnych metod znacznie przewysza liczebno dostpnego nam zbioru 521 przypadków w zbiorze uczcym, a tym samym powanie podwaa ich wiarygodno ze wzgldu na moliwo zbytniego dopasowania si do danych. Tab. 19. Zestawienie minimalnej liczebnoci przypadków dla poszczególnych metod Metoda Minimum przypadków w zbiorze uczcym 2 N Wszystkie zmienne Selekcja krokowa postpujca Selekcja krokowa wsteczna Algorytm genetyczny 8 12 W literaturze wiatowej przyjmuje si, e jeli na wejciu SSN pojawia si N- wymiarowy wektor, to powinnimy dysponowa 2 N przypadkami uczcymi.

13 Naley take zauway, e redukcja zmiennych wejciowych z wykorzystaniem AG zminimalizowała zrónicowanie jakoci klasyfikacji dla uczenia, walidacji i testowania. Zjawisko takie te przemawia za uznaniem wikszych zdolnoci predykcyjnych takiego modelu. Literatura 1) M. Gruszczyski i inni, Ekonometria, Oficyna Wydawnicza SGH, Warszawa ) T. Korol, B. Prusak, Upadło przedsibiorstw a wykorzystanie sztucznej inteligencji, CeDeWu, Warszawa ) P. Lula, R. Tadeusiewicz, STATISTICA Neural Networks PL. Kurs uytkownika programu w przykładach, StatSoft, Kraków ) P. Lula, R. Tadeusiewicz, STATISTICA Neural Networks PL. Przewodnik problemowy, StatSoft, Kraków ) P. Lula, R. Tadeusiewicz, STATISTICA Neural Networks PL. Wprowadzenie do sieci neuronowych, StatSoft, Kraków ) Paweł Roczak, Implementacja i wykorzystanie wielowarstwowej sieci perceptronowej w modelowaniu makroekonomicznym, 7) Beata Binek, Paweł Heciak, Michał Stpniewski, Dominika Waltz Komierowska, Prawa i obowizki akcjonariuszy spółek publicznych,

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Piotr Borowiec PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Sporód wielu metod sztucznej inteligencji obliczeniowej algorytmy genetyczne doczekały si wielu implementacji. Mona je wykorzystywa

Bardziej szczegółowo

Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman

Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman Poprawa efektywnoci metody wstecznej propagac bdu Algorytm wstecznej propagac bdu. Wygeneruj losowo wektory wag. 2. Podaj wybrany wzorzec na wejcie sieci. 3. Wyznacz odpowiedzi wszystkich neuronów wyjciowych

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Elementy Sztucznej Inteligencji

Elementy Sztucznej Inteligencji Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe wykład Elementy Sztucznej Inteligencji - wykład Plan Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie reguł

Bardziej szczegółowo

Elementy Sztucznej Inteligencji

Elementy Sztucznej Inteligencji Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe Plan Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie reguł delta Perceptron wielowarstwowy i jego uczenie

Bardziej szczegółowo

Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek

Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek Optymalizacja zaangaowania kapitałowego 4.01.2005 r. w decyzjach typu make or buy. Magazyn czy obcy cz. 2. Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym

Bardziej szczegółowo

Program do konwersji obrazu na cig zero-jedynkowy

Program do konwersji obrazu na cig zero-jedynkowy Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,

Bardziej szczegółowo

Hanna Szczepaska Ewa Kumirek Giełda Papierów Wartociowych w Warszawie Wołomin, 3 marca 2005 r.

Hanna Szczepaska Ewa Kumirek Giełda Papierów Wartociowych w Warszawie Wołomin, 3 marca 2005 r. Hanna Szczepaska Ewa Kumirek Giełda Papierów Wartociowych w Warszawie Wołomin, 3 marca 2005 r. Rynek pieniny - finansowanie biecej działalnoci. Lokaty midzybankowe, bony skarbowe, bony komercyjne, certyfikaty

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

PROWIZJE Menad er Schematy rozliczeniowe

PROWIZJE Menad er Schematy rozliczeniowe W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo

Bardziej szczegółowo

Amortyzacja rodków trwałych

Amortyzacja rodków trwałych Amortyzacja rodków trwałych Wydawnictwo Podatkowe GOFIN http://www.gofin.pl/podp.php/190/665/ Dodatek do Zeszytów Metodycznych Rachunkowoci z dnia 2003-07-20 Nr 7 Nr kolejny 110 Warto pocztkow rodków trwałych

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Nadwyka operacyjna w jednostkach samorzdu terytorialnego w latach 2003-2005

Nadwyka operacyjna w jednostkach samorzdu terytorialnego w latach 2003-2005 Nadwyka operacyjna w jednostkach samorzdu terytorialnego w latach 2003-2005 Warszawa, maj 2006 Spis treci Wprowadzenie...3 Cz I Zbiorcze wykonanie budetów jednostek samorzdu terytorialnego...7 1. Cz operacyjna...7

Bardziej szczegółowo

E2 - PROBABILISTYKA - Zadania do oddania

E2 - PROBABILISTYKA - Zadania do oddania E - PROBABILISTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Wymierne korzyci wynikajce z analizy procesów

Wymierne korzyci wynikajce z analizy procesów Wymierne korzyci wynikajce z analizy procesów Analiza procesu jest narzdziem do osignicia wyszej efektywnoci organizacji (midzy innymi). Wymaga ona zbudowania modelu procesu biznesowego bdcego opisem funkcjonowania

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

B. DODATKOWE NOTY OBJANIAJCE

B. DODATKOWE NOTY OBJANIAJCE B. DODATKOWE NOTY OBJANIAJCE 1. Informacje o instrumentach finansowych. Ad.1 Lp Rodzaj instrumentu Nr not prezentujcych poszczególne rodzaje instrumentów finansowych w SA-P 2008 Warto bilansowa na 30.06.2007

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

Automatyzacja procesu badania neuronowego systemu wnioskuj¹cego opartego na programie Statistica w praktycznym zastosowaniu***

Automatyzacja procesu badania neuronowego systemu wnioskuj¹cego opartego na programie Statistica w praktycznym zastosowaniu*** AUTOMATYKA 2009 Tom 13 Zeszyt 3 Joanna Grabska-Chrz¹stowska*, Wojciech Lazar** Automatyzacja procesu badania neuronowego systemu wnioskuj¹cego opartego na programie Statistica w praktycznym zastosowaniu***

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Konferencja prasowa 10 maja 2007 r. Wyniki finansowe po 1 kwartale 2007 roku str. 1

Konferencja prasowa 10 maja 2007 r. Wyniki finansowe po 1 kwartale 2007 roku str. 1 !"# #$ Konferencja prasowa 10 maja 2007 r. str. 1 Pozytywne trendy Wyniki finansowe po 1 kwartale 2007 str. 2 %& wg MSSF / zysk brutto 591 63% zysk netto 463 63% ROE brutto 34,0% 11,7 pp. ROE netto 26,6%

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Argumenty na poparcie idei wydzielenia OSD w formie tzw. małego OSD bez majtku.

Argumenty na poparcie idei wydzielenia OSD w formie tzw. małego OSD bez majtku. Warszawa, dnia 22 03 2007 Zrzeszenie Zwizków Zawodowych Energetyków Dotyczy: Informacja prawna dotyczca kwestii wydzielenia Operatora Systemu Dystrybucyjnego w energetyce Argumenty na poparcie idei wydzielenia

Bardziej szczegółowo

przewidywania zapotrzebowania na moc elektryczn

przewidywania zapotrzebowania na moc elektryczn do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)

Bardziej szczegółowo

Program Sprzeda wersja 2011 Korekty rabatowe

Program Sprzeda wersja 2011 Korekty rabatowe Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...

Bardziej szczegółowo

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Przed przystpieniem do liczenia deklaracji PIT-36, PIT-37, PIT-O i zestawienia PIT-D naley zapozna si z objanieniami do powyszych deklaracji. Uwaga:

Bardziej szczegółowo

PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC)

PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC) PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC) W dotychczasowych systemach automatyki przemysłowej algorytm PID był realizowany przez osobny regulator sprztowy - analogowy lub mikroprocesorowy.

Bardziej szczegółowo

Multipro GbE. Testy RFC2544. Wszystko na jednej platformie

Multipro GbE. Testy RFC2544. Wszystko na jednej platformie Multipro GbE Testy RFC2544 Wszystko na jednej platformie Interlab Sp z o.o, ul.kosiarzy 37 paw.20, 02-953 Warszawa tel: (022) 840-81-70; fax: 022 651 83 71; mail: interlab@interlab.pl www.interlab.pl Wprowadzenie

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Formularz. (kwartał/rok)

Formularz. (kwartał/rok) Formularz Zarzd Spółki MEDIATEL SPÓŁKA AKCYJNA podaje do wiadomoci raport kwartalny za I V kwartał roku obrotowego 2007 WYBRANE DANE FINANSOWE 01.01.2007 do 01.01.2006 do 01.01.2007 do 01.01.2006 do I.

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Zastosowanie programu Microsoft Excel do analizy wyników nauczania

Zastosowanie programu Microsoft Excel do analizy wyników nauczania Grayna Napieralska Zastosowanie programu Microsoft Excel do analizy wyników nauczania Koniecznym i bardzo wanym elementem pracy dydaktycznej nauczyciela jest badanie wyników nauczania. Prawidłow analiz

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex. Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów

Bardziej szczegółowo

Opera 9.10. Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10. wersja 1.1 UNIZETO TECHNOLOGIES SA

Opera 9.10. Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10. wersja 1.1 UNIZETO TECHNOLOGIES SA Opera 9.10 Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10 wersja 1.1 Spis treci 1. INSTALACJA WŁASNEGO CERTYFIKATU Z PLIKU *.PFX... 3 2. WYKONYWANIE KOPII BEZPIECZESTWA WŁASNEGO

Bardziej szczegółowo

Aneks Nr 1 do Prospektu Emisyjnego. PCC Rokita Spółka Akcyjna. zatwierdzonego przez Komisję Nadzoru Finansowego w dniu 7 maja 2014 roku

Aneks Nr 1 do Prospektu Emisyjnego. PCC Rokita Spółka Akcyjna. zatwierdzonego przez Komisję Nadzoru Finansowego w dniu 7 maja 2014 roku Aneks Nr 1 do Prospektu Emisyjnego PCC Rokita Spółka Akcyjna zatwierdzonego przez Komisję Nadzoru Finansowego w dniu 7 maja 2014 roku Niniejszy aneks został sporządzony w związku z opublikowaniem przez

Bardziej szczegółowo

Test wskaźnika C/Z (P/E)

Test wskaźnika C/Z (P/E) % Test wskaźnika C/Z (P/E) W poprzednim materiale przedstawiliśmy Państwu teoretyczny zarys informacji dotyczący wskaźnika Cena/Zysk. W tym artykule zwrócimy uwagę na praktyczne zastosowania tego wskaźnika,

Bardziej szczegółowo

Raport dotyczcy stosowania zasad Ładu Korporacyjnego przez LSI Software S.A. w 2007 roku.

Raport dotyczcy stosowania zasad Ładu Korporacyjnego przez LSI Software S.A. w 2007 roku. Raport dotyczcy stosowania zasad Ładu Korporacyjnego przez w 2007 roku. Zarzd Z siedzib w Łodzi, działajc na podstawie 29 ust. 5 Regulaminu Giełdy Papierów Wartociowych w Warszawie oraz Uchwały Zarzdu

Bardziej szczegółowo

Raport kwartalny SA-Q III/2005. Koszaliskie Przedsibiorstwo Przemysłu Drzewnego SA (nazwa emitenta)

Raport kwartalny SA-Q III/2005. Koszaliskie Przedsibiorstwo Przemysłu Drzewnego SA (nazwa emitenta) Raport kwartalny Zgodnie z 54 Załcznika Nr 1 do Uchwały Nr 29/01 Rady Nadzorczej Spółki Akcyjnej Centralna Tabela Ofert z dnia 30 padziernika 2001 r. - Regulamin obrotu (z pón. zm.) (dla emitentów papierów

Bardziej szczegółowo

Sieci neuronowe - dokumentacja projektu

Sieci neuronowe - dokumentacja projektu Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Wprowadzenie do algorytmów. START

Wprowadzenie do algorytmów. START 1 / 15 ALGORYMIKA 2 / 15 ALGORYMIKA Wprowadzenie do algorytmów. SAR 1. Podstawowe okrelenia. Algorytmika dział informatyki, zajmujcy si rónymi aspektami tworzenia i analizowania algorytmów. we: a,b,c delta:=b

Bardziej szczegółowo

ROZPORZDZENIE KOMISJI (WE) NR 69/2001. z dnia 12 stycznia 2001 r.

ROZPORZDZENIE KOMISJI (WE) NR 69/2001. z dnia 12 stycznia 2001 r. ROZPORZDZENIE KOMISJI (WE) NR 69/2001 z dnia 12 stycznia 2001 r. w sprawie zastosowania art. 87 i 88 Traktatu WE w odniesieniu do pomocy w ramach zasady de minimis KOMISJA WSPÓLNOT EUROPEJSKICH, uwzgldniajc

Bardziej szczegółowo

System midzybankowej informacji gospodarczej Dokumenty Zastrzeone MIG DZ ver. 2.0. Aplikacja WWW ver. 2.1 Instrukcja Obsługi

System midzybankowej informacji gospodarczej Dokumenty Zastrzeone MIG DZ ver. 2.0. Aplikacja WWW ver. 2.1 Instrukcja Obsługi System midzybankowej informacji gospodarczej Dokumenty Zastrzeone MIG DZ ver. 2.0. Aplikacja WWW ver. 2.1 Instrukcja Obsługi 1.Wymagania techniczne 1.1. Wymagania sprztowe - minimalne : komputer PC Intel

Bardziej szczegółowo

Tworzenie rezerw na wiadczenia pracownicze wymogi regulacji polskich na tle standardów midzynarodowych i ich praktyka

Tworzenie rezerw na wiadczenia pracownicze wymogi regulacji polskich na tle standardów midzynarodowych i ich praktyka Jacek Kalinowski* Tworzenie rezerw na wiadczenia pracownicze wymogi regulacji polskich na tle standardów midzynarodowych i ich praktyka Wprowadzenie Dynamiczny rozwój i globalizacja gospodarki wiatowej

Bardziej szczegółowo

Trendy upadłoci przedsibiorstw w Polsce

Trendy upadłoci przedsibiorstw w Polsce Dr Grzegorz Gołbiowski Trendy upadłoci przedsibiorstw w Polsce Wprowadzenie Upadłoci przedsibiorstw w gospodarce rynkowej nie s niczym nadzwyczajnym. W teorii ekonomii zjawisko upadku podmiotów gospodarczych

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

RZDOWY PROGRAM WYRÓWNYWANIA WARUNKÓW STARTU SZKOLNEGO UCZNIÓW W 2006 r. WYPRAWKA SZKOLNA

RZDOWY PROGRAM WYRÓWNYWANIA WARUNKÓW STARTU SZKOLNEGO UCZNIÓW W 2006 r. WYPRAWKA SZKOLNA Projekt z dnia 22.03.2006 Załcznik do uchwały Nr Rady Ministrów z dnia r. RZDOWY PROGRAM WYRÓWNYWANIA WARUNKÓW STARTU SZKOLNEGO UCZNIÓW W 2006 r. WYPRAWKA SZKOLNA 1 Wstp Rzdowy program wyrównywania warunków

Bardziej szczegółowo

Badanie efektywnoci procesów logistycznych narzdziem wspomagajcym tworzenie łacuchów zarzdzania dostawami *

Badanie efektywnoci procesów logistycznych narzdziem wspomagajcym tworzenie łacuchów zarzdzania dostawami * AMME 2001 10th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Badanie efektywnoci procesów logistycznych narzdziem wspomagajcym tworzenie łacuchów zarzdzania dostawami * S. Tkaczyk, M. Roszak Zakład Zarzdzania

Bardziej szczegółowo

Statyczna próba skrcania

Statyczna próba skrcania Laboratorium z Wytrzymałoci Materiałów Statyczna próba skrcania Instrukcja uzupełniajca Opracował: Łukasz Blacha Politechnika Opolska Katedra Mechaniki i PKM Opole, 2011 2 Wprowadzenie Do celów wiczenia

Bardziej szczegółowo

Bank of America Corp.(DE) (BAC) - spółka notowana na giełdzie nowojorskiej (NYSE).

Bank of America Corp.(DE) (BAC) - spółka notowana na giełdzie nowojorskiej (NYSE). Bank of America Corp.(DE) (BAC) - spółka notowana na giełdzie nowojorskiej (NYSE). Czym zajmuje się firma? Bank of America jeden z największych banków świata. Pod względem wielkości aktywów zajmuje 3.

Bardziej szczegółowo

Bazy danych Podstawy teoretyczne

Bazy danych Podstawy teoretyczne Pojcia podstawowe Baza Danych jest to zbiór danych o okrelonej strukturze zapisany w nieulotnej pamici, mogcy zaspokoi potrzeby wielu u!ytkowników korzystajcych z niego w sposóbs selektywny w dogodnym

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

KIERUNKI ROZWOJU W INYNIERII JAKOCI

KIERUNKI ROZWOJU W INYNIERII JAKOCI 20/21 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 21(1/2) ARCHIVES OF FOUNDARY Year 2006, Volume 6, Nº 21 (1/2) PAN Katowice PL ISSN 1642-5308 KIERUNKI ROZWOJU W INYNIERII JAKOCI S. TKACZYK 1 Politechnika

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Procedura rekrutacji pracowników do Starostwa Powiatowego w Kielcach

Procedura rekrutacji pracowników do Starostwa Powiatowego w Kielcach Zał. do Zarzdzenia Nr 58/05 Starosty Kieleckiego z dnia 30 grudnia 2005 r. w sprawie wprowadzenia procedury rekrutacji pracowników do Starostwa Powiatowego w Kielcach Procedura rekrutacji pracowników do

Bardziej szczegółowo

TYPY SZTUCZNYCH SIECI NEURONOWYCH U YWANYCH JAKO NARZ DZIE PROGNOZY W PROCESACH ZARZ DZANIA

TYPY SZTUCZNYCH SIECI NEURONOWYCH U YWANYCH JAKO NARZ DZIE PROGNOZY W PROCESACH ZARZ DZANIA TYPY SZTUCZNYCH SIECI NEURONOWYCH U YWANYCH JAKO NARZ DZIE PROGNOZY W PROCESACH ZARZ DZANIA MATEUSZ DUDZIC Uniwersytet Szczeci ski Streszczenie Celem tego artykułu jest przedstawienie architektur sztucznych

Bardziej szczegółowo

Instrukcja obsługi dodatku InsERT GT Smart Documents

Instrukcja obsługi dodatku InsERT GT Smart Documents Instrukcja obsługi dodatku InsERT GT Smart Documents InsERT, grudzie 2003 http://www.insert.com.pl/office2003 InsERT GT Smart Documents to przygotowany przez firm InsERT specjalny dodatek, umoliwiajcy

Bardziej szczegółowo

CZY I JAK M IERZY? ROI Z KAPITA?U LUDZKIEGO?

CZY I JAK M IERZY? ROI Z KAPITA?U LUDZKIEGO? CZY I JAK M IERZY? ROI Z KAPITA?U LUDZKIEGO? KAPITA? LUDZKI A ROI Na pierwszy rzut oka mo?e si? wydawa?,?e kapita?ludzki??ywa tkanak firmy? i?cis?y, ekonomiczny wska?nik, jakim jest ROI nie przystaj? do

Bardziej szczegółowo

Badania marketingowe w pigułce

Badania marketingowe w pigułce Jolanta Tkaczyk Badania marketingowe w pigułce Dlaczego klienci kupuj nasze produkty lub usługi? To pytanie spdza sen z powiek wikszoci menederom. Kady z nich byłby skłonny zapłaci due pienidze za konkretn

Bardziej szczegółowo

METODY REPREZENTACYJNE WSPOMAGANE KOMPUTEROWO W BADANICH AUDYTORSKICH

METODY REPREZENTACYJNE WSPOMAGANE KOMPUTEROWO W BADANICH AUDYTORSKICH METODY REPREZENTACYJNE WSPOMAGANE KOMPUTEROWO W BADANICH AUDYTORSKICH ANDRZEJ OBECNY WSTP Celem niniejszego artykułu 1 jest wprowadzenie Czytelnika w zagadnienia dotyczce wykorzystania metod reprezentacyjnych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

KARTA OCENY JEDNOSTKI NAUKOWEJ

KARTA OCENY JEDNOSTKI NAUKOWEJ ZAŁACZNIK nr 2 KARTA OCENY JEDNOSTKI NAUKOWEJ Cz A dla dyscyplin: nauki humanistyczne i społeczne Zespół roboczy Komisji Bada na Rzecz Rozwoju... NAZWA JEDNOSTKI I. WYNIKI DZIAŁALNOCI NAUKOWEJ 1. Publikacje

Bardziej szczegółowo

Instrukcja obsługi programu MechKonstruktor

Instrukcja obsługi programu MechKonstruktor Instrukcja obsługi programu MechKonstruktor Opracował: Sławomir Bednarczyk Wrocław 2002 1 1. Opis programu komputerowego Program MechKonstruktor słuy do komputerowego wspomagania oblicze projektowych typowych

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych Goldman Sachs Group Inc. (GS) - spółka notowana na giełdzie nowojorskiej (NYSE).

Studenckie Koło Naukowe Rynków Kapitałowych Goldman Sachs Group Inc. (GS) - spółka notowana na giełdzie nowojorskiej (NYSE). Goldman Sachs Group Inc. (GS) - spółka notowana na giełdzie nowojorskiej (NYSE). Goldman Sachs Group Inc. (GS) jedna z największych ogólnoświatowych firm w branży bankowości inwestycyjnej pełniąca profesjonalne

Bardziej szczegółowo

Rynek motoryzacyjny 2011 Europa vs Polska

Rynek motoryzacyjny 2011 Europa vs Polska Rynek motoryzacyjny 2011 Europa vs Polska Rynek cz!"ci motoryzacyjnych nierozerwalnie #$czy si! z parkiem samochodowym, dlatego te% podczas oceny wyników sprzeda%y samochodowych cz!"ci zamiennych nie mo%na

Bardziej szczegółowo

NAJWAŻNIEJSZE INFORMACJE O PRZEMYŚLE CENTRALNYCH BANKÓW PIENIĘŻNYCH

NAJWAŻNIEJSZE INFORMACJE O PRZEMYŚLE CENTRALNYCH BANKÓW PIENIĘŻNYCH Wells Fargo & Co. (WFC) - spółka notowana na giełdzie nowojorskiej (NYSE). Wells Fargo & Co. (WFC) jest najbardziej zróżnicowaną firmą w zakresie oferowanych usług finansowych w USA. Główna siedziba banku

Bardziej szczegółowo

obsług dowolnego typu formularzy (np. formularzy ankietowych), pobieranie wzorców formularzy z serwera centralnego,

obsług dowolnego typu formularzy (np. formularzy ankietowych), pobieranie wzorców formularzy z serwera centralnego, Wstp GeForms to program przeznaczony na telefony komórkowe (tzw. midlet) z obsług Javy (J2ME) umoliwiajcy wprowadzanie danych według rónorodnych wzorców. Wzory formularzy s pobierane z serwera centralnego

Bardziej szczegółowo

Sprawozdanie z działalnoci Powiatowego Rzecznika Konsumentów za rok 2005.

Sprawozdanie z działalnoci Powiatowego Rzecznika Konsumentów za rok 2005. Sprawozdanie z działalnoci Powiatowego Rzecznika Konsumentów za rok 2005. Konsument, aczkolwiek jest najwiksz zbiorowoci społeczn współczesnego wiata, to jednoczenie jest najsłabszym ogniwem systemu dystrybucji

Bardziej szczegółowo

KONCEPCJA ZASTOSOWANIA REGU DECYZYJNYCH W DOBORZE RODKÓW REDUKCJI RYZYKA ZAGRO E

KONCEPCJA ZASTOSOWANIA REGU DECYZYJNYCH W DOBORZE RODKÓW REDUKCJI RYZYKA ZAGRO E PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 96 Transport 2013 Adrian Gill Politechnika Poznaska, Instytut Silników Spalinowych i Transportu KONCEPCJA ZASTOSOWANIA REGU DECYZYJNYCH W DOBORZE RODKÓW REDUKCJI

Bardziej szczegółowo

SPRAWOZDANIE ZA IV KWARTAŁ 2008 ROKU INFORMACJE DODATKOWE

SPRAWOZDANIE ZA IV KWARTAŁ 2008 ROKU INFORMACJE DODATKOWE SPRAWOZDANIE ZA IV KWARTAŁ 2008 ROKU INFORMACJE DODATKOWE Zduska Wola, dnia 13 lutego 2009 roku I. Kursy EURO przyjte do przeliczania wybranych danych finansowych. Poszczególne pozycje aktywów i pasywów

Bardziej szczegółowo

Informacja i Promocja. Mechanizm Finansowy EOG Norweski Mechanizm Finansowy

Informacja i Promocja. Mechanizm Finansowy EOG Norweski Mechanizm Finansowy Informacja i Promocja Mechanizm Finansowy EOG Norweski Mechanizm Finansowy Spis treci 1. Wstp... 3 2. Ogólne działania informacyjno - promocyjne... 3 3. Działania informacyjno-promocyjne projektu... 4

Bardziej szczegółowo

Na Przewodniczcego Zgromadzenia odbywajcego si w dniu 7 wrzenia 2009 r. wybiera si pana/pani...

Na Przewodniczcego Zgromadzenia odbywajcego si w dniu 7 wrzenia 2009 r. wybiera si pana/pani... Projekty uchwał na NWZA Zarzd Spółki PTS PLAST-BOX" S.A. przekazuje tre projektów uchwał, które maj by przedmiotem obrad Nadzwyczajnego Walnego Zgromadzenia Akcjonariuszy zwołanego na dzie 7 wrzenia 2009

Bardziej szczegółowo

Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven

Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven Raport 8/2015 Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven autor: Michał Osmoła INIME Instytut nauk informatycznych i

Bardziej szczegółowo

Aneks nr 3 z dnia 14 lutego 2014 roku, zmieniony w dniu 10 marca 2014 roku oraz w dniu 12 marca 2014 roku

Aneks nr 3 z dnia 14 lutego 2014 roku, zmieniony w dniu 10 marca 2014 roku oraz w dniu 12 marca 2014 roku Aneks nr 3 z dnia 14 lutego 2014 roku, zmieniony w dniu 10 marca 2014 roku oraz w dniu 12 marca 2014 roku do Prospektu Emisyjnego spółki Comperia.pl S.A. z siedzib w Warszawie ( Spółka ), zatwierdzonego

Bardziej szczegółowo

ELEMENT SYSTEMU BIBI.NET. Instrukcja Obsługi

ELEMENT SYSTEMU BIBI.NET. Instrukcja Obsługi ELEMENT SYSTEMU BIBI.NET Instrukcja Obsługi Copyright 2005 by All rights reserved Wszelkie prawa zastrzeone!"# $%%%&%'(%)* +(+%'(%)* Wszystkie nazwy i znaki towarowe uyte w niniejszej publikacji s własnoci

Bardziej szczegółowo

Wspólnicy. Sprawy spółki

Wspólnicy. Sprawy spółki Przepisy dotyczce spółki cywilnej zawiera kodeks cywilny (art. 860 875). To forma prowadzenia działalnoci gospodarczej nie przekraczajcej wikszego rozmiaru, czyli jej przychód roczny nie moe przekroczy

Bardziej szczegółowo

B. DODATKOWE NOTY OBJANIAJCE

B. DODATKOWE NOTY OBJANIAJCE B. DODATKOWE NOTY OBJANIAJCE 1. Informacje o instrumentach finansowych. Ad.1 Lp Rodzaj instrumentu 1. Aktywa finansowe przeznaczone do obrotu: 2. Zobowizania finansowe przeznaczone do obrotu: Zobowizania

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych Hewlett-Packard Co. (HPQ) - spółka notowana na giełdzie nowojorskiej (NYSE).

Studenckie Koło Naukowe Rynków Kapitałowych Hewlett-Packard Co. (HPQ) - spółka notowana na giełdzie nowojorskiej (NYSE). Hewlett-Packard Co. (HPQ) - spółka notowana na giełdzie nowojorskiej (NYSE). Hewlett-Packard Co. (HPQ) to obecnie największa firma informatyczna świata. Magazym Wired uznał HP za twórcę pierwszego komputera

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Sposoby przekazywania parametrów w metodach.

Sposoby przekazywania parametrów w metodach. Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych

Bardziej szczegółowo

Wprowadzanie i zmiany faktur z zakupu, wydruk rejestru zakupu

Wprowadzanie i zmiany faktur z zakupu, wydruk rejestru zakupu Sterowanie procedurami programu "Rejestr zakupu" odbywa si poprzez wybór jednej z kilku proponowanych akurat na ekranie moliwoci. U dołu ekranu wypisywany jest komunikat bliej objaniajcy wybran aktualnie

Bardziej szczegółowo

Strategie VIP. Opis produktu. Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie. Strategia stworzona wyłącznie dla Ciebie

Strategie VIP. Opis produktu. Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie. Strategia stworzona wyłącznie dla Ciebie Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie Strategie VIP Strategia stworzona wyłącznie dla Ciebie Codziennie sygnał inwestycyjny na adres e-mail Konsultacje ze specjalistą Opis

Bardziej szczegółowo

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych

Studenckie Koło Naukowe Rynków Kapitałowych Apple Inc. (AAPL) - spółka notowana na giełdzie nowojorskiej (NASDAQ). Czym zajmuje się firma? Apple Inc. (wcześniej Apple Computer Inc.) przedsiębiorstwo komputerowe założone 1 kwietnia 1976 roku przez

Bardziej szczegółowo

Excel-wiczenia 3-1- Ilo psów na giełdach. Procentowy udział poszczególonych ras na giełdzie w padzierniku 1999. Owczarek 25% Wielorasowiec 27%

Excel-wiczenia 3-1- Ilo psów na giełdach. Procentowy udział poszczególonych ras na giełdzie w padzierniku 1999. Owczarek 25% Wielorasowiec 27% Excel-wiczenia 3-1- Excel - wiczenia 3 XXII. Autoformatowanie i pierwszy wykres Wykres to sposób graficznej reprezentacji danych z arkusza. Najprostsz metod utworzenia wykresu jest uycie kreatora wykresów.

Bardziej szczegółowo

SUPLEMENT SM-BOSS WERSJA 6.15

SUPLEMENT SM-BOSS WERSJA 6.15 SUPLEMENT SM-BOSS WERSJA 6.15 Spis treci Wstp...2 Pierwsza czynno...3 Szybka zmiana stawek VAT, nazwy i PKWiU dla produktów...3 Zamiana PKWiU w tabeli PKWiU oraz w Kartotece Produktów...4 VAT na fakturach

Bardziej szczegółowo

Ebay Inc. (EBAY) - spółka notowana na giełdzie nowojorskiej (NASDAQ).

Ebay Inc. (EBAY) - spółka notowana na giełdzie nowojorskiej (NASDAQ). Ebay Inc. (EBAY) - spółka notowana na giełdzie nowojorskiej (NASDAQ). Czym zajmuje się firma? ebay - portal internetowy prowadzący największy serwis aukcji internetowych na świecie. ebay został założony

Bardziej szczegółowo

Poradnik korzystania z serwisu UNET: Konfiguracja programu pocztowego

Poradnik korzystania z serwisu UNET: Konfiguracja programu pocztowego Poradnik korzystania z serwisu UNET: Konfiguracja programu pocztowego Niniejszy opis dotyczy konfiguracji programu pocztowego Outlook Express z pakietu Internet Explorer, pracujcego pod kontrol systemu

Bardziej szczegółowo

5. Modelowanie własno ci stali szybkotn cych

5. Modelowanie własno ci stali szybkotn cych 5. Modelowanie własno ci stali szybkotn cych Głównym celem przeprowadzonych bada jest opracowanie metodyki projektowania nowych stali szybkotn cych o wymaganych własno ciach u ytkowych. Przyj to, e przy

Bardziej szczegółowo

W ramach podstawowej działalnoci operacyjnej projekt przewiduje uporzdkowanie zasad finansowania, w aspekcie kwalifikowania przychodów i kosztów, w

W ramach podstawowej działalnoci operacyjnej projekt przewiduje uporzdkowanie zasad finansowania, w aspekcie kwalifikowania przychodów i kosztów, w UZASADNIENIE Projekt rozporzdzenia Rady Ministrów w sprawie szczegółowych zasad gospodarki finansowej uczelni publicznych stanowi wykonanie delegacji ustawowej wynikajcej z art. 105 ustawy z dnia 27 lipca

Bardziej szczegółowo

Przetarg nieograniczony poniej kwoty okrelonej w art. 11 ust 8 zgodnie z ustaw Prawo zamówie publicznych

Przetarg nieograniczony poniej kwoty okrelonej w art. 11 ust 8 zgodnie z ustaw Prawo zamówie publicznych Radziejów: Zorganizowanie i przeprowadzenie szkolenia w kierunku: projektowanie ogrodów Numer ogłoszenia:151938 2010; data zamieszczenia: 01.06.2010 OGŁOSZENIE O ZAMÓWIENIU usługi Przetarg nieograniczony

Bardziej szczegółowo

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

Instrukcja obsługi systemu przywoławczego pomidzy kabin LF a laboratorium analiz chemicznych

Instrukcja obsługi systemu przywoławczego pomidzy kabin LF a laboratorium analiz chemicznych Strona 0 z 16 Instrukcja obsługi systemu przywoławczego pomidzy kabin LF a laboratorium analiz chemicznych ZARMEN Sp. z o.o. 45-641 Opole ul. Owicimska 121 ZRM Warszawa 01-949 Warszawa ul. Kasprowicza

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych McDonald's Corp. (MCD) - spółka notowana na giełdzie nowojorskiej (NYSE).

Studenckie Koło Naukowe Rynków Kapitałowych McDonald's Corp. (MCD) - spółka notowana na giełdzie nowojorskiej (NYSE). McDonald's Corp. (MCD) - spółka notowana na giełdzie nowojorskiej (NYSE). McDonald's Corp. (MCD) największa na świecie sieć barów szybkiej obsługi. Założona 15 maja 1940 r. w San Bernardino w Kalifornii

Bardziej szczegółowo

Program SMS4 Monitor

Program SMS4 Monitor Program SMS4 Monitor INSTRUKCJA OBSŁUGI Wersja 1.0 Spis treci 1. Opis ogólny... 2 2. Instalacja i wymagania programu... 2 3. Ustawienia programu... 2 4. Opis wskaników w oknie aplikacji... 3 5. Opcje uruchomienia

Bardziej szczegółowo

Temat: Programowanie zdarzeniowe. Zdarzenia: delegacje, wykorzystywanie zdarze. Elementy Windows Application (WPF Windows Presentation Foundation).

Temat: Programowanie zdarzeniowe. Zdarzenia: delegacje, wykorzystywanie zdarze. Elementy Windows Application (WPF Windows Presentation Foundation). Temat: Programowanie zdarzeniowe. Zdarzenia: delegacje, wykorzystywanie zdarze. Elementy Windows Application (WPF Windows Presentation Foundation). 1. Programowanie zdarzeniowe Programowanie zdarzeniowe

Bardziej szczegółowo