ALGORYTMY SZTUCZNEJ INTELIGENCJI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ALGORYTMY SZTUCZNEJ INTELIGENCJI"

Transkrypt

1 ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe Krzysztof Salamon

2 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji. Wykonane zadanie dotyczyło zbudowania w programie Statistica odpowiedniej sieci neuronowej, służącej do klasyfikacji. Wykorzystywanym zbiorem danych był zbiór IrisSNN (posiadający 150 obserwacji), który zawierał 5 atrybutów: długość działki, szerokość działki, długość płatka, szerokość płatka oraz odmiana opisująca gatunek irysa. Dodatkowym atrybutem w zbiorze był NNSET który posłużył do rozdzielenia danych na zbiór uczący i walidacyjny. Po zbudowaniu odpowiedniej sieci neuronowej wygenerowano 5 modeli, z czego 3 zostały wybrane. Podczas analizy modeli wykorzystałem narzędzia takie jak: macierz pomyłek, wykres ramka-wąsy (dla atrybutu długość płatka) predykcja.

3 2 Tworzenie sieci neuronowej W tym rozdziale opisane zostało przygotowanie sieci neuronowej, której zadaniem była klasyfikacja danych wejściowych. 2.1 Wybór zadania dla sieci neuronowej Pierwszym krokiem wymaganym do realizacji zadania był wybór zadania dla sieci neuronowej - w tym celu należało zaznaczyć klasyfikację w polu nowa analiza. Rysunek 1 Wybór zadania sieci neuronowej 2.2 Definicja zmiennych Dla tworzonej sieci neuronowej należało sprecyzować zmienne wejścia oraz zmienną wyjściową. Statistica umożliwia taką czynność w zakładce Podstawowe, w której można wybrać również sposób tworzenia modeli zaznaczono opcję projekt sieci użytkownika. W przypadku zestawu danych IrisSNN jako zmienne wejściowe (ilościowe) wybrano 4 atrybuty: długość działki, szerokość działki, długość płatka, szerokość płatka. Natomiast jako zmienną wyjściową oznaczono atrybut odmiana. Rysunek 2 Wybór zmiennych

4 2.3 Wybór podzbiorów Kolejnym krokiem był wybór podzbiorów uczącego oraz walidacyjnego. Zbiór danych IrisSNN posiadał atrybut NNSET który definiował podział danych na próby. W tym celu w zakładce wybór podzbiorów zaznaczono Identyfikator grupy, który umożliwia zdefiniowanie grupy uczącej/walidującej na podstawie wartości danego atrybutu. Elementami zbioru uczącego zostały wszystkie wiersze posiadające w kolumnie NNSET wartość UCZĄCY. Elementami próby walidacyjnej zostały wszystkie wiersze posiadające w kolumnie NNSET wartość WALIDACYJNY. Rysunek 3 Podział na próby: uczącą i walidacyjną 2.4 Określenie podstawowych cech sieci Dla tworzonej sieci neuronowej wybrano typ - perceptron wielowarstwowy. Jako funkcję błędu sieci określono sumę kwadratów, funkcją aktywacji neuronów ukrytych została funkcja: tangens hiperboliczny, natomiast funkcją aktywacji neuronów wyjściowych -funkcja liniowa. Liczba wygenerowanych sieci została ustawiona na 5, a liczba neutronów w warstwie ukrytej na 6. Rysunek 4 Konfiguracja sieci neuronowych

5 3 Wynik uczenia W tym rozdziale prezentuje wynik uczenia sieci neuronowych, ich analizę oraz graficzną interpretację sieci. 3.1 Wybór modeli sieci neuronowej Po wygenerowaniu 5 sieci, na podstawie jakości próby walidacyjnej, wybrano trzy najlepsze: 2 sieć - MLP463 o jakości=97, sieć - MLP463 o jakości=94, sieć - MLP463 o jakości=94, Rysunek 5 Wybrane sieci neuronowe 3.2 Graficzny model sieci neuronowej Model sieci neuronowej przedstawia się następująco: Rysunek 6 Graficzny model sieci neuronowej

6 3.3 Analiza sieci neuronowych macierz pomyłek Po wygenerowaniu macierzy pomyłek, można stwierdzić, że optymalną siecią dla zbioru walidacyjnego była sieć nr 2. Dla odmiany Setosa, sieć nie popełniła żadnego błędu dla 23 prób. Dla odmiany Versicol, sieć pomyliła się raz, a 23 zestawy danych zaklasyfikowało poprawnie to daje poprawność dla tej odmiany w wysokości 95,83333%, sieć pomyliła się w 4, przypadków. Sieć raz pomyliła się również dla odmiany Virginic - na 23 próby, co daje poprawność równą 95,65217%, błędnie zaklasyfikowała 4,34783%. Łącznie, dla wszystkich odmian poprawność sieci wyniosła 97,14286% (błędne 2,85714%), czyli na 70 przypadków poprawnie sklasyfikowała 68 zestawów danych. Poprawność klasyfikacji 4 sieci dla wszystkich odmian wynosi 94,28571% (błędne 5,71429) - na 70 przypadków 66 zaklasyfikowano poprawnie, a 4 źle. Patrząc pod kątem odmiany Setosa poprawnych klasyfikacji było 22 z 23, co dało poprawność wynoszącą 95,6522. Dla odmiany Versicol sieć pomyliła się dwukrotnie niepoprawnie sklasyfikowano 8,3333%, natomiast 22 sklasyfikowano poprawnie 91,66667%. Sieć nr 4 sklasyfikowała 22 z 23 (poprawność: 95,65217%) przypadków poprawnie dla odmiany Virginic. Ostatnia wybrana przeze mnie sieć bezbłędnie sklasyfikowała zestawy danych dla odmiany Setosa. Dla odmiany Versicol poprawność wyniosła 91,66667% (22 na 24 poprawne), pomyliła się natomiast w 8,33333% klasyfikacji. Sieć dla odmiany Virginic pomyliła się dwukrotnie na 23 próby, co daje poprawność klasyfikacji na poziomie 91,30435% (błędnie zaklasyfikowano 8,69565%). Dla wszystkich odmian łącznie, sieć numer 5 zaklasyfikowała poprawnie 66 z 70 zestawów danych, czyli poprawność klasyfikacji wynosi 94,28571% (błąd 5,71429%). Rysunek 7 Macierz pomyłek 3.4 Analiza sieci neuronowych predykcja Na podstawie dwóch wybranych błędnych klasyfikacji (przedstawionych na rysunku 8) można stwierdzić, że dla 71 zestawu danych, błąd popełniły sieci 4 i 5 zamiast odmiany Versicol,

7 sklasyfikowały dane do odmiany Virginic. Dla wiersza 84, wszystkie sieci popełniły błąd klasyfikacji, zamiast odmiany Versicol zaklasyfikowały dane do klasy Virginic. Podsumowując predykcję można stwierdzić, że sieć: 2.MLP pomyliła się dwukrotnie, w pierwszym przypadku zamiast zakwalifikować dane do zbioru Versicol zakwalifikowała do zbioru Virginic, w drugim z kolei sieć zakwalifikowała dane do zbioru Virginic, choć prawidłową klasą była Versicol; 4.MLP pomyliła się czterokrotnie, z czego raz zamiast wybrać klasę Setosa, zakwalifikowano dane do klasy Versical, sieć 2 razy błędnie zakwalifikowała dane do klasy Virginic zamiast Versical. Ostatnią pomyłką sieci było zakwalifikowanie danych do Versicol zamiast Virginic; 5.MLP pomyliła się czterokrotnie, sieć 2 razy błędnie zakwalifikowała dane do klasy Virginic zamiast Versical. Pozostałe 2 pomyłki sieci wystąpiły przy sklasyfikowaniu obiektów do klasy Versicol, choć prawidłową klasą była Virginic. Rysunek 8 Arkusz predykacji 3.5 Grupowanie klas ze względu na długość płatka Po wygenerowaniu wykresu ramkowego dla długości płatka, grupowanego względem odmiany, można stwierdzić, że sprawdzany atrybut wyraźnie rozdziela odmianę Setosa od pozostałych. Dane nieodstające dla tej odmiany zawierają się pomiędzy wartościami 1,1 a 1,9, mediana wynosi 1,5. Dla odmiany Versicol wartość minimalna wynosi 3,3 (wartość odstająca 3), mediana 4,35 a wartość

8 maksymalna 5,1. Zbiór danych dla ostatniej z badanych odmian irysów posiada medianę wynoszącą 5,55, wartość minimalną 4,5 a maksymalną równa 6,9. Z wykresu wynika, że atrybut długość płatka pozwala dobrze rozróżnić klasę Setosa od Versicol i Virginic, dzięki czemu sieci neuronowe popełniły mniej błędów klasyfikując kwiaty odmiany Setosa, niż rozróżniając od siebie odmiany Versicol i Virginic, gdzie wartości zachodzą na siebie. Rysunek 9 Wykres grupujący długość płatka względem odmiany 4 Podsumowanie Podczas realizowanych ćwiczeń zbudowano efektywne klasyfikatory odmian irysów wykorzystujące sieci neuronowe. Dla wybranego zbioru danych, w próbie walidacyjnej najlepsza sieć osiągnęła jakość wynoszącą około 97,14%, myląc się dwukrotnie na 70 przypadków. Podczas analizy danych zauważono również, jak różnice w danym atrybucie (długość płatka) mogą wpłynąć na trafność klasyfikacji - dla pokrywających się wartości klasyfikator częściej się mylił. Reasumując, sieć neuronowa jest efektywnym narzędziem klasyfikacji obiektów.

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Księgowość Optivum. Jak zweryfikować poprawność kwot w zestawieniu budżetowym?

Księgowość Optivum. Jak zweryfikować poprawność kwot w zestawieniu budżetowym? Księgowość Optivum Jak zweryfikować poprawność kwot w zestawieniu budżetowym? Na wyliczenie kwoty w zestawieniu budżetowym ma wpływ wiele czynników, głównie jest to ustalona definicja na zakładce Kolumny

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN

WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Inżynieria Rolnicza 2(9)/7 WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Akademia

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

Krótki kurs data mining. StatSoft Polska, Kraszewskiego 36, Kraków, tel

Krótki kurs data mining. StatSoft Polska, Kraszewskiego 36, Kraków,  tel Krótki kurs data mining StatSoft Polska, Kraszewskiego 36, 30-110 Kraków, www.statsoft.pl, tel. 12 4284300. e-mail:info@statsoft.pl Informacje ogólne Co to jest data mining Wykorzystywane modele Metodyka

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al

ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al LESZEK A. DOBRZAŃSKI, TOMASZ TAŃSKI ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al APPLICATION OF NEURAL NETWORKS FOR OPTIMISATION OF Mg-Al ALLOYS HEAT TREATMENT

Bardziej szczegółowo

SZTUCZNE SIECI NEURONOWE W MODELOWANIU ZJAWISK ZACHODZĄCYCH NA RYNKU NIERUCHOMOŚCI

SZTUCZNE SIECI NEURONOWE W MODELOWANIU ZJAWISK ZACHODZĄCYCH NA RYNKU NIERUCHOMOŚCI Dr Agnieszka MAZUR-DUDZIŃSKA Politechnika Łódzka, Katedra Zarządzania SZTUCZNE SIECI NEURONOWE W MODELOWANIU ZJAWISK ZACHODZĄCYCH NA RYNKU NIERUCHOMOŚCI Streszczenie: Celem referatu jest zastosowanie sztucznych

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OCENY ZDOLNOŚCI KREDYTOWYCH ROLNIKÓW KLIENTÓW FIRMY LEASINGOWEJ

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OCENY ZDOLNOŚCI KREDYTOWYCH ROLNIKÓW KLIENTÓW FIRMY LEASINGOWEJ Inżynieria Rolnicza 1(99)/2008 ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OCENY ZDOLNOŚCI KREDYTOWYCH ROLNIKÓW KLIENTÓW FIRMY LEASINGOWEJ Marta Kiljańska, Marek Klimkiewicz Katedra Organizacji i Inżynierii

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Laboratorium 6. Indukcja drzew decyzyjnych.

Laboratorium 6. Indukcja drzew decyzyjnych. Laboratorium 6 Indukcja drzew decyzyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI W LOGISTYCE

ALGORYTMY SZTUCZNEJ INTELIGENCJI W LOGISTYCE PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 117 Transport 2017 Arkadiusz Jóźwiak Wojskowa Akademia Techniczna, Wydział Logistyki, Instytut Logistyki Andrzej Świderski Instytut Transportu Samochodowego ALGORYTMY

Bardziej szczegółowo

Zagadnienie klasyfikacji (dyskryminacji)

Zagadnienie klasyfikacji (dyskryminacji) Zagadnienie klasyfikacji (dyskryminacji) Przykład Bank chce klasyfikować klientów starających się o pożyczkę do jednej z dwóch grup: niskiego ryzyka (spłacających pożyczki terminowo) lub wysokiego ryzyka

Bardziej szczegółowo

Katedra Zarządzania i Informatyki Politechnika Śląska

Katedra Zarządzania i Informatyki Politechnika Śląska prof. dr hab. Tadeusz Wieczorek mgr inż. Krystian Mączka Katedra Zarządzania i Informatyki Politechnika Śląska Charakterystyka procesu topienia złomu w piecu łukowym Problemy do rozwiązania Prezentacja

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

JAK EFEKTYWNIE I POPRAWNIE WYKONAĆ ANALIZĘ I RAPORT Z BADAŃ BIEGŁOŚCI I WALIDACJI PRAKTYCZNE WSKAZÓWKI

JAK EFEKTYWNIE I POPRAWNIE WYKONAĆ ANALIZĘ I RAPORT Z BADAŃ BIEGŁOŚCI I WALIDACJI PRAKTYCZNE WSKAZÓWKI JAK EFEKTYWNIE I POPRAWNIE WYKONAĆ ANALIZĘ I RAPORT Z BADAŃ BIEGŁOŚCI I WALIDACJI PRAKTYCZNE WSKAZÓWKI Michał Iwaniec, StatSoft Polska Sp. z o.o. Wprowadzenie W wielu zagadnieniach laboratoryjnych statystyczna

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów

Metody klasyfikacji i rozpoznawania wzorców.  Najważniejsze rodzaje klasyfikatorów Metody klasyfikacji i rozpoznawania wzorców www.michalbereta.pl Najważniejsze rodzaje klasyfikatorów Dla określonego problemu klasyfikacyjnego (tzn. dla danego zestawu danych) należy przetestować jak najwięcej

Bardziej szczegółowo

PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN

PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN Tomasz Demski, StatSoft Polska Sp. z o.o. Przewidywanie właściwości produktu na podstawie składu surowcowego oraz parametrów przebiegu

Bardziej szczegółowo

Symulator sztucznych sieci neuronowych samouczek Sztuczna Inteligencja

Symulator sztucznych sieci neuronowych samouczek Sztuczna Inteligencja Każdą analizę rozpoczynamy od otwarcia pliku danych (można, oczywiście utworzyć nowy plik w ST Neural Networks, jednak, najczęściej mamy już dane, w formacie STATISTICA lub jakimś innym). Sieci neuronowe

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

Sieci neuronowe - dokumentacja projektu

Sieci neuronowe - dokumentacja projektu Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...

Bardziej szczegółowo

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW Z tego dokumentu dowiesz się jak wykorzystać wbudowane funkcje arkusza kalkulacyjnego

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Spis treści. 1 Moduł Modbus TCP 4

Spis treści. 1 Moduł Modbus TCP 4 Spis treści 1 Moduł Modbus TCP 4 1.1 Konfigurowanie Modułu Modbus TCP................. 4 1.1.1 Lista elementów Modułu Modbus TCP............ 4 1.1.2 Konfiguracja Modułu Modbus TCP.............. 5 1.1.3

Bardziej szczegółowo

Wprowadzenie do klasyfikacji

Wprowadzenie do klasyfikacji Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator

Bardziej szczegółowo

Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp

Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp Wstęp Problem uczenia się pod nadzorem, inaczej nazywany uczeniem się z nauczycielem lub uczeniem się na przykładach, sprowadza się do określenia przydziału obiektów opisanych za pomocą wartości wielu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

ĆWICZENIE 5: Sztuczne sieci neuronowe

ĆWICZENIE 5: Sztuczne sieci neuronowe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold

Bardziej szczegółowo

Tworzenie tabeli przestawnej krok po kroku

Tworzenie tabeli przestawnej krok po kroku Tabele przestawne Arkusz kalkulacyjny jest narzędziem przeznaczonym do zapisu, przechowywania i analizy danych. Jeśli w arkuszu zamierzamy gromadzić dane o osobach i cechach je opisujących (np. skąd pochodzą,

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Eksploracja danych w środowisku R

Eksploracja danych w środowisku R Eksploracja danych w środowisku R Moi drodzy, niniejszy konspekt nie omawia eksploracji danych samej w sobie. Nie dowiecie się tutaj o co chodzi w generowaniu drzew decyzyjnych czy grupowaniu danych. Te

Bardziej szczegółowo

WEKA klasyfikacja z użyciem sztucznych sieci neuronowych

WEKA klasyfikacja z użyciem sztucznych sieci neuronowych WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór

Bardziej szczegółowo

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2

PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 Celem opracowania algorytmu obliczeń jest umożliwienie doboru zestawu maszyn do robót

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46.

W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46. 1. Wprowadzenie Priorytetem projektu jest zbadanie zależności pomiędzy wartościami średnich szybkości przemieszczeń terenu, a głębokością eksploatacji węgla kamiennego. Podstawowe dane potrzebne do wykonania

Bardziej szczegółowo

Zadanie 3.: Klasyfikacje

Zadanie 3.: Klasyfikacje Informatyka, studia dzienne, inż. I st. semestr VI Inteligentna Analiza Danych 2/2 Prowadzący: dr inż. Arkadiusz Tomczyk wtotek, 8:3 Data oddania: Ocena: Marek Rogalski 5982 Paweł Tarasiuk 52 Zadanie 3.:

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU 3

1 Moduł Modbus ASCII/RTU 3 Spis treści 1 Moduł Modbus ASCII/RTU 3 1.1 Konfigurowanie Modułu Modbus ASCII/RTU............. 3 1.1.1 Lista elementów Modułu Modbus ASCII/RTU......... 3 1.1.2 Konfiguracja Modułu Modbus ASCII/RTU...........

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji

Podstawy Sztucznej Inteligencji Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

P&I Scout Pro Wygodne i proste tworzenie raportów

P&I Scout Pro Wygodne i proste tworzenie raportów P&I Scout Pro Wygodne i proste tworzenie raportów - opis funkcjonalny - Dmz-chemak sp. z o.o. dostawca rozwiązań informatycznych z zakresu zarządzania zasobami ludzkimi. Autoryzowany partner Personal &

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII Autor: Katarzyna Halicka ( Rynek Energii nr 1/2010) Słowa kluczowe: giełda energii, prognozowanie cen energii elektrycznej,

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium X: Analiza dyskryminacyjna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium X: Analiza dyskryminacyjna 1 Laboratorium X: Analiza dyskryminacyjna Spis treści Laboratorium X: Analiza dyskryminacyjna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 1.1. Wprowadzenie.... 2 1.2. Klasyfikacja.... 6 1.3.

Bardziej szczegółowo

SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie

SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH Jakub Karbowski Gimnazjum nr 17 w Krakowie KRAKÓW 2017 1. Spis treści 2. WSTĘP 2 3. SIECI NEURONOWE 2 3.1. Co to są sieci neuronowe... 2

Bardziej szczegółowo

Rozdział ten zawiera informacje o sposobie konfiguracji i działania Modułu OPC.

Rozdział ten zawiera informacje o sposobie konfiguracji i działania Modułu OPC. 1 Moduł OPC Moduł OPC pozwala na komunikację z serwerami OPC pracującymi w oparciu o model DA (Data Access). Dzięki niemu można odczytać stan obiektów OPC (zmiennych zdefiniowanych w programie PLC), a

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

PIA PANEL INŻYNIERA AUTOMATYKA

PIA PANEL INŻYNIERA AUTOMATYKA ul. Bajana Jerzego 31d tel. + 48 399 50 42 45 01-904 Warszawa PANEL INŻYNIERA AUTOMATYKA Wszystkie nazwy handlowe i towarów występujące w niniejszej publikacji są znakami towarowymi zastrzeżonymi odpowiednich

Bardziej szczegółowo

PRZEWIDYWANIE RODZAJU USZKODZEŃ PRZEWODÓW WODOCIĄGOWYCH ZA POMOCĄ KLASYFIKUJĄCYCH SIECI NEURONOWYCH

PRZEWIDYWANIE RODZAJU USZKODZEŃ PRZEWODÓW WODOCIĄGOWYCH ZA POMOCĄ KLASYFIKUJĄCYCH SIECI NEURONOWYCH Przewody wodociągowe, sieci neuronowe, uszkodzenia Małgorzata KUTYŁOWSKA* PRZEWIDYWANIE RODZAJU USZKODZEŃ PRZEWODÓW WODOCIĄGOWYCH ZA POMOCĄ KLASYFIKUJĄCYCH SIECI NEURONOWYCH Celem pracy jest analiza i

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Algorytmy wstecznej propagacji sieci neuronowych

Algorytmy wstecznej propagacji sieci neuronowych Algorytmy wstecznej propagacji sieci neuronowych Mateusz Nowicki, Krzysztof Jabłoński 1 Wydział Inżynierii Mechanicznej i Informatyki Politechnika Częstochowska Kierunek Informatyka, Rok III 1 krzysztof.jablonski@hotmail.com

Bardziej szczegółowo

Analiza możliwości zastosowania sieci neuronowych do modelowania wartości kapitału społecznego w firmach IT

Analiza możliwości zastosowania sieci neuronowych do modelowania wartości kapitału społecznego w firmach IT Analiza możliwości zastosowania sieci neuronowych do modelowania wartości kapitału społecznego w firmach IT Julia Siderska Politechnika Białostocka, Wydział Zarządzania, e-mail: j.siderska@pb.edu.pl Streszczenie

Bardziej szczegółowo

Jak sprawnie filtrować i sprawdzać poprawność danych w Excelu? 1

Jak sprawnie filtrować i sprawdzać poprawność danych w Excelu? 1 Jakie możliwości daje autofiltr... 1 Niestandardowe filtrowanie transakcji względem nazw produktów i dat... 3 Sprzedaż produktów w określonym czasie i wybranych miastach filtr zaawansowany... 5 Kontrola

Bardziej szczegółowo

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W PROCESIE ROZLICZEŃ MIESZKAŃCÓW BUDYNKÓW WIELOLOKATOROWYCH

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W PROCESIE ROZLICZEŃ MIESZKAŃCÓW BUDYNKÓW WIELOLOKATOROWYCH sieci neuronowe, rozliczenie mediów, zdalny odczyt Grzegorz BARTNICKI, Agnieszka CHMIELEWSKA* ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W PROCESIE ROZLICZEŃ MIESZKAŃCÓW BUDYNKÓW WIELOLOKATOROWYCH W pracy

Bardziej szczegółowo

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex. Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów

Bardziej szczegółowo

Założenia funkcjonalne narzędzia informatycznego wspierającego wdrożenie benchmarkingu

Założenia funkcjonalne narzędzia informatycznego wspierającego wdrożenie benchmarkingu Benchmarking narzędzie efektywnej kontroli zarządczej w urzędach miast na prawach powiatu, urzędach gmin i starostwach powiatowych Założenia funkcjonalne narzędzia informatycznego wspierającego wdrożenie

Bardziej szczegółowo

6. Perceptron Rosenblatta

6. Perceptron Rosenblatta 6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Opracował: mgr inż. Marcin Olech 2010-10-04

Opracował: mgr inż. Marcin Olech 2010-10-04 Laboratorium 4 Strona 1 z 17 Spis treści: 1. Wielowymiarowa analiza danych w arkusza kalkulacyjnych z wykorzystaniem MS Excel: a. tworzenie tabel przestawnych, b. tworzenie wykresów przestawnych. 2. Praca

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr inż. Szymona Lechwara

Recenzja rozprawy doktorskiej mgr inż. Szymona Lechwara Katowice, 28.02. 2014r. Recenzja rozprawy doktorskiej mgr inż. Szymona Lechwara pt. Opracowanie wizyjnego klasyfikatora wad powierzchni związanych z występowaniem zgorzeliny w procesie walcowania blach

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Systemy Uczące się Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 16, 2017 1 Wprowadzenie 2 Uczenie nadzorowane 3 Uczenie bez nadzoru 4 Uczenie ze wzmocnieniem Uczenie się - proces

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Paweł Łabaj Instytut Informatyki, Wydział Automatyki, Elektroniki i Informatyki, Politechnika Śląska w Gliwicach

Paweł Łabaj Instytut Informatyki, Wydział Automatyki, Elektroniki i Informatyki, Politechnika Śląska w Gliwicach SYSTEM AUTOMATYCZNEJ ANALIZY WZORCÓW ZMIENNOŚCI W RYTMIE SERCA PŁODU Paweł Łabaj Instytut Informatyki, Wydział Automatyki, Elektroniki i Informatyki, Politechnika Śląska w Gliwicach 1 WPROWADZENIE W obecnych

Bardziej szczegółowo

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji.

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji. 1 Moduł Modbus TCP Moduł Modbus TCP daje użytkownikowi Systemu Vision możliwość zapisu oraz odczytu rejestrów urządzeń, które obsługują protokół Modbus TCP. Zapewnia on odwzorowanie rejestrów urządzeń

Bardziej szczegółowo