Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B"

Transkrypt

1 Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania Definicja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów SQL - podzapytania Małgorzata Krtowska Katedra Oprogramowania Bazy danych (studia zaoczne) 2 Definicja zalenoci funkcyjnych Zalenoci funkcyjne Zaleno funkcyjna: B Interpretacja: jeli dwie krotki relacji R s zgodne dla atrybutów,,.., A n (tzn. obie krotki maj takie same wartoci składowych dla wymienionych atrybutów), to musz by równie zgodne w pewnym innym atrybucie B. Odczyt zapisu:,,..., A n okrelaj funkcyjnie B Jeli zbiór atrybutów,,..., A n okrela funkcyjnie wicej ni jeden atrybut tzn. B 1 B 2 B 3 To taki zbiór zalenoci skrótowo przedstawiamy jako: B 1 B 2 B 3 Bazy danych (studia zaoczne) 3 x y A Jeli x i y s zgodne dla atrybutów A A B B To musz by zgodne równie dla atrybutów B Bazy danych (studia zaoczne) 4

2 Klucze relacji Atrybut lub zbiór atrybutów {,,..., A n } tworzy klucz relacji, jeli: wszystkie pozostałe atrybuty relacji s funkcyjnie zalene od tych atrybutów => nie moe by sytuacji, w której dwie róne krotki relacji R zgodne dla wszystkich atrybutów,,..., A n. Nie istnieje taki podzbiór właciwy zbioru {,,..., A n }, od którego pozostałe atrybuty relacji R s zalene funkcyjnie, tzn. klucz musi by minimalny Nadklucze Nadklucz - zbiór atrybutów, który zawiera klucz Kady klucz jest nadkluczem Klucze w diagramach E/R nie spełniaj wymagania (2) Bazy danych (studia zaoczne) 5 Bazy danych (studia zaoczne) 6 Reguły wykrywania kluczy w relacji Reguła 1 Jeli relacja pochodzi z przekształcenia zbioru encji, to jej kluczem s atrybuty kluczowe tego zbioru encji Reguła 2 (dotyczy zwizków binarnych) Jeli zwizek jest typu wiele do wiele, to klucze obu zbiorów encji objtych zwizkiem tworz zbiór atrybutów klucza R jeli zwizek ze zbioru encji E1 do zbioru encji E2 jest typu wiele do jeden, to atrybuty klucza E1 staj si kluczem R, ale atrybuty klucza E2 nie wchodz do klucza relacji R. Jeli zwizek jest typu jeden do jeden, to atrybuty klucza któregokolwiek ze zbiorów mog by kluczem R. W tej sytuacji nie ma tylko jednego klucza. Klucze relacyjne i E/R Klucze w ERD s atrybutami encji Klucze w relacjach s atrybutami krotek Zazwyczaj, jedna krotka odpowiada jednej encji, wówczas idea jest taka sama W niewłaciwie skonstruowanych relacjach, jedna encja moe by opisana przez kilka krotek, wówczas klucze w diagramach E/R i relacjach bd si róniły. Bazy danych (studia zaoczne) 7 Bazy danych (studia zaoczne) 8

3 Reguły dotyczce zalenoci funkcyjnych Zasady podziału i łczenia Zasady, które pozwalaj na zastpowanie zbioru zalenoci funkcyjnych zbiorami równowanymi lub na dołczanie do zbioru tych zalenoci, które wynikaj ze zbioru pocztkowego. Reguła podziału Zaleno funkcyjn B 1 B 2... B m moemy zastpi zbiorem zalenoci funkcyjnych B i, gdzie i=1,2,...,m Wyróniamy nastpujce reguły: reguła łczenia reguła podziału reguła przechodnioci Reguła łczenia Zbiór zalenoci funkcyjnych B i, gdzie i=1,2,...,m moemy zastpi pojedyncz zalenoci funkcyjn B 1 B 2... B m Bazy danych (studia zaoczne) 9 Bazy danych (studia zaoczne) 10 Zalenoci trywialne Domknicie zbioru atrybutów Zaleno funkcyjna B jest trywialna, jeli B jest równe któremu z A tytuł rok tytuł Mówimy, e zaleno B 1 B 2... B m jest: trywialna - jeli zbiór złoony z atrybutów typu B jest podzbiorem zbioru atrybutów typu A nietrywialna - jeli co najmniej jeden z atrybutów typu B znajduje si poród atrybutów A całkowicie nietrywialna - jeli aden z atrybutów typu B nie znajduje si poród atrybutów typu A Atrybuty, które wystpuj równoczenie z prawej i lewej strony zawsze mona pomin po prawej tronie, std prawdziwe jest twierdzenie (reguła zalenoci trywialnych) Zaleno funkcyjna B 1 B 2... B m jest równowana zalenoci C 1 C 2... C K, gdzie C s tymi elementami z B, które nie s równe A. Bazy danych (studia zaoczne) 11 Załoenia: {,,..., A n } - zbiór atrybutów S - zbiór zalenoci funkcyjnych Domkniciem zbioru {,,..., A n } nad zbiorem zalenoci S nazywamy taki zbiór atrybutów B, e jeli pewna relacja R spełnia wszystkie zalenoci ze zbioru S, to spełnia take zaleno... A n B, a zatem zaleno... A n B wynika z S. Domknicie zbioru atrybutów {,,..., A n } oznaczamy przez {,,..., A n } +. Bazy danych (studia zaoczne) 12

4 Algorytm obliczania domknicia zbioru atrybutów {,,..., A n } Przykład Niech X oznacza nazw zbioru domknicia. Na pocztku X= {,,..., A n }. Znajdujemy tez wszystkie zalenoci funkcyjne postaci B 1 B 2...B m C gdzie B 1 B 2...B m nale do zbioru X, a C nie naley. Wówczas dołczamy C do zbioru X. X + Y B Nowy X + Powtarzamy krok 2 tak długo, jak długo nie bdzie mona dołczy do X adnego nowego atrybutu. Jeli ju adnego atrybutu nie mona dołczy do X, to znaczy, e otrzymalimy domknicie zbioru {,,..., A n } + Bazy danych (studia zaoczne) 13 Bazy danych (studia zaoczne) 14 Cel Domknicie i klucze Majc dane domknicie zbioru atrybutów {,,..., A n } moemy sprawdzi, czy dana zaleno funkcyjna wynika ze zbioru zalenoci S. Jeli B naley do {,,..., A n } + to oznacza, e wynika z S. B Zbiór {,,..., A n } + zawiera wszystkie atrybuty relacji R wtedy i tylko wtedy, gdy elementy,,..., A n s nadkluczem w R. Stwierdzenie, czy atrybuty,,..., A n stanowi klucz relacji, moe polega na sprawdzeniu: czy wszystkie atrybuty R nale do zbioru {,,..., A n } + czy X + otrzymane z dowolnego X, który utworzymy przez usunicie choby jednego elementu sporód,,..., A n, nie zawiera wszystkich atrybutów R Przykład: Relacja Filmy(tytuł, rok, czas, rodzaj, nazwastudia, adresstudia) Uzasadni, e kluczem jest zbiór (tytuł, rok) tytuł rok nazwastudia nazwastudia adresstudia Bazy danych (studia zaoczne) 15 Bazy danych (studia zaoczne) 16

5 Reguła przechodnioci SQL Reguła przechodnioci umoliwia kaskadowe łczenie zalenoci: jeli w relacji R zachodz zalenoci B 1 B 2... B m oraz B 1 B 2... B m C 1 C 2...C k, to w relacji R zachodzi take zaleno C 1 C 2...C k. Złczenia tabel Podzapytania Podzapytania skorelowane Opearator EXISTS Uzasadnienienie powyszej reguły => wyliczenie domknicia {,,..., A n } +. Bazy danych (studia zaoczne) 17 Bazy danych (studia zaoczne) 18 Powtórzenie z grupowania danych Powizanie tabeli samej ze sob Czy ponisze zapytania s poprawne: select job, max(sal) from emp; Powizanie tabeli samej ze sob jest moliwe dziki zastosowaniu aliasu tabeli. Warunek łczenia odbywa si w taki sposób, jakby to były dwie oddzielne tabele: FROM tabela alias1 tabela alias2 select dname, avg (sal) from emp, dept where dept.deptno=emp.deptno group by dname, dept.deptno select deptno, job, avg(sal) where min(sal)>1000 group by deptno, job; Bazy danych (studia zaoczne) 19 Bazy danych (studia zaoczne) 20

6 Podzapytania Podzapytanie - polecenie SELECT zagniedone w innym poleceniu SELECT. Umoliwia konstruowanie zapytania odwołujcego si do wartoci wybranych przez inne polecenie SELECT. Przykład: SELECT kolumna1, kolumna2,... FROM tabela WHERE kolumna = (SELECT kolumna FROM tabela WHERE warunek) Uwagi WHERE (kolumna1, kolumna 2...) = (SELECT kol1, kol2...) kolumny w bloku zewntrznym powinny by ujte w nawiasy i oddzielone przecinkami powinna by zgodno co do liczby i typu kolumn wybieranych w bloku wewntrznym i kolumn bloku zewntrznego porównywanych z nimi Bazy danych (studia zaoczne) 21 Bazy danych (studia zaoczne) 22 Podzapytania skorelowane uwagi Kady wiersz proponowany przez zapytanie główne przechodzi prób warunku wyraonego za pomoc zapytania skorelowanego, w którym wystpuje odwołanie do wartoci kolumn tego wiersza. Operatory ANY i ALL Opearatory ANY i ALL mona stosowa w podzapytaniach zwracajcych wicej ni jeden wiersz. Wykorzystuje si je w klauzulach WHERE I HAVING łcznie z operatorami porównywania (=;!=; <; >; <=; >=) Wykonanie SELECT z podzapytaniem skorelowanym: pobranie wiersza przez zewntrzne zapytanie wykonanie wewntrzngo zapytania na podstawie wartoci z pobranego w pkt 1. Wiersza zaakceptowanie bd odrzucenie wiersza na podstawie wyniku zapytania z pkt 2. Powtórzenie akcji opisanych wyej, a do wyczerpania wszystkich wierszy proponowanych przez zapytanie zewntrzne. Bazy danych (studia zaoczne) 23 Operator ANY powoduje akceptacj (spełnienie warunku) po stwierdzeniu zgodnoci wyraenia z którkolwiek z wartoci zwracanych przez podzapytanie Operator ALL słuy do porównania z wszystkimi wartociami zwracanymi przez podzapytanie Przed operatorami ANY i ALL mona stosowa zaprzeczenie - NOT Bazy danych (studia zaoczne) 24

7 Podzapytania w klauzuli HAVING Wybra te departamenty, których rednie zarobki przekraczaj redni zarobek departamentu 30. Select deptno, avg(sal) from emp group by deptno having avg(sal) >(select avg(sal) from emp where deptno=30); Znale stanowisko pracy, na którym s najwysze rednie zarobki. Select job, avg(sal) from emp group by job having avg(sal) =(select max(avg(sal)) from emp group by job); Bazy danych (studia zaoczne) 25

Bazy danych. Plan wykładu. Definicja zalenoci funkcyjnych. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne.

Bazy danych. Plan wykładu. Definicja zalenoci funkcyjnych. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - funkcje Deficja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów

Bardziej szczegółowo

Bazy danych. Plan wykáadu. Zale*noci funkcyjne. Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. A B

Bazy danych. Plan wykáadu. Zale*noci funkcyjne. Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. A B Plan wykáadu Bazy danych Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. Maágorzata Krtowska Wydziaá Informatyki Politechnika Biaáostocka Deficja zale*noci funkcyjnych Klucze relacji Reguáy dotyczce

Bardziej szczegółowo

Bazy danych. Plan wykáadu. Powtórzenie BCNF i 3NF. Nowa forma redundancji. Wykáad 6: Postaci normalne. SQL - zapytania záo*one.

Bazy danych. Plan wykáadu. Powtórzenie BCNF i 3NF. Nowa forma redundancji. Wykáad 6: Postaci normalne. SQL - zapytania záo*one. Plan wykáadu Bazy danych Wykáad 6: Postaci normalne. SQL - zapytania záo*one. Maágorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl Zale*noci wielowartociowe Czwarta postaü normalna

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Bazy danych. Plan wykładu. Podstawy modeli relacyjnych. Diagramy ER. Wykład 3: Relacyjny model danych. SQL

Bazy danych. Plan wykładu. Podstawy modeli relacyjnych. Diagramy ER. Wykład 3: Relacyjny model danych. SQL Plan wykładu Bazy danych Wykład 3: Relacyjny model danych. SQL Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - podstawy Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

Bazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD)

Bazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD) Plan wykładu Bazy danych Wykład 2: Diagramy zwizków encji (ERD) Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory słabych encji Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 6: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogościowe rzutowanie selekcja przemianowanie Małgorzata Krętowska Wydział Informatyki Politechnika

Bardziej szczegółowo

Bazy danych. Plan wykładu. Pierwsza posta normalna. Druga posta normalna. Wykład 7: Sprowadzanie do postaci normalnych. DDL, DML

Bazy danych. Plan wykładu. Pierwsza posta normalna. Druga posta normalna. Wykład 7: Sprowadzanie do postaci normalnych. DDL, DML Plan wykładu azy danych Wykład 7: Sprowadzanie do postaci normalnych. DDL, DML Przykład sprowadzenia nieznormalizowanej relacji do 3NF SQL instrukcja EXISTS DDL DML (insert) Małgorzata Krtowska Katedra

Bardziej szczegółowo

Bazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD)

Bazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD) Plan wykładu Bazy danych Wykład 2: Diagramy zwizków encji (ERD) Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory słabych encji Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

Podzapytania. SELECT atrybut_1, atrybut_2,... FROM relacja WHERE atrybut_n operator (SELECT atrybut_1, FROM relacja WHERE warunek

Podzapytania. SELECT atrybut_1, atrybut_2,... FROM relacja WHERE atrybut_n operator (SELECT atrybut_1, FROM relacja WHERE warunek Podzapytania Podzapytanie jest poleceniem SELECT zagnieżdżonym w innym poleceniu SELECT. Podzapytanie może wystąpić wszędzie tam, gdzie system spodziewa się zbioru wartości, czyli w klauzulach SELECT,

Bardziej szczegółowo

3. Podzapytania, łączenie tabel i zapytań

3. Podzapytania, łączenie tabel i zapytań 3. Podzapytania, łączenie tabel i zapytań I. PODZAPYTANIE (SUBSELECT) oddzielna, ujęta w nawiasy instrukcja SELECT, zagnieżdżona w innej instrukcji SQL, zazwyczaj w instrukcji SELECT w instrukcji SELECT,

Bardziej szczegółowo

Plan wykładu. Elementy ERD BAZY DANYCH. Proces modelowania i implementacji bazy danych. Diagramy związków encji. SQL podzapytania

Plan wykładu. Elementy ERD BAZY DANYCH. Proces modelowania i implementacji bazy danych. Diagramy związków encji. SQL podzapytania Plan wykładu 2 BAZY DANYCH Wykład 4: Diagramy związków encji (ERD). SQL podzapytania. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Diagramy związków encji elementy ERD liczności związków

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Materiały szkoleniowe. Podstawy jzyka SQL. Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk

Materiały szkoleniowe. Podstawy jzyka SQL. Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk Materiały szkoleniowe Podstawy jzyka SQL Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk Spis treci Zawarto tabel wykorzystywanych na kursie 5 Zawarto tabeli DEPT 6 Zawarto tabeli EMP 6 Zawarto tabeli

Bardziej szczegółowo

Plan wykładu. Problemy w bazie danych. Problemy w bazie danych BAZY DANYCH. Problemy w bazie danych Przykład sprowadzenia nieznormalizowanej SQL

Plan wykładu. Problemy w bazie danych. Problemy w bazie danych BAZY DANYCH. Problemy w bazie danych Przykład sprowadzenia nieznormalizowanej SQL Plan wykładu 2 ZY DNYH Wykład 2: Sprowadzanie do postaci normalnych. SQL. Problemy w bazie danych Przykład sprowadzenia nieznormalizowanej relacji do 3NF SQL Małgorzata Krętowska Wydział Informatyki Politechnika

Bardziej szczegółowo

Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS.

Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS. Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS. 1 Podzapytania Podzapytanie jest poleceniem SELECT zagnieżdżonym

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD

Bardziej szczegółowo

Bazy danych Podstawy teoretyczne

Bazy danych Podstawy teoretyczne Pojcia podstawowe Baza Danych jest to zbiór danych o okrelonej strukturze zapisany w nieulotnej pamici, mogcy zaspokoi potrzeby wielu u!ytkowników korzystajcych z niego w sposóbs selektywny w dogodnym

Bardziej szczegółowo

Bazy danych. Plan wykładu. Przetwarzanie zapyta. Etapy przetwarzania zapytania. Wykład 12: Optymalizacja zapyta. Etapy przetwarzanie zapytania

Bazy danych. Plan wykładu. Przetwarzanie zapyta. Etapy przetwarzania zapytania. Wykład 12: Optymalizacja zapyta. Etapy przetwarzanie zapytania Plan wykładu Bazy danych Wykład 12: Optymalizacja zapyta Etapy przetwarzanie zapytania Implementacja wyrae algebry relacji Reguły heurystyczne optymalizacji zapyta Kosztowa optymalizacja zapyta Małgorzata

Bardziej szczegółowo

TECHNOLOGIE BAZ DANYCH

TECHNOLOGIE BAZ DANYCH TECHNOLOGIE BAZ DANYCH WYKŁAD 3 Diagramy związków encji. Funkcje agregujące. (Wybrane materiały) Dr inż. E. Busłowska Copyright 2014-2015 E. Busłowska. 1 DIAGRAMY ZWIĄZKÓW ENCJI (DZE) Metoda graficznej

Bardziej szczegółowo

Bazy danych. Plan wykáadu. Proces modelowania i implementacji bazy danych. Elementy ERD

Bazy danych. Plan wykáadu. Proces modelowania i implementacji bazy danych. Elementy ERD Plan wykáadu Wykáad 2: Diagramy zwizków encji (ERD) SQL - áczenie tabel, zapytania grupujce Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory sáabych encji Maágorzata Krtowska,

Bardziej szczegółowo

Bazy Danych i Usługi Sieciowe

Bazy Danych i Usługi Sieciowe Bazy Danych i Usługi Sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2011 1 / 40 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B

Bardziej szczegółowo

Podzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę

Podzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę Podzapytania Rozdział 5 Podzapytania podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, klauzula WITH, operatory ANY, ALL i EXISTS, zapytania hierarchiczne Podzapytanie jest poleceniem

Bardziej szczegółowo

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania.

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Przykładowa RBD o schematach relacji (tzw. płaska postać RBD): N(PRACOWNICY) = {ID_P, IMIĘ,

Bardziej szczegółowo

BAZY DANYCH. Anomalie. Rozkład relacji i normalizacja. Wady redundancji

BAZY DANYCH. Anomalie. Rozkład relacji i normalizacja. Wady redundancji BAZY DANYCH WYKŁAD 5 Normalizacja relacji. Zapytania zagnieżdżone cd. Wady redundancji Konieczność utrzymania spójności kopii, Marnowanie miejsca, Anomalie. (Wybrane materiały) Dr inż. E. Busłowska Copyright

Bardziej szczegółowo

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2016 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2016 1 / 50 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B

Bardziej szczegółowo

SQL (ang. Structured Query Language)

SQL (ang. Structured Query Language) SQL (ang. Structured Query Language) SELECT pobranie danych z bazy, INSERT umieszczenie danych w bazie, UPDATE zmiana danych, DELETE usunięcie danych z bazy. Rozkaz INSERT Rozkaz insert dodaje nowe wiersze

Bardziej szczegółowo

Bazy danych. Plan wykładu. Złczenia tabel. Perspektywy cd. Wykład 9: Programowanie aplikacji baz danych po stronie serwera. Sekwencje Wyzwalacze

Bazy danych. Plan wykładu. Złczenia tabel. Perspektywy cd. Wykład 9: Programowanie aplikacji baz danych po stronie serwera. Sekwencje Wyzwalacze Plan wykładu Bazy danych Wykład 9: Programowanie aplikacji baz danych po stronie serwera Sekwencje Wyzwalacze Bloki anonimowe Funkcje Procedury Pakiety Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

Zadania SELECT do schematu EDS (EMP, DEPT, SALGRADE)

Zadania SELECT do schematu EDS (EMP, DEPT, SALGRADE) Zadania SELECT do schematu EDS (EMP, DEPT, SALGRADE) W Bazie występują trzy tabele, o następujących schematach: EMP {empno(pk), ename, deptno(fk), mgr(fk), sal, comm, hiredate, job} DEPT {deptno(pk), dname,

Bardziej szczegółowo

Materiały szkoleniowe. Podstawy języka SQL

Materiały szkoleniowe. Podstawy języka SQL Materiały szkoleniowe Podstawy języka SQL Spis treści Zawartość tabel wykorzystywanych na kursie... 4 Zawartość tabeli DEPT...5 Zawartość tabeli EMP...5 Zawartość tabeli SALGRADE...5 Budowa tabel wykorzystywanych

Bardziej szczegółowo

Konstruowanie Baz Danych Wprowadzenie do projektowania. Normalizacja

Konstruowanie Baz Danych Wprowadzenie do projektowania. Normalizacja Studia podyplomowe In»ynieria oprogramowania wspóªnansowane przez Uni Europejsk w ramach Europejskiego Funduszu Spoªecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarz dzania

Bardziej szczegółowo

Pojęcie zależności funkcyjnej

Pojęcie zależności funkcyjnej Postacie normalne Plan wykładu Zależności funkcyjne Cel normalizacji Pierwsza postać normalna Druga postać normalna Trzecia postać normalna Postać normalna Boyca - Codda Pojęcie zależności funkcyjnej Definicja

Bardziej szczegółowo

Bazy danych wykład trzeci. trzeci Modelowanie schematu bazy danych 1 / 40

Bazy danych wykład trzeci. trzeci Modelowanie schematu bazy danych 1 / 40 Bazy danych wykład trzeci Modelowanie schematu bazy danych Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa trzeci Modelowanie schematu bazy danych 1 / 40 Outline 1 Zalezności funkcyjne

Bardziej szczegółowo

Bazy danych 8. Podzapytania i grupowanie. P. F. Góra

Bazy danych 8. Podzapytania i grupowanie. P. F. Góra Bazy danych 8. Podzapytania i grupowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2009 Podzapytania Podzapytania pozwalaja na tworzenie strukturalnych podzapytań, co umożliwia izolowanie poszczególnych

Bardziej szczegółowo

Bazy danych SQL. Wstp. SQL (Structured( Query Language) strukturalny jzyk zapyta

Bazy danych SQL. Wstp. SQL (Structured( Query Language) strukturalny jzyk zapyta Wstp (Structured( Query Language) strukturalny jzyk zapyta Podstawowe cechy jzyka : - zapytania wyszukiwanie danych w bazie danych, - operowanie danymi wstawianie, modyfikacja, usuwanie danych z bazy danych,

Bardziej szczegółowo

Podstawowe zapytania SELECT (na jednej tabeli)

Podstawowe zapytania SELECT (na jednej tabeli) Podstawowe zapytania SELECT (na jednej tabeli) Struktura polecenia SELECT SELECT opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje FROM nazwy tabel lub widoków WHERE warunek (wybieranie wierszy) GROUP

Bardziej szczegółowo

Normalizacja. Pojęcie klucza. Cel normalizacji

Normalizacja. Pojęcie klucza. Cel normalizacji Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia

Bardziej szczegółowo

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Złączenie definicja Złączenie (JOIN) to zbiór rekordów stanowiących wynik zapytania służącego pobraniu danych z połączonych tabel (związki jeden-do-jeden, jeden-do-wiele

Bardziej szczegółowo

Bazy Danych egzamin poprawkowy, 2012 rozwiazania

Bazy Danych egzamin poprawkowy, 2012 rozwiazania Bazy Danych egzamin poprawkowy, 2012 rozwiazania 1 Zadania 1. (20p) Stwórz diagram ER dla następującego opisu bazy danych. W szczególności oznacz słabe encje, klucze, rodzaje związków (czy wiele do jednego,

Bardziej szczegółowo

Grupowanie i funkcje agregujące

Grupowanie i funkcje agregujące Grupowanie i funkcje agregujące Zadanie 1. Stwórz odpowiednią tabelę Test_agr i wprowadź odpowiednie rekordy tak, aby wynik zapytania SELECT AVG(kol) avg_all, AVG(DISTINCT kol) avg_dist, COUNT(*) count_gw,

Bardziej szczegółowo

KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości.

KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości. elacja chemat relacji chemat relacji jest to zbiór = {A 1,..., A n }, gdzie A 1,..., A n są artybutami (nazwami kolumn) np. Loty = {Numer, kąd, Dokąd, Odlot, Przylot} KaŜdemu atrybutowi A przyporządkowana

Bardziej szczegółowo

Podstawy języka SQL cz. 2

Podstawy języka SQL cz. 2 Podstawy języka SQL cz. 2 1. Operatory zbiorowe a. UNION suma zbiorów z eliminacją powtórzeń, b. EXCEPT różnica zbiorów z eliminacją powtórzeń, c. INTERSECT część wspólna zbiorów z eliminacją powtórzeń.

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Instrukcja obsługi programu Pilot PS 5rc

Instrukcja obsługi programu Pilot PS 5rc Instrukcja obsługi programu Pilot PS 5rc Spis treci 1.Wprowadzenie....3 2. Wymagania....3 3. Instalacja oprogramowania...3 4. Uruchomienie Programu...5 4.1. Menu główne...5 4.2. Zakładki...6 5. Praca z

Bardziej szczegółowo

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła 030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,

Bardziej szczegółowo

Plan wykładu. Problemy w bazie danych. Problemy w bazie danych BAZY DANYCH

Plan wykładu. Problemy w bazie danych. Problemy w bazie danych BAZY DANYCH Plan wykładu 2 ZY DNYH Wykład 3: Sprowadzanie do postaci normalnych. SQL zapytania grupujące Małgorzata Krętowska Wydział Informatyki Politechnika iałostocka Problemy w bazie danych Przykład sprowadzenia

Bardziej szczegółowo

Laboratorium Bazy danych SQL 3 1

Laboratorium Bazy danych SQL 3 1 Laboratorium Bazy danych SQL 3 1 F U N K C J E operujące na grupach wierszy: avg([distinct all]kol) oblicza średnią arytmetyczną wartości kolumny kol wszystkich wierszy grupy. count([distinct all]wyr)

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Bazy danych wykład trzeci. trzeci Przekształcenie modelu ER na model relacyjny 1 / 19

Bazy danych wykład trzeci. trzeci Przekształcenie modelu ER na model relacyjny 1 / 19 Bazy danych wykład trzeci Przekształcenie modelu ER na model relacyjny Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa trzeci Przekształcenie modelu ER na model relacyjny 1 / 19 Przekształcanie

Bardziej szczegółowo

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy)

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy) Zapytania SQL. Polecenie SELECT jest używane do pobierania danych z bazy danych (z tabel lub widoków). Struktura polecenia SELECT SELECT FROM WHERE opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje

Bardziej szczegółowo

Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/

Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Wprowadzenie Historia i standardy Podstawy relacyjności Typy danych DDL tabele, widoki, sekwencje zmiana struktury DML DQL Podstawy, złączenia,

Bardziej szczegółowo

Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy.

Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy. Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy. Przejście od modelu związków encji do modelu relacyjnego: odwzorowanie zbiorów encji, odwzorowanie związków encji

Bardziej szczegółowo

Zależności funkcyjne

Zależności funkcyjne Zależności funkcyjne Plan wykładu Pojęcie zależności funkcyjnej Dopełnienie zbioru zależności funkcyjnych Postać minimalna zbioru zależności funkcyjnych Domknięcie atrybutu relacji względem zależności

Bardziej szczegółowo

Opera 9.10. Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10. wersja 1.1 UNIZETO TECHNOLOGIES SA

Opera 9.10. Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10. wersja 1.1 UNIZETO TECHNOLOGIES SA Opera 9.10 Wykorzystanie certyfikatów niekwalifikowanych w oprogramowaniu Opera 9.10 wersja 1.1 Spis treci 1. INSTALACJA WŁASNEGO CERTYFIKATU Z PLIKU *.PFX... 3 2. WYKONYWANIE KOPII BEZPIECZESTWA WŁASNEGO

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn

Bardziej szczegółowo

Relacji między tabelami klucze obce. Schemat bazy danych, wczytanej z pliku create_tables.sql. Klucz obcy jako ograniczenie dla kolumny

Relacji między tabelami klucze obce. Schemat bazy danych, wczytanej z pliku create_tables.sql. Klucz obcy jako ograniczenie dla kolumny Schemat bazy danych, wczytanej z pliku create_tables.sql Relacji między tabelami klucze obce Klucz obcy jako ograniczenie dla kolumny customer_id INTEGER NOT NULL REFERENCES customer(customer_id), CONSTRAINT

Bardziej szczegółowo

Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji

Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji Plan wykładu Bazy danych Wykład 12: Optymalizacja zapytań. Język DDL, DML (cd) Etapy przetwarzania zapytania Implementacja wyrażeń algebry relacji Reguły heurystyczne optymalizacji zapytań Kosztowa optymalizacja

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Wybór EUROPEAN będzie rozpoznawał dzień przed miesiącem, natomiast US miesiąc przed dniem.

Wybór EUROPEAN będzie rozpoznawał dzień przed miesiącem, natomiast US miesiąc przed dniem. Typy numeryczne Typy daty i czasu. W celu uniknięcia niejasności czy zapis 11-08-2005 oznacza - 11 sierpnia 2005, czy może 8 listopada 2005, należy ustalić sposób interpretacji daty (europejski lub amerykański).

Bardziej szczegółowo

Bazy Danych i Usługi Sieciowe

Bazy Danych i Usługi Sieciowe Bazy Danych i Usługi Sieciowe Ćwiczenia III Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS ćw. III Jesień 2011 1 / 1 Strona wykładu http://bioexploratorium.pl/wiki/ Bazy_Danych_i_Usługi_Sieciowe_-_2011z

Bardziej szczegółowo

BAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski BAZY DANYCH model relacyjny Opracował: dr inż. Piotr Suchomski Relacyjny model danych Relacyjny model danych posiada trzy podstawowe składowe: relacyjne struktury danych operatory algebry relacyjnej, które

Bardziej szczegółowo

Fazy przetwarzania zapytania zapytanie SQL. Optymalizacja zapytań. Klasyfikacja technik optymalizacji zapytań. Proces optymalizacji zapytań.

Fazy przetwarzania zapytania zapytanie SQL. Optymalizacja zapytań. Klasyfikacja technik optymalizacji zapytań. Proces optymalizacji zapytań. 1 Fazy przetwarzania zapytanie SQL 2 Optymalizacja zapytań część I dekompozycja optymalizacja generacja kodu wyraŝenie algebry relacji plan wykonania kod katalog systemowy statystyki bazy danych wykonanie

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Wprowadzenie do języka SQL

Wprowadzenie do języka SQL Wprowadzenie do języka SQL język dostępu do bazy danych grupy poleceń języka: DQL (ang( ang.. Data Query Language) DML (ang( ang.. Data Manipulation Language) DDL (ang( ang.. Data Definition Language)

Bardziej szczegółowo

Wstp. Warto przepływu to

Wstp. Warto przepływu to 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze

Bardziej szczegółowo

geometry a w przypadku istnienia notki na marginesie: 1 z 5

geometry a w przypadku istnienia notki na marginesie: 1 z 5 1 z 5 geometry Pakiet słuy do okrelenia parametrów strony, podobnie jak vmargin.sty, ale w sposób bardziej intuicyjny. Parametry moemy okrela na dwa sposoby: okrelc je w polu opcji przy wywołaniu pakiety:

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

SQL DDL DML TECHNOLOGIE BAZ DANYCH. Wykład 5: Język DDL i DML. Małgorzata Krętowska

SQL DDL DML TECHNOLOGIE BAZ DANYCH. Wykład 5: Język DDL i DML. Małgorzata Krętowska SQL TECHNOLOGIE BAZ DANYCH Wykład 5: Język DDL i DML. SQL (ang. StructuredQueryLanguage) strukturalny język zapytań używany do tworzenia, modyfikowania relacyjnych baz danych oraz do umieszczania i pobierania

Bardziej szczegółowo

BAZY DANYCH algebra relacyjna. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH algebra relacyjna. Opracował: dr inż. Piotr Suchomski BAZY DANYCH algebra relacyjna Opracował: dr inż. Piotr Suchomski Wprowadzenie Algebra relacyjna składa się z prostych, ale mocnych mechanizmów tworzenia nowych relacji na podstawie danych relacji. Hdy

Bardziej szczegółowo

Bazy danych Teoria projektowania relacyjnych baz danych. Wykła. Wykład dla studentów matematyki

Bazy danych Teoria projektowania relacyjnych baz danych. Wykła. Wykład dla studentów matematyki Bazy danych Teoria projektowania relacyjnych baz danych. Wykład dla studentów matematyki 2 kwietnia 2017 Ogólne wprowadzenie No przecież do tego służa reguły, rozumiesz? Żebyś się dobrze zastanowił, zanim

Bardziej szczegółowo

Bazy danych. Plan wykładu. Klucz wyszukiwania. Pojcie indeksu. Wykład 8: Indeksy. Pojcie indeksu - rodzaje indeksów

Bazy danych. Plan wykładu. Klucz wyszukiwania. Pojcie indeksu. Wykład 8: Indeksy. Pojcie indeksu - rodzaje indeksów Plan wykładu Bazy Wykład 8: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl

Bardziej szczegółowo

Ćwiczenie zapytań języka bazy danych PostgreSQL

Ćwiczenie zapytań języka bazy danych PostgreSQL Ćwiczenie zapytań języka bazy danych PostgreSQL 1. Uruchom link w przeglądarce: http://127.0.0.1/phppgadmin 2. Kliknij w zaznaczony na czerwono link PostgreSQL: 3. Zaloguj się wpisując hasło i login student.

Bardziej szczegółowo

Zależności funkcyjne c.d.

Zależności funkcyjne c.d. Zależności funkcyjne c.d. Przykłady. Relacja Film (zapis w postaci tabeli): Tytuł Rok Długość typfilmu nazwastudia nazwiskogwiazdy Gwiezdne 1977 124 Kolor Fox Carrie Fisher Gwiezdne 1977 124 Kolor Fox

Bardziej szczegółowo

Normalizacja relacyjnych baz danych. Sebastian Ernst

Normalizacja relacyjnych baz danych. Sebastian Ernst Normalizacja relacyjnych baz danych Sebastian Ernst Zależności funkcyjne Zależność funkcyjna pomiędzy zbiorami atrybutów X oraz Y oznacza, że każdemu zestawowi wartości atrybutów X odpowiada dokładnie

Bardziej szczegółowo

Projektowanie Systemów Informacyjnych

Projektowanie Systemów Informacyjnych Projektowanie Systemów Informacyjnych Wykład II Encje, Związki, Diagramy związków encji, Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło

Bardziej szczegółowo

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. 77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele

Bardziej szczegółowo

Bazy danych 2. Wykład 4 Structured Query Language (SQL)

Bazy danych 2. Wykład 4 Structured Query Language (SQL) Bazy danych 2 Wykład 4 Structured Query Language (SQL) Cechy SQL W standardzie SQL wyróŝnia się dwie części: DDL (Data Definition Language) - język definiowania danych DML (Data Manipulation Language)

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Chemoinformatyczne bazy danych - Wprowadzenie do technologii baz danych. Andrzej Bąk

Chemoinformatyczne bazy danych - Wprowadzenie do technologii baz danych. Andrzej Bąk Chemoinformatyczne bazy danych - Wprowadzenie do technologii baz danych Andrzej Bąk Wstęp Zarys Co to jest baza danych? Podstawy teorii baz danych Klasyfikacja baz danych Organizacja danych w relacyjnej

Bardziej szczegółowo

Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych

Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych Politechnika Śląska Instytut Informatyki instrukcja laboratoryjna laboratorium Bazy Danych przygotowali: mgr inż. Paweł Kasprowski (Kasprowski@zti.iinf.polsl.gliwice.pl) mgr inż. Bożena Małysiak (bozena@ivp.iinf.polsl.gliwice.pl)

Bardziej szczegółowo

Elementy baz danych w edytorze tekstu. Elementy baz danych w arkuszu kalkulacyjnym. Jednorodna tabela jako ródło danych:

Elementy baz danych w edytorze tekstu. Elementy baz danych w arkuszu kalkulacyjnym. Jednorodna tabela jako ródło danych: 1 / 9 PODSTAWY BAZ DANYCH 2 / 9 PODSTAWY BAZ DANYCH Elementy baz danych w edytorze tekstu. Elementy baz danych w arkuszu kalkulacyjnym. Jednorodna tabela jako ródło danych: Jednorodna tabela jako ródło

Bardziej szczegółowo

Zadania do wykonaj przed przyst!pieniem do pracy:

Zadania do wykonaj przed przyst!pieniem do pracy: wiczenie 3 Tworzenie bazy danych Biblioteka tworzenie kwerend, formularzy Cel wiczenia: Zapoznanie si ze sposobami konstruowania formularzy operujcych na danych z tabel oraz metodami tworzenia kwerend

Bardziej szczegółowo

Bazy danych 2. Zależności funkcyjne Normalizacja baz danych

Bazy danych 2. Zależności funkcyjne Normalizacja baz danych Bazy danych 2. Zależności funkcyjne Normalizacja baz danych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Zależności funkcyjne Definicja: Mówimy, że atrybut B jest zależny funkcyjnie od atrybutów

Bardziej szczegółowo

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Piotr Borowiec PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Sporód wielu metod sztucznej inteligencji obliczeniowej algorytmy genetyczne doczekały si wielu implementacji. Mona je wykorzystywa

Bardziej szczegółowo

Laboratorium Bazy danych SQL 2

Laboratorium Bazy danych SQL 2 Klauzula order by występuje jako ostatnia klauzula w poleceniu select, powoduje posortowanie wierszy będących wynikiem zapytania według wartości atrybutu w niej wskazanego. Domyślnie sortowanie jest według

Bardziej szczegółowo

Tworzenie bazy danych Biblioteka tworzenie tabel i powiza, manipulowanie danymi. Zadania do wykonani przed przystpieniem do pracy:

Tworzenie bazy danych Biblioteka tworzenie tabel i powiza, manipulowanie danymi. Zadania do wykonani przed przystpieniem do pracy: wiczenie 2 Tworzenie bazy danych Biblioteka tworzenie tabel i powiza, manipulowanie danymi. Cel wiczenia: Zapoznanie si ze sposobami konstruowania tabel, powiza pomidzy tabelami oraz metodami manipulowania

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Podzapytania do tabel W miejscu w którym możemy użyć nazwy tabeli, możemy użyć podzapytania

Podzapytania do tabel W miejscu w którym możemy użyć nazwy tabeli, możemy użyć podzapytania Plan Podzapytania (subqueries) Podzapytania do tabel Podzapytanie jako wyrażenie Podzapytania skorelowane operatory IN, NOT IN operatory EXISTS, NOT EXISTS Podzapytania do tabel W miejscu w którym możemy

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja Plan Zależności funkcyjne 1. Zależności funkcyjne jako klasa ograniczeń semantycznych odwzorowywanego świata rzeczywistego. 2. Schematy relacyjne = typ relacji + zależności funkcyjne. 3. Rozkładalność

Bardziej szczegółowo

Bazy danych 8. Złaczenia ciag dalszy. Grupowanie.

Bazy danych 8. Złaczenia ciag dalszy. Grupowanie. Bazy danych 8. Złaczenia ciag dalszy. Grupowanie. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry Wyobraźmy sobie zapytanie SELECT... FROM T 1 JOIN T 2 ON... WHERE P(T 1 )

Bardziej szczegółowo

Program wykładu. zastosowanie w aplikacjach i PL/SQL;

Program wykładu. zastosowanie w aplikacjach i PL/SQL; Program wykładu 1 Model relacyjny (10 godz.): podstawowe pojęcia, języki zapytań (algebra relacji, relacyjny rachunek krotek, relacyjny rachunek dziedzin), zależności funkcyjne i postaci normalne (BCNF,

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Dr Michał Tanaś(http://www.amu.edu.pl/~mtanas)

Dr Michał Tanaś(http://www.amu.edu.pl/~mtanas) Dr Michał Tanaś(http://www.amu.edu.pl/~mtanas) Bazy danych podstawowe pojęcia Baza danych jest to zbiór danych zorganizowany zgodnie ze ściśle określonym modelem danych. Model danych to zbiór ścisłych

Bardziej szczegółowo

- 307 W Oracle instrukcja SELECT Ename FROM Emp WHERE Empno=4567: [ ] zakłada blokadę do odczytu dla jednego wiersza tabeli Emp [ ] zakłada blokadę

- 307 W Oracle instrukcja SELECT Ename FROM Emp WHERE Empno=4567: [ ] zakłada blokadę do odczytu dla jednego wiersza tabeli Emp [ ] zakłada blokadę - 307 W Oracle instrukcja SELECT Ename FROM Emp WHERE Empno=4567: [ ] zakłada blokadę do odczytu dla jednego wiersza tabeli Emp [ ] zakłada blokadę do odczytu dla wszystkich wierszy tabeli Emp [ ] zakładę

Bardziej szczegółowo

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J. Bazy Danych Wykład II Encja, atrybuty, klucze Związki encji Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Encja Byt pojęciowy

Bardziej szczegółowo