Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:"

Transkrypt

1 1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students<-read.table( students.txt, header=t, sep= \t ) Sprawdź, czy R prawidłowo wczytał dane: > students height shoesize gender population male berlin female berlin female berlin male berlin male berlin female berlin female berlin female warsaw female warsaw female warsaw female warsaw female warsaw male warsaw male warsaw male warsaw male warsaw male warsaw Można też wydrukować same nazwy kolumn (czasem cała tabela nie mieści się na ekranie i wtedy może to być pomocne): > names(students) [1] "height" "shoesize" "gender" "population" 2. Przygotowanie danych do analizy Do poszczególnych kolumn można się odwoływać stosując następująca składnię: najpierw nazwa obiektu, następnie znak $ i nazwa kolumny: Students$height Jest to dosyć pracochłonne, a dane mogą zostać przydzielone wg kolumn do odrębnych zmiennych. Przygotujmy więc tak dane, aby rozdzielić je wg kolumn: > attach(students) Teraz można odwoływać się do poszczególnych kolumn poprzez ich nagłówki: > height [1] Prosta statystyka Jaki jest średni wzrost i rozmiar buta? > mean(height) [1]

2 > mean(shoesize) [1] A jakie są odchylenia standardowe? > sd(height) [1] > sd(shoesize) [1] Jaki jest rozkład płci i miejsca pochodzenia (ile jest obserwacji w każdej grupie)? > table(gender) gender female male 9 8 > table(population) population berlin warsaw 7 10 Komenda table może też być też wykorzystywana do tworzenia tabel dwudzielczych: > table(gender,population) population gender berlin warsaw female 4 5 male Użyteczne wykresy > hist(height) Powyższa funkcja zwraca histogram rozkładu cechy height. Jest to rozkład dla całej badanej populacji. Ale czy istnieje różnica wzrostu w zależności od miejsca pochodzenia? Zmienna height jest dzielona na dwie grupy przy wykorzystaniu zmiennej gender i tworzone są oddzielne wykresy ramkowe dla tych dwóch grup: > boxplot(height~gender) A więc jest duża różnica we wzroście w zależności od płci. Czy to samo dotyczy miejsca pochodzenia? > boxplot (height ~ population) Jak powiązane są ze sobą wysokość i rozmiar buta? Odpowiedź na to pytanie ilustruje wykres rozrzutu: > plot(height, shoesize) Zaznaczmy na tym samym wykresie płeć różnymi kolorami (pierwszy kolor jest zawsze czarny, a kolejne numery wskazują inne kolory): > plot(height, shoesize, col=as.numeric(gender)) Płeć jest automatycznie kodowana jako zmienna numeryczna w powyższym poleceniu rysowania 2

3 Skąd wiadomo, które obserwacje są kodowane jako 1, a które jako 2? Możemy porównać oryginalną zmienną i zmienną przekodowaną. Zmienne są łączone wierszami dzięki następującemu poleceniu: > data.frame(gender, as.numeric(gender)) gender as.numeric.gender. 1 male 2 2 female 1 3 female 1 4 male 2 5 male 2 6 female 1 7 female 1 8 female 1 9 female 1 10 female 1 11 female 1 12 female 1 13 male 2 14 male 2 15 male 2 16 male 2 17 male 2 Wynika stąd, że mężczyźni otrzymali kod 2, a kobiety 1. Tak więc, na wykresie kobietom odpowiada kolor czarny, a mężczyznom czerwony. Możemy też dodać do wykresu miejsce pochodzenia stosując odrębny sposób oznaczeń (argument pch): > plot(height, shoesize, col=as.numeric(gender), pch=as.numeric(population)) Symbole rozpoczynają się od kółka, któremu odpowiada 1. Kolejne liczby dają różne symbole. Której populacji odpowiadają trójkąty? > data.frame(population, as.numeric(population)) population as.numeric.population. 1 berlin 1 2 berlin 1 3 berlin 1 4 berlin 1 5 berlin 1 6 berlin 1 7 berlin 1 8 warsaw 2 9 warsaw 2 10 warsaw 2 11 warsaw 2 12 warsaw 2 13 warsaw 2 14 warsaw 2 15 warsaw 2 16 warsaw 2 17 warsaw 2 3

4 Można też dodać legendę do wykresu po jego narysowaniu: > plot(height, shoesize, col=as.numeric(gender), pch=as.numeric(population)) > legend(x="bottomright", legend=c("male berlin", "female berlin","male warsaw", "female warsaw"), pch=c(2,1,2,1),col=c(1,1,2,2)) Najpierw podawana jest pozycja legendy (argument x). Argument legend podaje, jaki tekst ma się pojawić, argumenty pch i col określają szczególny dot. symboli i ich kolorów. Symbole i kolory są podawane w takiej samej kolejności jak tekst. 5. Przekodowywanie zmiennych Zmienne płeć i populacja są faktorami. Czasem istnieje konieczność zamiany faktora na wektor (np. w celu przeprowadzenia analiz statystycznych): > gen<-as.numeric(gender) > pop<-as.numeric(population) > class(gen) > class(pop) Można też tego dokonać stosujące bardziej ogólną komendę ifelse: > gen<-ifelse(gender=="male", 1, 2) > pop<-ifelse(population=="berlin", 1, 2) > class(gen) > class(pop) 6. Tworzenie nowego zbioru danych Utwórzmy nowy zbiór danych ze zmiennych height, shoesize, gen i pop: > students.new<-data.frame(height, shoesize, gen, pop) > students.new

5 > class(students.new) [1] "data.frame" Zamknijmy poprzedni zbiór danych i otwórzmy nowy: > detach(students) > attach(students.new) 7. Tworzenie podzbioru danych Utwórzmy dwa podzbiory danych ze zbioru students.new. Podzielmy go ze względu na płeć: > which(gen==1) [1] Na podstawie tego wybierzmy za pomocą indeksów odpowiedni podzbiór (weźmiemy tylko wiersze, dla których płeć jest męska): > students.berlin<-students.new[which(gen==1),] > students.berlin Utwórzmy podobny podzbiór dla kobiet: > students.berlin.females<-students.new[which(gen==2),] > students.berlin.females Czasem zależy nam na podziale zbioru danych na podzbiory wg zmiennej ciągłej, takiej jak np. wzrost. Zwykle stosuje się w tym celu medianę tej zmiennej. Utwórzmy dwa podzbiory danych dla osób o wzroście powyżej i poniżej mediany. > median(height) [1] 170 > students.short<- students.new[which(height<=median(height) ),] > students.short 5

6 > students.long<- students.new[which(height>median(height)), ] > students.long Kończenie pracy w R Aby zakończyć wpisujemy: > q() R pyta się wówczas, czy zapisać przestrzeń roboczą, czy nie. Jest to zwykle dobry pomysł. Można wtedy powrócić do przeprowadzanej analizy. Plik ma rozszerzenie.rdata. Wchodzimy w File- >Load Workspace i wybieramy odpowiedni plik. 6

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Program współpracuje z : Windows XP, Powerdraft 2004, v8, XM, Microstation 2004, v8, XM.

Program współpracuje z : Windows XP, Powerdraft 2004, v8, XM, Microstation 2004, v8, XM. Spis treści 1. Informacje ogólne. Wstęp. Wymagania programu. 2. Sposób uruchomienia programu. Uruchomienie poprzez menu microstation. Uruchomienie z menu start. 3. Działanie programu. Zakładka import.

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Wykład 2: Arkusz danych w programie STATISTICA

Wykład 2: Arkusz danych w programie STATISTICA Wykład 2: Arkusz danych w programie STATISTICA Nazwy przypadków Numer i nazwa zmiennej Elementy arkusza danych Cechy statystyczne Zmienne (kolumny) Jednostki statystyczne Przypadki (wiersze) Tworzenie

Bardziej szczegółowo

Materiał dotyczy generowania różnego typu wykresów w środowisku R.

Materiał dotyczy generowania różnego typu wykresów w środowisku R. Materiał dotyczy generowania różnego typu wykresów w środowisku R. Pamiętajmy, że niektóre typy wykresów są dedykowane do pewnych typów danych. Na potrzeby ćwiczeń początkowych załadujemy sobie zbiór danych

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46.

W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46. 1. Wprowadzenie Priorytetem projektu jest zbadanie zależności pomiędzy wartościami średnich szybkości przemieszczeń terenu, a głębokością eksploatacji węgla kamiennego. Podstawowe dane potrzebne do wykonania

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

1. Przypisy, indeks i spisy.

1. Przypisy, indeks i spisy. 1. Przypisy, indeks i spisy. (Wstaw Odwołanie Przypis dolny - ) (Wstaw Odwołanie Indeks i spisy - ) Przypisy dolne i końcowe w drukowanych dokumentach umożliwiają umieszczanie w dokumencie objaśnień, komentarzy

Bardziej szczegółowo

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Wykład 1 Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Informacje o przedmiocie prowadzący: strona internetowa: wykład ćwiczenia forma zaliczenia: dr Marek Sobolewski www.msobolew.sd.prz.edu.pl

Bardziej szczegółowo

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Zadanie 1. Tworzenie wykresów zmiennych jakościowych wyrażonych w skali nominalnej i porządkowej. Utworzyć wykres

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Elementy formatowania, jakie można ustawiać dla sekcji

Elementy formatowania, jakie można ustawiać dla sekcji Sekcje Za pomocą sekcji można różnicować układ dokumentu pomiędzy stronami lub w obrębie jednej strony. Jest to fragment dokumentu, w którym użytkownik ustawia pewne opcje formatowania strony takie jak

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo

Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1

Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Katarzyna Nawrot Spis treści: 1. Podstawowe pojęcia a. Arkusz kalkulacyjny b. Komórka c. Zakres komórek d. Formuła e. Pasek formuły

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych.

1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych. Laboratorium z ekonometrii (GRETL) 1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych. Okno startowe: Póki nie wczytamy jakiejś bazy danych (lub nie stworzymy własnej), mamy dostęp tylko do dwóch

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23 Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Plik... 7 Okna... 8 Aktywny scenariusz... 9 Oblicz scenariusz... 10 Lista zmiennych... 11 Wartości zmiennych... 12 Lista scenariuszy/lista

Bardziej szczegółowo

Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.

Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli. Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych

Bardziej szczegółowo

Arkusz kalkulacyjny EXCEL

Arkusz kalkulacyjny EXCEL ARKUSZ KALKULACYJNY EXCEL 1 Arkusz kalkulacyjny EXCEL Aby obrysować tabelę krawędziami należy: 1. Zaznaczyć komórki, które chcemy obrysować. 2. Kursor myszy ustawić na menu FORMAT i raz kliknąć lewym klawiszem

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

BIBLIOTEKA LOKALNE CENTRUM WIEDZY PRAKTYCZNEJ PRZEWODNIK PO NARZĘDZIACH WARSZTAT NR 1: ARKUSZE KALKULACYJNE - MINI SKRYPT

BIBLIOTEKA LOKALNE CENTRUM WIEDZY PRAKTYCZNEJ PRZEWODNIK PO NARZĘDZIACH WARSZTAT NR 1: ARKUSZE KALKULACYJNE - MINI SKRYPT BIBLIOTEKA LOKALNE CENTRUM WIEDZY PRAKTYCZNEJ PRZEWODNIK PO NARZĘDZIACH WARSZTAT NR 1: ARKUSZE KALKULACYJNE - MINI SKRYPT 1. Wprowadzenie Arkusze kalkulacyjne Google umożliwiają łatwe tworzenie, udostępnianie

Bardziej szczegółowo

Ćwiczenie 8 Kolory i znaki specjalne

Ćwiczenie 8 Kolory i znaki specjalne Ćwiczenie 8 Kolory i znaki specjalne W ćwiczeniu 8 zajmować się będziemy kolorami i znakami specjalnymi. Barwę moŝna utworzyć mieszając w odpowiednich proporcjach trzy kolory podstawowe: czerwony, zielony

Bardziej szczegółowo

UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI

UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI LABORATORIUM TECHNOLOGIA SYSTEMÓW INFORMATYCZNYCH W BIOTECHNOLOGII Pakiet R: Cz. II Strona 1 z 7 OBIEKTY Faktory (factors) Faktor jest specjalną strukturą, przechowującą

Bardziej szczegółowo

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA

Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Podstawowe informacje wykładowca: dr Marek Sobolewski konsultacje: środa 8.40-10.10, czwartek 8.40-10.10 (p. L-400) strona

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

TABELE I WYKRESY W EXCELU I ACCESSIE

TABELE I WYKRESY W EXCELU I ACCESSIE TABELE I WYKRESY W EXCELU I ACCESSIE 1. Tabele wykonane w Excelu na pierwszych ćwiczeniach Wielkość prób samce samice wiosna/lato 12 6 jesień 6 7 zima 10 9 Średni ciężar osobnika SD ciężaru osobnika samce

Bardziej szczegółowo

Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie

Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

ZAJĘCIA KOMPUTEROWE KLASA IV. Opis wymagań, które uczeń powinien spełnić, aby uzyskać ocenę:

ZAJĘCIA KOMPUTEROWE KLASA IV. Opis wymagań, które uczeń powinien spełnić, aby uzyskać ocenę: ZAJĘCIA KOMPUTEROWE KLASA IV Opis wymagań, które uczeń powinien spełnić, aby uzyskać ocenę: CELUJĄCĄ Opanował wiadomości i umiejętności wynikające z programu nauczania na ocenę bardzo dobrą i ponadto:

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Ćwiczenie 2 GEODA i5 ogólne informacje i obliczanie statystyki Morana

Ćwiczenie 2 GEODA i5 ogólne informacje i obliczanie statystyki Morana Teoria Procesów Przestrzennych Prowadzący: Krzysztof Janc Ćwiczenie 2 GEODA 0.9.5-i5 ogólne informacje i obliczanie statystyki Morana N ZAKŁAD ZAGOSPODAROWANIA PRZESTRZENNEGO I STYTUT GEOGRAFII I ROZWOJU

Bardziej szczegółowo

Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony

Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym

Bardziej szczegółowo

Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3

Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3 Slajd 1 Slajd 2 Numerowanie i punktowanie Automatyczne ponumerowanie lub wypunktowanie zaznaczonych akapitów w

Bardziej szczegółowo

Kancelaria 2.23 zmiany w programie czerwiec 2013

Kancelaria 2.23 zmiany w programie czerwiec 2013 1. Moduł ADMINISTRACJA Rozbudowano program administracyjny, dodając możliwość reindeksacji bazy w celu przyspieszenia dostępu do danych. Okno administracji podzielono na karty Konfiguracja, Kopie zapasowe

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

Instrukcja korzystania ze skryptu kroswalidacja.py

Instrukcja korzystania ze skryptu kroswalidacja.py Instrukcja korzystania ze skryptu kroswalidacja.py 1) Wczytać do SGeMS plik z danymi pomiarowymi dwukrotnie (Menu Objects Load Object): raz jako dane, a za drugim razem pod inną nazwą, np. punkty jako

Bardziej szczegółowo

Prezentacja multimedialna MS PowerPoint 2010 (podstawy)

Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Cz. 1. Tworzenie slajdów MS PowerPoint 2010 to najnowsza wersja popularnego programu do tworzenia prezentacji multimedialnych. Wygląd programu w

Bardziej szczegółowo

Krótki przewodnik po Open Calc

Krótki przewodnik po Open Calc Krótki przewodnik po Open Calc Uwaga. Po szczegółową pomoc odsyłam do pliku pomocy. W arkuszu kalkulacyjnym możemy sporządzić dowolne zestawienia i przeliczenia danych w sposób elegancki i automatyczny.

Bardziej szczegółowo

Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3

Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3 Slajd 1 Slajd 2 Numerowanie i punktowanie Automatyczne ponumerowanie lub wypunktowanie zaznaczonych akapitów w

Bardziej szczegółowo

Równania w Microsoft Word 2007 Microsoft Equation 3.0 Formatowanie strony. dr inż. Jarosław Forenc. Symbol Więcej symboli

Równania w Microsoft Word 2007 Microsoft Equation 3.0 Formatowanie strony. dr inż. Jarosław Forenc. Symbol Więcej symboli Rok akademicki 2012/2013, Pracownia nr 3 2/28 Pracownia nr 3 Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

NAGŁÓWKI, STOPKI, PODZIAŁY WIERSZA I STRONY, WCIĘCIA

NAGŁÓWKI, STOPKI, PODZIAŁY WIERSZA I STRONY, WCIĘCIA NAGŁÓWKI, STOPKI, PODZIAŁY WIERSZA I STRONY, WCIĘCIA Ćwiczenie 1: Ściągnij plik z tekstem ze strony www. Zaznacz tekst i ustaw go w stylu Bez odstępów. Sformatuj tekst: wyjustowany czcionka Times New Roman

Bardziej szczegółowo

Wykorzystanie tabletu na lekcjach matematyki

Wykorzystanie tabletu na lekcjach matematyki Wykorzystanie tabletu na lekcjach matematyki Wojciech Jabłoński 1 Instalacja Jeśli wraz z tabletem nie dostarczono oprogramowania, ze strony producenta tabletu pobrać należy plik Tablet_WIN.exe Jego uruchomienie

Bardziej szczegółowo

DZISIAJ. Jeszcze trochę o PROJEKTACH JAK PREZENTOWAĆ: JAK OBLICZAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH PODSTAWOWE MIARY

DZISIAJ. Jeszcze trochę o PROJEKTACH JAK PREZENTOWAĆ: JAK OBLICZAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH PODSTAWOWE MIARY PREZENTACJA DANYCH DZISIAJ Jeszcze trochę o PROJEKTACH Następnie metodą prób b i błęb łędów: JAK PREZENTOWAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH JAK OBLICZAĆ: PRZEDZIAŁY Y UFNOŚCI PODSTAWOWE

Bardziej szczegółowo

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

Tworzenie infografik za pomocą narzędzia Canva

Tworzenie infografik za pomocą narzędzia Canva Tworzenie infografik za pomocą narzędzia Canva Spis treści Wstęp... 1 Układy... 3 Zmiana tekstu... 4 Obrazki... 5 Elementy... 6 Zdjęcia - Gratis... 6 Siatki... 8 Ramki... 10 Kształty... 12 Linie... 12

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi.

Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi. Tworzenie wykresów w Excelu. Część pierwsza. Kreator wykresów Wpisz do arkusza poniższą tabelę. Podczas tworzenia wykresów nie ma znaczenia czy tabela posiada obramowanie lub inne elementy formatowania

Bardziej szczegółowo

Qtiplot. dr Magdalena Posiadała-Zezula

Qtiplot. dr Magdalena Posiadała-Zezula Qtiplot dr Magdalena Posiadała-Zezula Magdalena.Posiadala@fuw.edu.pl www.fuw.edu.pl/~mposiada Start! qtiplot poza rysowaniem wykresów pozwala też na zaawansowaną obróbkę danych.! qtiplot jest silnie wzorowany

Bardziej szczegółowo

WOJEWÓDZTWO PODKARPACKIE

WOJEWÓDZTWO PODKARPACKIE WOJEWÓDZTWO PODKARPACKIE UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO Instrukcja instalacji generatora wniosku o dofinansowanie projektu ze środków EFRR w ramach I osi priorytetowej Regionalnego

Bardziej szczegółowo

zajęcia 2 Definiowanie wektorów:

zajęcia 2 Definiowanie wektorów: zajęcia 2 Plan zajęć: definiowanie wektorów instrukcja warunkowa if wykresy Definiowanie wektorów: Co do definicji wektora: Koń jaki jest, każdy widzi Definiowanie wektora w Octave v1=[3,2,4] lub: v1=[3

Bardziej szczegółowo

Wojewódzki Kuratoryjny Konkurs z Informatyki Etap szkolny

Wojewódzki Kuratoryjny Konkurs z Informatyki Etap szkolny Wojewódzki Kuratoryjny Konkurs z Informatyki Etap szkolny Listopad 2012 CZĘŚĆ PRAKTYCZNA CZAS PRACY 60 MINUT Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron i wszystkie polecenia

Bardziej szczegółowo

KATEGORIA OBSZAR WIEDZY

KATEGORIA OBSZAR WIEDZY Moduł 3 - Przetwarzanie tekstów - od kandydata wymaga się zaprezentowania umiejętności wykorzystywania programu do edycji tekstu. Kandydat powinien wykonać zadania o charakterze podstawowym związane z

Bardziej szczegółowo

Diagnoza Szkolna Pearsona. Instrukcja obsługi

Diagnoza Szkolna Pearsona. Instrukcja obsługi Diagnoza Szkolna Pearsona Instrukcja obsługi 1. Logowanie Aby skorzystać z systemu Diagnoza Szkolna Pearsona należy najpierw wejść na stronę diagnoza.pearson.pl i wybrać przycisk Logowanie. Następnie należy

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch

Bardziej szczegółowo

Przypomnienie: Ćwiczenie 1.

Przypomnienie: Ćwiczenie 1. Strona1 Przypomnienie: Zmienne statystyczne można podzielić na: 1. Ilościowe, czyli mierzalne (przedstawiane liczbowo) w tym: skokowe inaczej dyskretne (przyjmują skończoną lub co najwyżej przeliczalną

Bardziej szczegółowo

TABELE I WYKRESY W EXCELU I ACCESSIE

TABELE I WYKRESY W EXCELU I ACCESSIE TABELE I WYKRESY W EXCELU I ACCESSIE Adresowanie w Excelu A B C D 1 A1 $B1 C$1 $D$1 2 3 A B C D 1 15 =A1 2 =$A1 3 =A$1 4 =$A$1 Przesunąć w dół, w bok i w dół i bok Przekopiować w dół, w bok i w dół i bok

Bardziej szczegółowo

NAGŁÓWKI, STOPKI, PODZIAŁY WIERSZA I STRONY, WCIĘCIA

NAGŁÓWKI, STOPKI, PODZIAŁY WIERSZA I STRONY, WCIĘCIA NAGŁÓWKI, STOPKI, PODZIAŁY WIERSZA I STRONY, WCIĘCIA Ćwiczenie 1: Ściągnij plik z tekstem ze strony www. Zaznacz tekst i ustaw go w stylu Bez odstępów. Sformatuj tekst: wyjustowany czcionka Times New Roman

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Edytor tekstu Word MK(c)

Edytor tekstu Word MK(c) Edytor tekstu Word 2007 1 C Z. 3 W S T A W I A N I E E L E M E N T Ó W Wstawianie symboli 2 Aby wstawić symbol należy przejść na zakładkę Wstawianie i wybrać Symbol Następnie wybrać z okienka dialogowego

Bardziej szczegółowo

Ćwiczenie 2 (Word) Praca z dużym tekstem

Ćwiczenie 2 (Word) Praca z dużym tekstem Ćwiczenie 2 (Word) Praca z dużym tekstem 1. Przygotowanie dokumentu głównego (Tworzenie rozdziałów i podrozdziałów) Otwórz dokument o nazwie Duży tekst.docx znajdujący się na stronie prowadzącego zajęcia.

Bardziej szczegółowo

Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab

Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych

Bardziej szczegółowo

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego. Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

Lekcja 1: Origin GUI GUI to Graficzny interfejs użytkownika (ang. GraphicalUserInterface) często nazywany też środowiskiem graficznym

Lekcja 1: Origin GUI GUI to Graficzny interfejs użytkownika (ang. GraphicalUserInterface) często nazywany też środowiskiem graficznym Lekcja 1: Origin GUI GUI to Graficzny interfejs użytkownika (ang. GraphicalUserInterface) często nazywany też środowiskiem graficznym jest to ogólne określenie sposobu prezentacji informacji przez komputer

Bardziej szczegółowo

MS Word 2010. Długi dokument. Praca z długim dokumentem. Kinga Sorkowska 2011-12-30

MS Word 2010. Długi dokument. Praca z długim dokumentem. Kinga Sorkowska 2011-12-30 MS Word 2010 Długi dokument Praca z długim dokumentem Kinga Sorkowska 2011-12-30 Dodawanie strony tytułowej 1 W programie Microsoft Word udostępniono wygodną galerię wstępnie zdefiniowanych stron tytułowych.

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:

Bardziej szczegółowo

Bazy danych raporty. 1. Przekopiuj na dysk F:\ bazę M5BIB.mdb z dysku wskazanego przez prowadzącego.

Bazy danych raporty. 1. Przekopiuj na dysk F:\ bazę M5BIB.mdb z dysku wskazanego przez prowadzącego. Bazy danych raporty 1. Przekopiuj na dysk F:\ bazę M5BIB.mdb z dysku wskazanego przez prowadzącego. 2. Otwórz bazę (F:\M5BIB). 3. Utwórz raport wyświetlający wszystkie pola z tabeli KSIAZKI. Pozostaw ustawienia

Bardziej szczegółowo

1. Opis okna podstawowego programu TPrezenter.

1. Opis okna podstawowego programu TPrezenter. OPIS PROGRAMU TPREZENTER. Program TPrezenter przeznaczony jest do pełnej graficznej prezentacji danych bieżących lub archiwalnych dla systemów serii AL154. Umożliwia wygodną i dokładną analizę na monitorze

Bardziej szczegółowo

Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję

Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję Zadanie 1 Plik Nowy Kod lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję libname nazwa biblioteki lokalizacja na dysku ; np. libname lab 'N:\sas2007\';

Bardziej szczegółowo

Środowisko R wprowadzenie. Wykład R1; 14.05.07 Pakiety statystyczne

Środowisko R wprowadzenie. Wykład R1; 14.05.07 Pakiety statystyczne Środowisko R wprowadzenie. Wykład R1; 14.05.07 Pakiety statystyczne Pakiety statystyczne stosowane do analizy danych: SAS SPSS Statistica R S-PLUS 1 Środowisko R Język S- J. Chambers i in. (1984,1988)

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

FORMUŁY AUTOSUMOWANIE SUMA

FORMUŁY AUTOSUMOWANIE SUMA Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy

Bardziej szczegółowo

SAS Podstawowe informacje przed ćwiczeniem 1

SAS Podstawowe informacje przed ćwiczeniem 1 SAS Podstawowe informacje przed ćwiczeniem 1 Zasady tworzenia programów każda instrukcja zakończona się średnikiem małe i duże litery nie są rozróżniane instrukcje mogą być kontynuowane w następnej linii

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Idea wnioskowania statystycznego

Idea wnioskowania statystycznego Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko opisanie (prezentacja) posiadanych danych, czyli tzw. próby statystycznej. Najczęściej informacje z próby powinny pozwolić

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Korespondencja seryjna

Korespondencja seryjna Korespondencja seryjna Listy seryjne - część pierwsza Przygotowanie korespondencji seryjnej zawsze składa się z trzech etapów. Przygotowanie treści dokumentu głównego. Stworzenie źródła danych (lub skorzystanie

Bardziej szczegółowo

Obsługa programu Paint. mgr Katarzyna Paliwoda

Obsługa programu Paint. mgr Katarzyna Paliwoda Obsługa programu Paint. mgr Katarzyna Paliwoda Podstawowo program mieści się w Systemie a dojście do niego odbywa się przez polecenia: Start- Wszystkie programy - Akcesoria - Paint. Program otwiera się

Bardziej szczegółowo

Zanim zaczniemy GNU Octave

Zanim zaczniemy GNU Octave MatLab część I 1 Zanim zaczniemy GNU Octave 2 Zanim zaczniemy GNU Octave 3 Zanim zaczniemy GNU Octave 4 Środowisko MatLab-a MatLab ang. MATrix LABoratory Obliczenia numeryczne i symboliczne operacje na

Bardziej szczegółowo

a) Utworzyć wykres kołowy dla stanu cywilnego danej grupy kobiet. Porównać różne formy opisu wykresu.

a) Utworzyć wykres kołowy dla stanu cywilnego danej grupy kobiet. Porównać różne formy opisu wykresu. Zadanie 1 Badania demograficzne przeprowadzone w 1988 roku w USA wykazały, że wśród kobiet (mających 18 i więcej lat) było: 17364 tyś. panien, 56128 tyś. mężatek, 11239 tyś. wdów i 8170 tyś. rozwódek.

Bardziej szczegółowo

Pascal - grafika. Uruchomienie trybu graficznego. Moduł graph. Domyślny tryb graficzny

Pascal - grafika. Uruchomienie trybu graficznego. Moduł graph. Domyślny tryb graficzny Moduł graph Pascal - grafika Pascal zawiera standardowy moduł do tworzenia obiektów graficznych linii, punktów, figur geometrycznych itp. Chcąc go użyć należy w programie (w nagłówku) wstawić deklarację:

Bardziej szczegółowo

Ćwiczenie 2 GEODA i5 ogólne informacje i obliczanie statystyki Morana

Ćwiczenie 2 GEODA i5 ogólne informacje i obliczanie statystyki Morana Teoria Procesów Przestrzennych Prowadzący: Krzysztof Janc Ćwiczenie 2 GEODA 0.9.5-i5 ogólne informacje i obliczanie statystyki Morana N ZAKŁAD ZAGOSPODAROWANIA PRZESTRZENNEGO I STYTUT GEOGRAFII I ROZWOJU

Bardziej szczegółowo

Ćwiczenie 6. Transformacje skali szarości obrazów

Ćwiczenie 6. Transformacje skali szarości obrazów Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

MapInfo Professional - 3

MapInfo Professional - 3 Analiza danych na mapach tematycznych Mapy tematyczne to narzędzie do analizy i wizualizacji danych. Rozkłady i trendy, które trudno zauważyć na wykazach danych można łatwo wyśledzić na mapach tematycznych.

Bardziej szczegółowo

1. Remanent. 1.1 Remanent

1. Remanent. 1.1 Remanent Testy MADAR Sp. z o.o. 41-819 Zabrze, ul. Skłodowskiej 12d/3 Biuro Handlowe: 41-800 Zabrze, ul. Pośpiecha 23 http://www.madar.com.pl e-mail: madar@madar.com.pl tel./fax (0 32) 278-66-65, tel. 0-601-44-65-00

Bardziej szczegółowo