Sposoby prezentacji problemów w statystyce

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sposoby prezentacji problemów w statystyce"

Transkrypt

1 S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki opisowej, która zajmuje się opracowywaniem, przedstawianiem w różnych formach i analizowaniem wyników badań prowadzonych na próbie losowej. Zostaną zaprezentowane sposoby porządkowania i wizualizacji danych statystycznych (szeregi rozdzielcze, histogramy i inne diagramy) oraz statystyki opisowe i badanie korelacji między cechami. Te zagadnienia wykraczają poza podstawę programową matematyki, ale nie są to treści trudne i przy odpowiedniej wizualizacji komputerowej uczeń z łatwością je zrozumie. Problem Przeprowadzono sondaż na próbie 40 uczniów szkoły. Każdy z nich odpowiadał na pytanie: Ile książek przeczytałeś w ciągu minionego miesiąca? Oto odpowiedzi kolejnych uczniów: 5, 1, 2, 0, 5, 4, 4, 1, 1, 1, 2, 0, 0, 0, 3, 1, 1, 2, 5, 4, 6, 4, 0, 1, 2, 3, 5, 2, 1, 2, 3, 0, 2, 4, 3, 2, 2, 3, 0, 1. Co można powiedzieć o czytelnictwie w tej grupie młodzieży? Wprowadzenie teoretyczne Statystyka to dział matematyki, który zajmuje się wnioskowaniem statystycznym, czyli formułowaniem i weryfikowaniem wniosków ogólnych (hipotez statystycznych) na podstawie skończonej liczby wyników obserwacji losowych. Prowadząc badania statystyczne pewnej zbiorowości (populacji), wybieramy reprezentatywną jej grupę zwaną próbą. Próbę poddajemy bezpośrednim badaniom, a wyniki uogólniamy na całą populację. Badane zjawisko nazywamy cechą statystyczną (można też używać nazwy zmienna jest ona powszechnie używana w oprogramowaniu z zakresu statystyki), a wyniki badania przeprowadzonego na próbie wartościami cechy. Wiarygodność takich badań w dużej mierze zależy od wyboru próby. Statystyka dzieli się na dwa główne działy: statystykę opisową, która zajmuje się opracowywaniem, przedstawianiem w różnych formach i analizowaniem wyników badań prowadzonych na próbie losowej oraz statystykę matematyczną, która zajmuje się wnioskowaniem o rozkładzie wartości cechy w całej populacji na podstawie wyników badania próby.

2 S t r o n a 2 Uzyskane w trakcie badania próby wyniki można przedstawiać w różnych formach graficznych (tabele, różnorodne diagramy) oraz dokonywać ich analizy przy pomocy tzw. statystyk liczbowych. W środkach masowego przekazu bardzo często widzimy efekty zastosowania metod statystyki opisowej do wizualizacji wyników badań różnorodnych zjawisk społecznych, politycznych, ekonomicznych, kulturalnych i innych. W opracowywaniu danych statystycznych (zwłaszcza przy wykonywaniu diagramów i skomplikowanych obliczeń) bardzo przydatne jest odpowiednie oprogramowanie. Programem, z którego będziemy korzystać przy rozpatrywaniu zagadnień statystycznych jest Statystyka i prawdopodobieństwo. Jego angielskojęzyczną wersję demonstracyjną możesz pobrać ze strony (plik vustatengdemo.zip). Możesz też użyć dowolnego arkusza kalkulacyjnego. Badanie zagadnienia W postawionym na wstępie problemie za populację można uznać na przykład wszystkich uczniów danej szkoły. Próba badawcza to czterdziestu wybranych uczniów, zaś badaną cechą jest liczba przeczytanych książek. Postawione pytanie: Co można powiedzieć o czytelnictwie w tej grupie młodzieży? należy uszczegółowić. Jakie konkretne pytania można zadać, aby uzyskać jak najwięcej informacji opisujących zjawisko w sposób możliwie najbardziej dokładny? Przede wszystkim zauważmy, że dane nie są uporządkowane, a więc nie są czytelne. Wszelkie analizowanie i wnioskowanie jest utrudnione. Przy pomocy programu Statystyka i prawdopodobieństwo można uporządkować dane w postaci tabeli zwanej tablicą (tabelą) liczebności, korzystając z opcji Statystyka/Tablice/Tablica liczebności. Oto tabela: l.książek Liczeb Ogółem 40 Lewa kolumna zawiera tzw. klasy wartości cechy. Takie grupowanie danych ma miejsce, gdy liczba obserwacji jest duża. Jeżeli chcemy mieć w lewej kolumnie tabeli wyszczególnione wszystkie

3 S t r o n a 3 wartości badanej cechy (tzn. liczby przeczytanych książek), korzystamy w ostatnio używanej opcji z przycisku Klasy, określając liczbę klas jako 7 (tyle wartości ma badana cecha): l.książek Liczeb Ogółem 40 Jeśli natomiast zaznaczymy pole Procenty, otrzymamy taką tabelę: l.książek Liczeb. % , , , , , , ,50 Ogółem % Jakie więc pytania możemy postawić w oparciu o powyższe tablice? Na przykład takie: Jaką liczbę książek przeczytało najwięcej uczniów? Jaki to procent badanej liczby uczniów? Jaką liczbę książek przeczytało najmniej uczniów? Jaki to procent badanej liczby uczniów? Czy są uczniowie, którzy wcale nie czytają? Czy jest ich wielu? Jaki to procent badanej grupy uczniów? Odpowiedz na powyższe pytania. Może dostrzegasz inne zagadnienia, o które warto zapytać? Tabelaryczny układ danych nie jest najbardziej obrazowy. Przedstawmy teraz powyższe dane w postaci różnego rodzaju wykresów (diagramów). Można to zrobić korzystając z opcji Statystyka/Wykresy i wybierając odpowiedni typ wykresu lub Pokaż wszystko. Można skorzystać też z opcji Wykresy danych z Menu głównego. I tak, możemy otrzymać wykres słupkowy z uwzględnieniem liczebności:

4 S t r o n a 4 lub z uwzględnieniem udziału procentowego poszczególnych liczb przeczytanych książek w ogólnym czytelnictwie: Jakie wnioski możesz wyciągnąć z obserwacji tego wykresu? Wyraźnie widać, że większa liczba badanych uczniów czyta mniej książek (0, 1 lub 2). Można też sporządzić diagram kołowy, bardzo przydatny przy badaniu struktury zjawiska: Badanie zjawiska czytelności wśród uczniów mogłoby być bardziej wnikliwe, gdybyśmy zapytali badanych uczniów o inne cechy. Rozszerzmy nasze badanie tak, aby czytelnictwo było widoczne w kontekście innych cech. Spytajmy uczniów o płeć i ocenę z języka polskiego. Przyporządkujmy oznaczenia płci w sposób następujący: niech liczba 0 oznacza chłopca, 1 dziewczynkę.

5 S t r o n a 5 Jakie pytania można teraz postawić do naszego zagadnienia? Na przykład takie: Kto czyta więcej książek: chłopcy czy dziewczęta? Kto ma lepsze oceny z języka polskiego: chłopcy czy dziewczęta? Czy istnieje związek (w statystyce ten związek nazywamy korelacją) pomiędzy oceną z języka polskiego a liczbą przeczytanych książek? Aby odpowiedzieć na pytania dotyczące różnic w czytelnictwie chłopców i dziewcząt, podzielmy nasze dane na dwie grupy względem zmiennej płeć. W tym celu skorzystamy z opcji Statystyka/Dane/Podziel, wybierając zmienną płeć jako zmienną podziału. Dokonany został podział na dwie klasy: chłopców i dziewczęta. Znajduje to odbicie w tablicy liczebności: płeć płeć 0 płeć 1 l.książek Liczeb. % Liczeb. % Ogółem ,00 1 6, ,50 0 0, , , ,50 1 6, , , , , ,17 0 0,00 1 Ogółem % % 40 oraz w wykresach, którym można nadać wybraną formę: Możesz ocenić, który z wykresów jest bardziej czytelny i wygodny, jeśli chodzi o dokonywanie porównań. Powyżej umieszczone wykresy ilustrują poziom czytelnictwa wśród chłopców i dziewcząt. Jeżeli chcesz zobrazować oceny z polskiego, musisz przed wykonaniem wykresu wskazać odpowiednią zmienną. Otrzymasz wówczas na przykład taki wykres:

6 S t r o n a 6 Aby zbadać, czy istnieje związek pomiędzy oceną z języka polskiego a liczbą przeczytanych książek, można skorzystać z opcji Statystyka/Wykres/Wykres rozrzutu. O tym, czy istnieje związek pomiędzy zmiennymi wnioskujemy z obserwacji wykresu i współczynników umieszczonych w tabeli nad wykresami. Jeśli (przy przyjętym modelu liniowym) punkty widoczne na wykresie układają się w pobliżu prostej, istnieje związek. O istnieniu tego związku mówi też współczynnik korelacji, który jest liczbą z przedziału -1, 1. Im większa jest wartość bezwzględna tego współczynnika, tym większa jest korelacja. Dokonaliśmy opracowania i graficznej analizy danych pochodzących z pewnego badania. Zaplanowaliśmy również rozszerzenie badania tak, aby badane zjawisko (poziom czytelnictwa) mogło być zanalizowane bardziej wszechstronnie. Wnioski:

7 S t r o n a 7 Czytelnictwo książek wśród uczniów nie jest dobrze rozwinięte. Dziewczynki czytają więcej książek niż chłopcy. Dziewczynki mają lepsze oceny z języka polskiego niż chłopcy. Istnieje ścisła korelacja pomiędzy oceną z języka polskiego a liczbą przeczytanych książek, przy czym jest ona wyższa w przypadku chłopców niż dziewcząt. Powyżej sformułowane wnioski stanowią uogólnienia dotyczące całej populacji, a płynące z obserwacji grupy. Są to hipotezy statystyczne, z wyjątkiem pierwszego wniosku, który jest bardzo nieprecyzyjnie sformułowany nie wiemy, co to znaczy w sensie matematycznym czytelnictwo nie jest dobrze rozwinięte. Hipotezę statystyczną można zweryfikować (zbadać, czy jest ona słuszna, czy nie) posługując się metodami statystyki matematycznej. Może w tym również pomóc program Statystyka i prawdopodobieństwo, nie jest to jednak przedmiotem rozważań w szkole ponadgimnazjalnej.

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Wykład 10: Elementy statystyki

Wykład 10: Elementy statystyki Wykład 10: Elementy statystyki dr Mariusz Grządziel 0 grudnia 010 Podstawowe pojęcia Biolodzy: -badają pojedyńcze rośliny lub zwierzęta; -chcemy rozszerzyć wnioski na wszystkich przedstawicieli gatunku

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. [1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

Wykład 1: O statystyce i analizie danych

Wykład 1: O statystyce i analizie danych Wykład 1: O statystyce i analizie danych wykładowca: dr Marek Sobolewski konsultacje: poniedziałek 10.30-12.00, czwartek 9.00-10.30 (p. L-400) strona internetowa: www.msobolew.sd.prz.edu.pl prowadzący

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

TABELE WIELODZIELCZE

TABELE WIELODZIELCZE TABELE WIELODZIELCZE W wielu badaniach gromadzimy dane będące liczebnościami. Przykładowo możemy klasyfikować chore zwierzęta w badanej próbie do różnych kategorii pod względem wieku, płci czy skali natężenia

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Na podstawie dokonanych obserwacji:

Na podstawie dokonanych obserwacji: PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy

Bardziej szczegółowo

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

www.awans.net Publikacje nauczycieli Ewa Goszczycka Gimnazjum w Polesiu

www.awans.net Publikacje nauczycieli Ewa Goszczycka Gimnazjum w Polesiu www.awans.net Publikacje nauczycieli Ewa Goszczycka Gimnazjum w Polesiu Zastosowanie technologii informacyjnej do rozwiązywania problemów z działu Statystyka w gimnazjum Plan pracy Praca opublikowana w

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,

Bardziej szczegółowo

Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010.

Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Metody statystyczne Literatura Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Stąpor K. Wykłady z metod statystycznych dla informatyków z przykładami w języku R. Wydawnictwo Politechniki

Bardziej szczegółowo

Excel zadania sprawdzające 263

Excel zadania sprawdzające 263 Excel zadania sprawdzające 263 Przykładowe zadania do samodzielnego rozwiązania Zadanie 1 Wpisać dane i wykonać odpowiednie obliczenia. Wykorzystać wbudowane funkcje Excela: SUMA oraz ŚREDNIA. Sformatować

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA

Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Podstawowe informacje wykładowca: dr Marek Sobolewski konsultacje: środa 8.40-10.10, czwartek 8.40-10.10 (p. L-400) strona

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Temat lekcji : Zbieramy, opracowujemy i prezentujemy dane.

Temat lekcji : Zbieramy, opracowujemy i prezentujemy dane. SCENARIUSZ LEKCJI MATEMATYKI W KLASIE TRZECIEJ. Temat lekcji : Zbieramy, opracowujemy i prezentujemy dane. Cele: Uczeń : zna różne rodzaje wykresów i diagramów, umie analizować wykresy i diagramy znajdujące

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Myszyniec, dnia 27.10.2014 r.

Myszyniec, dnia 27.10.2014 r. Myszyniec, dnia 27.10.2014 r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2013/2014 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja

SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

Justyna Klimczyk j_klimczyk@poczta.onet.pl Nauczyciel informatyki Szkoła Podstawowa im. Janusza Korczaka w Kleszczowie

Justyna Klimczyk j_klimczyk@poczta.onet.pl Nauczyciel informatyki Szkoła Podstawowa im. Janusza Korczaka w Kleszczowie Justyna Klimczyk j_klimczyk@poczta.onet.pl Nauczyciel informatyki Szkoła Podstawowa im. Janusza Korczaka w Kleszczowie Scenariusz lekcji informatyki klasa V Temat : Zbieramy i opracowujemy dane Cel lekcji:

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

Warsztat nauczyciela: Badanie rzutu ukośnego

Warsztat nauczyciela: Badanie rzutu ukośnego Warsztat nauczyciela: Badanie rzutu ukośnego Patryk Wolny Dydaktyk Medialny W nauczaniu nic nie zastąpi prawdziwego doświadczenia wykonywanego przez uczniów. Nie zawsze jednak jest to możliwe. Chcielibyśmy

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Międzyprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Międzyprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:12.06.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

2 Ustalamy długość klasy, dzieląc rozstęp R przez liczbę klas, czyli przez 6. Klasy mają więc długość

2 Ustalamy długość klasy, dzieląc rozstęp R przez liczbę klas, czyli przez 6. Klasy mają więc długość Grupowanie i klasyfikowanie danych statystycznych Klasyfikacja danych statystycznych to procedura uporządkowania danych, polegająca na podziale zbioru wartości danych na przedziały (grupy), zwane klasami.

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

PRZYGOTOWANIE I REALIZACJA HOSPITACJI DIAGNOZUJĄCEJ

PRZYGOTOWANIE I REALIZACJA HOSPITACJI DIAGNOZUJĄCEJ PRZYGOTOWANIE I REALIZACJA HOSPITACJI DIAGNOZUJĄCEJ Data: 19.5.25 rok Klasa: I Technikum Ekonomicznego Nauczyciel: J. Mierzejewska Majcherek, Barbara Aleksandrowicz Przedmiot: podstawy ekonomii, technologia

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Zadanie 1. Tworzenie wykresów zmiennych jakościowych wyrażonych w skali nominalnej i porządkowej. Utworzyć wykres

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata

Bardziej szczegółowo

Statystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19

Statystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19 Statystyka Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka 20 lutego 2017 1 / 19 Wykład : 30h Laboratoria : 30h (grupa B : 14:00, grupa C : 10:30, grupa E : 12:15) obowiazek

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Wyniki badań statystycznych przedstaw na diagramie słupkowym lub kołowym. Czas w godzinach 8 8 1 1 6

Wyniki badań statystycznych przedstaw na diagramie słupkowym lub kołowym. Czas w godzinach 8 8 1 1 6 Elementy statystyki opisowej sposoby prezentacji danych statystycznych Statystyka to nauka zajmująca się badaniem zjawisk masowych. Wyodrębnia się w niej dwa działy: statystykę opisową i statystykę matematyczną.

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem

Bardziej szczegółowo

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Do egzaminu maturalnego w II Liceum Ogólnokształcącego im. Mikołaja Kopernika w Cieszynie z matematyki na poziomie podstawowym

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Wykład 4: Wnioskowanie statystyczne Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia

Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Treści i efekty kształcenia Treści: Statystyka matematyczna, planowanie eksperymentu Efekty kształcenia: student potrafi opisywać zjawiska za

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

Temat: ANALIZA PRÓBNEGO EGZAMINU GIMNAZYJNEGO DIAGRAM PUDEŁKOWY

Temat: ANALIZA PRÓBNEGO EGZAMINU GIMNAZYJNEGO DIAGRAM PUDEŁKOWY Jolanta Dobrzyńska Gimnazjum nr 1 w Sochaczewie SCENARIUSZ LEKCJI 11.03.2003r. Temat: ANALIZA PRÓBNEGO EGZAMINU GIMNAZYJNEGO DIAGRAM PUDEŁKOWY Program nauczania: Matematyka 2001. Czas trwania lekcji: 45

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 1 Statystyka Nazwa pochodząca o łac. słowa status stan, państwo i statisticus

Bardziej szczegółowo

SIGMA KWADRAT. Wykorzystanie programu MS Excel do opracowań statystycznych CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Wykorzystanie programu MS Excel do opracowań statystycznych CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Wykorzystanie programu MS Excel do opracowań statystycznych PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Jak statystyka może pomóc w odczytaniu wyników sprawdzianu

Jak statystyka może pomóc w odczytaniu wyników sprawdzianu 16 Jak statystyka może pomóc w odczytaniu wyników sprawdzianu Wyniki pierwszego ważnego egzaminu sprawdzianu w klasie szóstej szkoły podstawowej mogą w niebagatelny sposób wpływać na losy pojedynczych

Bardziej szczegółowo